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Abstract

The interpolation of correspondences (EpicFlow) was

widely used for optical flow estimation in most-recent

works. It has the advantage of edge-preserving and effi-

ciency. However, it is vulnerable to input matching noise,

which is inevitable in modern matching techniques. In

this paper, we present a Robust Interpolation method of

Correspondences (called RicFlow) to overcome the weak-

ness. First, the scene is over-segmented into superpixels

to revitalize an early idea of piecewise flow model. Then,

each model is estimated robustly from its support neighbors

based on a graph constructed on superpixels. We propose a

propagation mechanism among the pieces in the estimation

of models. The propagation of models is significantly more

efficient than the independent estimation of each model, yet

retains the accuracy. Extensive experiments on three pub-

lic datasets demonstrate that RicFlow is more robust than

EpicFlow, and it outperforms state-of-the-art methods.

1. Introduction

Optical flow estimation is one of the most fundamental

problems in computer vision. The applications include mo-

tion segmentation [28], video saliency detection [32], action

recognition [38], driver assistance [15, 25], etc. While there

exists abundant literature of this topic, obtaining the reliable

optical flow between frames is still an open problem, espe-

cially in the case of large displacements, which is common

in real-world videos.

Since the optical flow problem is inherently ill-posed,

typically energy optimization is involved in solving it.

Many effective approaches [7, 6, 41, 35] have been pro-

posed based on the pioneering work by Horn and Schunck

[18] who cast the optical flow problem into an energy min-

imization framework. Although these approaches perform

well in the case of small displacements, they often fail to

estimate large displacements. The main reason is the fail-

ure of accurate initialization for the energy minimization to
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(a) Images (b) Matching result of CPM [20]

(c) CPM+Epic [31] (d) CPM+Ric

(e) Error map of CPM+Epic (f) Error map of CPM+Ric

Figure 1. Demonstration of the robustness of the proposed Ric

method. Given the same noisy matches (CPM [20]), the flow in-

terpolated from Ric is more tolerant of matching noise compared

to that interpolated from Epic [31] (see the flat regions above the

shoulder of the character). (e) and (f) are the error map of (c) and

(d) respectively. Matching correspondences are shown as small

colored patches as in [20], and the visualization of the error map

follows [25] (the darker, the better).

avoid local minima.

Recently, a method called EpicFlow [31] that interpo-

lates a sparse set of matches in a dense manner to initiate the

optical flow estimation has shown great advantages over the

traditional coarse-to-fine minimization scheme, especially

in the case of occlusions, motion boundaries and large dis-

placements. However, the flow result is vulnerable to input

matching noise, which is inevitable, though the great ad-

vances have been made in the research of matching tech-

niques [39, 20, 3, 21] (see Figure 1(b)).

In this paper, we propose a robust interpolation method

of correspondences, which is more tolerant of matching

noise. After over-segmenting the scenes into superpixels [1]

and assuming the flow in each superpixel meets a piecewise

affine model, we use RANSAC-like techniques (Random

Sample Consensus) to estimate the model of each super-

481



pixel robustly. The affine model in each superpixel relies

only on its local neighboring matches. This simple strategy

is very effective and Figure 1 shows its robustness compared

to EpicFlow which just uses an intuitive threshold to remove

some noisy matches. Furthermore, considering the spatial

continuity of flow, we propose a propagation mechanism

between superpixels in the estimation of models. The prop-

agation of models is significantly more efficient than the

independent estimation of each model, yet retains the accu-

racy. Given the same matching correspondences as CPM-

Flow [20], our approach, RicFlow (Robust Interpolation of

Correspondences) outperforms the original CPM-Flow (in-

terpolated using Epic) and performs best on the challenging

MPI-Sintel dataset [8] and is competitive on KITTI-2012

[15] and KITTI-2015 [25].

We make the following contributions: 1) We propose

RicFlow, a robust interpolation method of correspondences

based on the estimation of piecewise models. 2) We propose

a model propagation mechanism between superpixels in the

estimation of piecewise models, which leads to a signifi-

cant speed-up compared to the independent estimation of

each model. Furthermore, model propagation can achieve

more accurate results by utilizing the spatial relations be-

tween neighboring superpixels. 3) We show the effective-

ness of the proposed method by achieving state-of-the-art

accuracy on the challenging datasets MPI-Sintel, KITTI-

2012 and KITTI-2015.

2. Related work

Classic variational minimization framework for opti-

cal flow estimation has shown its success in the case of

small displacements [18, 4]. Though using a coarse-to-

fine scheme [6], the minimization still often gets stuck in

local minima and leads to failure in the case of large dis-

placements [35]. To handle this problem, some approaches

[7, 41] introduce the descriptor matching to the minimiza-

tion framework. However, their accuracy is still not satis-

factory in real-world videos.

The interpolation scheme we use is similar to the sparse-

to-dense interpolation framework [22, 31, 24]. Compared

to [22] where the initial matching is obtained through the

minimization of a matching energy, we use state-of-the-art

matching methods as input directly. Closely related to our

RicFlow, Revaud et al. [31] introduce an edge-preserving

interpolation method (EpicFlow) based on geodesic dis-

tance. EpicFlow has shown great success in the case of oc-

clusions, motion boundaries and large displacements, and

many effective methods use it as the post refinement step

[3, 20, 9, 26, 14]. However, the flow interpolated from

EpicFlow is vulnerable to input matching noise, which is

inevitable in modern matching techniques. To tackle this

problem, we propose to use RANSAC-like techniques to

estimate the piecewise models robustly. Li et al. [24] show

the efficiency of an interpolation method based on the fast

solver of weighted least squares. However, its accuracy is

not satisfactory on MPI-Sintel.

Our method is related to piecewise parametric flow es-

timation. Xu et al. [40] fit affine models on segmented re-

gions using total variation as its regularization. Ren [30]

proposes to estimate piecewise flow based on grouped pix-

els using edge-based affinities. Nevertheless, these work

often fails in the case of large displacements. Sun et al.

[36, 34] use affine motion to regularize the flow in layered

model estimation. Sevilla-Lara et al. [33] integrate the in-

formation of semantic segmentation into the model estima-

tion of localized layers. Hornáček et al. [19] define per-

pixel homography for flow estimation. Unlike this point-

wise parametric model, Yang et al. [42] fit piecewise ho-

mography models on adaptive segments using an energy-

based optimization. In contrast to the costly energy opti-

mization, our method fits piecewise affine models for each

superpixel [1] based on its neighboring matches.

The model estimation scheme we use is related to

RANSAC [13] which is widely applied to robust estima-

tion of a model from data due to its simple implementa-

tion and robustness. Choi et al. [10] make an insightful

view of the numerous methods that have been derived from

RANSAC. Raguram et al. [29] propose a uniform frame-

work for RANSAC-based robust estimation. Recently, Ni et

al. [27] introduce a binomial mixture model based on the as-

sumption that there exists some grouping in the data, which

leads to a better efficiency. In contrast, we achieve a signif-

icant efficiency gain by introducing a propagation scheme

when estimating many spatially-related models simultane-

ously.

3. Robust interpolation of correspondences

In this section, we present our interpolation approach,

RicFlow, and discuss its main features. Given two consecu-

tive images I1, I2 and a set of the matches M = {(p1, p
′

1)}
(sparse or dense) where the pixel p1 ∈ I1 and p

′

1 ∈ I2 define

a correspondence, our goal is to estimate a dense correspon-

dence field F : I1 → I2 between image I1 and I2.

3.1. Piecewise affine model

As in [37], we assume that most scenes of interest con-

sist of regions with a constant motion pattern. We first over-

segment the input image I1 to K non-overlapping superpix-

els sk using SLIC algorithm [1], where the average super-

pixel size is σ. That is a segmentation S = {sk|
⋃

K

k=1 sk =
I1 and ∀k 6= m, sk ∩ sm = ∅}. For the flow in each super-

pixel sk, we assume them meet a constant affine model Ak,

which is well-suited for most scenes of interest [34, 36, 37].

After the formulation of piecewise affine models on pre-

segmented regions, the goal now is to estimate the model

set {Ak} based on the input noisy matches.
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3.2. Robust model estimation

Graph construction. We represent the over-segmented

image as an undirected graph G = (V,E), where V is

the vertices representing all superpixels, and E is the edges

connecting the superpixels with shared boundaries.

For the neighboring superpixels sa and sb, that is

(sa, sb) ∈ E, the edge length between them is defined as

the cost connecting sa and sb. In this paper, the cost is

defined as the approximate geodesic distance between the

center of neighboring superpixels, that is, the shortest dis-

tance with respect to a cost map. As in EpicFlow [31], we

use the result of “structured edge detector” (SED) [12] as

the cost map, which has shown prominent advantages over

other choices. Based on the edge length, we define the dis-

tance function D : V × V → R
+ between any vertices as

the shortest path connecting them on the graph G, which

can be calculated efficiently using Dijkstra’s algorithm.

Superpixel flow initialization. Rather than using the

raw matches directly, we generate superpixel flow from the

input matches as the initialization, which can boost the effi-

ciency of model estimation. Based on the defined superpix-

els {sk}, we generate only one matching for each superpixel

sk, which we call it superpixel flow. We use the median of

all the valid matches inside sk as the superpixel flow. For

invalid superpixels (without any matches in it), the super-

pixel flow is set to the flow of the nearest valid superpixel.

Figure 3(d) shows an example of the generated superpixel

flow.

Model estimation. We use neighboring superpixel flow

of each superpixel to estimate its model. Nn(k) is denoted

as the set of n nearest neighbors of superpixel sk on graph

G, which we also call it support neighbors of sk. Figure

2(b) shows two examples of support neighbors.

With the goal of estimating the model for each superpixel

from its support neighbors, the problem is that the initial

superpixel flow is noisy and the support neighbors are often

“bleeding out” to the surface of different objects with dif-

ferent motion patterns, which affect the accuracy of model

estimation significantly (see Figure 2). To handle this prob-

lem, we use RANSAC-like method to estimate the model

for each superpixel.

As RANSAC family [13, 10], our model estimation runs

in an iterative manner for each superpixel. For each iter-

ation, we pick up a subset from its support neighbors ran-

domly, and generate a model hypothesis from the superpixel

flow of the support neighbors. Here, the size of the subset is

fixed to 3 which is the minimum number of pairs to deter-

mine an affine transformation. After generating the model

hypothesis, we use a criterion of hypothesis evaluation to

update the current most probable model.

More precisely, the procedure can be formulated as an

(a) Images and the ground truth

(b) Two examples of support neighbors

(c) Support neighbors after inlier extraction

Figure 2. Adaptive inlier extraction by robust model estimation.

The support neighbors (n = 100) are represented by color (blue

to red means closer to farther) according to the distance on graph

G from the superpixel seed (filled with white). The support neigh-

bors on the right is “bleeding out” to different objects with differ-

ent motion patterns. Our approach can handle this case effectively.

optimization problem:

Ĥ = argmin
H

{C(H)}, (1)

where C(H) is the evaluation cost of the model hypothesis

H. In this paper, the evaluation cost is defined as:

C(H) =
∑

s∈Nn(k)

W(s) · L
(

ǫ(s;H)
)

, (2)

where Nn(k) is the support neighbors of superpixel sk,

W(s) is a weight function, L is a loss function, and ǫ(s;H)
is the fitting error when applying model H for s, which

is defined as the endpoint deviation of the fitting result

from the original superpixel flow. The weight is defined

as a function of the distance from sk to the neighbor s:

W(s) = exp(−D(s, sk)/α). The loss function of the least

square method can be represented as L(ǫ) = ǫ2, which is

sensitive to noise. In contrast, we use the following loss

function:

L(ǫ) =

{

|ǫ| |ǫ| < τ

τ otherwise
, (3)

where τ is a threshold (in our experiments, we fix τ = 5),

and the neighbors with fitting error |ǫ| < τ are considered

as inliers for the current superpixel.

After some iterations, the inliers can be extracted and

Figure 2(c) shows some examples. Furthermore, the
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weighted least square (WLS) method is used to estimate the

final affine model. Here, the WLS is only applied on the

inliers and the weight is the same as W(s) in Equation 2.

3.3. Fast approximation

Estimating the piecewise models independently as de-

scribed in Section 3.2 has high computational complexity.

Considering the spatial continuity of flow, we propose a

propagation scheme when estimating many spatially-related

models simultaneously.

Model propagation. Inspired by PatchMatch [5], we

improve the piecewise models in a spatially iterative man-

ner. Superpixels are examined in scan order on odd itera-

tions and in reverse scan order on even iterations. Each it-

eration undergoes hypothesis propagation followed by ran-

dom sampling based on the spatial adjacency of superpixels.

Random initialization is often used for dense correspon-

dences [5, 20]. Considering the superpixel flow is a strong

prior information we can take advantage of, we use it as the

initialization rather than the random initialization. That is,

the model of each superpixel is initialized as a translation

model derived from the superpixel flow, which is a degen-

erate case of the affine model.

Hypothesis propagation is the core scheme our fast ap-

proximation relies on. For a superpixel sk with model hk

in an iteration, we denote the models of adjacent neighbors

that is already examined in current iteration as set {Hk}.

Models are propagated from neighbors to itself:

ĥk = argmin
h

(C(h)), h ∈ {hk} ∪ {Hk}, (4)

where ĥk denote the improved model, and C(h) is the eval-

uation cost of the hypothesis according to Equation 2.

A random sampling procedure is performed after the pre-

ceding propagation step. We pick up 3 matches randomly

from the n nearest neighbors and generate a model hypoth-

esis by fitting the matches. The current best model will be

improved by testing this new hypothesis.

Algorithm 1: Robust interpolation of correspondences

Input: a pair of images I1, I2, a set M of matches

Output: dense correspondence field F : I1 → I2
1 Over-segment I1 to K superpixels {sk}
2 Superpixel flow initialization from M
3 Construct superpixel graph G = (V,E)
4 for each superpixel sk do

5 Model initialization based on superpixel flow

6 Get the support neighbors Nn(k) of sk
7 Inlier extraction based on model propagation

8 Weighted least square optimization on inliers

9 Variational refinement

(a) Images (b) Ground truth

(c) Input Matches [20] (d) Superpixel flow initialization

(e) 3/4 iteration (f) 1 iteration

Figure 3. Illustration of model propagation. Notice how the ma-

jority of matching noises are removed after only 1 iteration.

Termination criteria. Although adaptive criteria of ter-

mination may be used as in RANSAC family [10, 27, 11],

in practice, we have found it works well to iterate a fixed

number of times. In this paper, the number of iteration γ
means the number of the entire examination of each super-

pixel in scan order (or reverse scan order). RicFlow con-

verges rapidly only after a few iterations. Figure 3 shows

an example illustrating the procedure of model propagation

and demonstrates the speed of its convergence.

After obtaining the best model for each superpixel, the

inlier extraction based on each model and WLS optimiza-

tion are the same as Section 3.2.

3.4. Variational refinement

Variational minimization serves as our final refinement

step by using the output of the interpolation as an initializa-

tion. As in [31, 21], the energy function is optimized only

on the raw image scale without the coarse-to-fine scheme.

The data term and smoothness term we used are the same

as EpicFlow [31], which based on a classical variational

framework [43]. The overall procedure of the proposed

RicFlow is summarized in Algorithm 1.

4. Experiments

We evaluate RicFlow on three challenging datasets for

optical flow estimation: • MPI-Sintel [8] is a synthetic

benchmark based on an animated movie with many scenes

containing large motions. Many rendering effects like mo-

tion, defocus blurs and atmospheric effects are contained

in its “final” version, and we only use this challenging ver-

sion to evaluate our method. • KITTI-2012 [15] was cre-
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ated from a driving platform and contains realistic images

of complex lighting conditions and large displacements. •
KITTI-2015 [25] also contains photos shot in city streets

from a driving platform. Compared to KITTI-2012 datasets,

it comprises dynamic scenes and is more challenging for

optical flow estimation.

As in [31, 39], we optimize the parameters of our

approach on 20% of the training set of MPI-Sintel.

Then we use the same constant parameters to interpo-

late input matches for all evaluations: {σ, n, α, γ} =
{20, 150, 0.7, 4}, and report the results on the training set

of MPI-Sintel, KITTI-2012 and KITTI-2015. We directly

use the code of variational minimization from EpicFlow for

flow refinement1.

We implement RicFlow in C++ and make it run on an

Intel i7 3.6GHz CPU. It requires only 5 seconds for an MPI-

Sintel image pair (1024×436). In detail, computing coarse-

to-fine PatchMatch (CPM) takes 1.4s, constructing super-

pixel graph (include over-segmentation and extracting near-

est neighbors) 1.1s, estimation of piecewise models 1.5s,

and variational refinement 1s.

In Section 4.1 we analyze the interpolation performance

of our approach and compare it to EpicFlow. Section

4.2 then studies the different parameters of RicFlow and

the effect of model propagation. Finally, we show that

RicFlow outperforms state-of-the-art methods on challeng-

ing datasets in Section 4.3

4.1. Comparison of interpolation.

Input matches. To evaluate the performance of our in-

terpolation method, we generate input matches by using

three state-of-the-art methods: KPM [17], DM [39] and

CPM [20]. For KPM2 and DM3, we use the online code

to extract the correspondences, and for CPM the binaries

provided by their authors. Both DM and CPM include a

reciprocal verification to remove the ambiguous matches in

occluded areas. Similarly, we perform a forward-backward

consistency check for KPM to remove incorrect matches.

The second column in Figure 4 shows an example of the

input matches.

RicFlow versus EpicFlow. We compare our RicFlow

with the most widely used interpolation method EpicFlow

[31]. Figure 4 shows an example of the comparison results

using different input matches. Notice how the matching

noise is resolved by RicFlow. Table 1 reports the compari-

son results on different datasets thoroughly. We can see that

RicFlow outperforms EpicFlow in most cases. The only

exception is that, RicFlow performs less well when using

KPM as input in terms of average endpoint error (EPE),

which is mainly caused by the low density of the input

1http://lear.inrialpes.fr/src/epicflow/
2http://j0sh.github.io/thesis/kdtree/
3http://lear.inrialpes.fr/src/deepmatching/

Images and GT Input matches Epic interpolation Ric interpolation

Figure 4. Example of the comparison between Epic [31] and the

proposed Ric method for different matching inputs. The first

column shows two images and the ground truth. The last three

columns show the input matches (KPM [17], DM [39] and CPM

[20] from top to bottom), and the results interpolating using Epic

and Ric respectively. Notice how the matching noise is resolved

by our Ric method near the leg of the character.

GT Matches Epic Ric

0.1 0.2 0.3 0.4 0.5 0.6

3.6

3.8

4

4.2

4.4

Matching noise

E
P

E

Epic

Ric

Figure 5. Comparison between Epic [31] and our Ric method with

different levels of input matching noise. Notice how Ric is more

tolerant of input matching noise compared with Epic.

matches generated by KPM.

As an interpolation method, RicFlow relies on the ac-

curacy and density of input matches. We can observe that

CPM consistently outperforms DM and KPM. We use CPM

matches in the remainder of the experiments.

In order to demonstrate the robustness of RicFlow, we

have evaluated its performance for different levels of input

matching noise. We add synthetic noise to the matching re-

sults of CPM [20], and evaluate the performance of RicFlow

and EpicFlow [31] on MPI-Sintel training subset using the

same noisy matches as their input. Figure 5 shows the clear

robustness of RicFlow over EpicFlow.
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EPE Error percentage (%)

MPI-Sintel KITTI-2012 KITTI-2015 MPI-Sintel KITTI-2012 KITTI-2015

-Var. +Var. -Var. +Var. -Var. +Var. -Var. +Var. -Var. +Var. -Var. +Var.

KPM
Epic 7.16 6.74 17.58 17.04 26.35 26.01 19.52 16.64 57.84 51.65 56.98 53.53

Ric 7.56 6.93 16.52 15.85 27.88 25.35 18.26 15.86 52.94 46.30 53.03 49.45

DM
Epic 3.87 3.52 3.57 3.32 9.06 8.88 12.29 11.04 19.00 16.63 31.53 28.03

Ric 3.70 3.37 3.17 3.03 8.08 8.02 9.56 9.25 13.78 13.82 25.15 23.56

CPM
Epic 3.72 3.54 3.21 3.17 7.74 7.71 10.51 10.08 13.32 14.09 24.66 23.52

Ric 3.69 3.52 2.80 2.81 7.11 7.12 8.85 8.95 10.15 11.97 20.31 20.34

Table 1. Comparison of Epic [31] and the proposed Ric method for different matching inputs (KPM [17], DM [39] and CPM [20]) in terms

of the average endpoint error (EPE) and the error percentage (EPE ≥ 3 pixels). The comparison is performed on three challenging datasets:

MPI-Sintel [8], KITTI-2012 [15] and KITTI-2015 [25]. For a fair comparison, the results with variational refinement (+Var.) and without

it (-Var.) are also reported. The proposed Ric interpolation method outperforms Epic in most cases.
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(a) Average superpixel size
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(b) Number of support neighbors
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(c) Iteration times

2 3 4 5
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3.8

3.9

4

Running time (Sec.)

E
P

E

w/o MP

w/ MP

(d) Effect of model propagation

Figure 6. Parameter analysis and the effect of model propagation.

(a), (b) and (c) study the flow accuracy of different parameters. (d)

shows the effect of model propagation (w/ MP) compared to inde-

pendent estimation of models (w/o MP). The method with model

propagation converges more rapidly, and can even achieve more

accurate results after convergence. Matching time is not included.

4.2. Performance analysis

In order to get a better understanding of the performance

of RicFlow, we evaluate the impact of different parameters

and also the effect of model propagation. For better insights

on the interpolation itself, the experiment in this section is

performed without variational refinement, and all the results

are reported on MPI-Sintel.

Parameter analysis. Figure 6(a) studies the effect of

RicFlow with different superpixel size. We can see that with

the increase of superpixel size σ, the result shows a clear

trend of quality deterioration. However, large superpixel

size often means low computational complexity. We find

that σ = 20 gives a good balance. Figure 6(b) illustrates

that too few support neighbors are not robust for model esti-

mation, while too many support neighbors also leads to loss

of accuracy. As Figure 6(c) shows, our method converges

rapidly only after a few iterations. In our experiments, the

iteration number γ is fixed to 4, after which our method has

almost converged.

Effect of model propagation. To demonstrate the effec-

tiveness of model propagation, we compare it with the ver-

sion without model propagation, which estimates the piece-

wise models independently. Independent model estimation

often needs dozens of iterations to converge. However, con-

sidering that one iteration with model propagation requires

more time, we use EPE over running times to compare them

on the same computer for fair.

Figure 6(d) shows the comparison results. We can see

that model propagation converges more rapidly. Further-

more, model propagation can even achieve more accurate

results after convergence. The main reason of this phe-

nomenon is that model propagation utilizes the spatial re-

lations between neighboring superpixels.

4.3. Results on datasets

The results of RicFlow compared to other methods on

MPI-Sintel can be seen in Table 2 which shows the top opti-

cal flow algorithms as published on the submission date. We

clearly outperform CPM-Flow as well as all other methods.

The original CPM-Flow use Epic [31] as its interpolation

method. With the same matching inputs as CPM-Flow, we

reduce the EPE by nearly 0.4 pixels compared to it. Note

that RicFlow performs especially well in the occluded ar-

eas, which demonstrates its robustness. The approximate

running time of the top methods (as declared by their au-

thors) is also included in the Table. RicFlow is among the

fastest methods, and is only slightly slower than the origi-

nal CPM-Flow. Figure 7 shows some results of qualitative

comparisons.

Table 3 and Table 4 show the top flow results on KITTI-
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Figure 7. Example of the results on MPI-Sintel. Each column

shows from top to bottom: mean of two consecutive images,

ground truth, input matches (CPM), the proposed RicFlow and

2 state-of-the-art methods (CPMFlow [20] and EpicFlow [31]).

RicFlow uses the same matching intput as CPMFlow. Notice how

the flat regions with low saliency (see the background in the first

column) and the motion discontinuities (see the leg of the charac-

ter in the third column) are handled properly by our RicFlow.

2012 and KITTI-2015 test set for methods that do not

use epipolar geometry or stereo vision, respectively. On

KITTI-2012, RicFlow performs best in terms of EPE in

non-occluded areas. However, many top methods achieve

the same EPE. In terms of the percentage of erroneous pix-

els, which is more discriminative for the evaluation of large

displacement optical flow, RicFlow achieves 4.96% in non-

occluded areas, and it is the only method whose error per-

centage below 5% due to the submission date. On the more

challenging dataset KITTI-2015, RicFlow also outperforms

the original CPM-Flow, which reduce the error percentage

by nearly 4%. Although RicFlow performs less well than

SOF [33] which relies on semantic segmentations, it per-

forms best in foreground regions. Furthermore, RicFlow is

an order of magnitude faster than SOF. Figure 8 shows some

results on KITTI.
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Figure 8. Example of the results on KITTI. Notice how the flow

error in less-textured regions are reduced by RicFlow.

Method EPE

All

EPE

Noc

EPE

Occ

Time

∼Sec.

RicFlow 5.620 2.765 28.907 5

DDF[16] 5.728 2.623 31.042 60

FlowFields[3] 5.810 2.621 31.799 18

SPM-BP2[23] 5.812 2.754 30.743 42

FullFlow[9] 5.895 2.838 30.793 240

CPM-Flow[20] 5.960 2.990 30.177 4

EpicFlow[31] 6.285 3.060 32.564 17

FGI[24] 6.607 3.101 35.158 15

PH-Flow[42] 7.423 3.795 36.960 800

MDPFlow2[41] 8.445 4.150 43.430 700

Table 2. Top algorithms on MPI-Sintel test set (final). EPE-Noc

(resp. EPE-Occ) is the EPE in non-occluded areas (resp. occluded

areas).

Limitations. As an interpolation method, the accuracy

of RicFlow relies on the input matches. Although RicFlow

is more tolerant of matching noise than EpicFlow, it still
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Method Out

Noc3

Out

All3

EPE

Noc

EPE

All

Time

∼Sec.

RicFlow 4.96% 13.04% 1.3 3.2 5

PatchBatch[14] 5.29% 14.17% 1.3 3.3 50

DDF[16] 5.73% 14.18% 1.4 3.4 60

PH-Flow[42] 5.76% 10.57% 1.3 2.9 800

FlowFields[3] 5.77% 14.01% 1.4 3.5 23

CPM-Flow[20] 5.79% 13.70% 1.3 3.2 4

DiscreteFlow[26] 6.23% 16.63% 1.3 3.6 180

EpicFlow[31] 7.88% 17.08% 1.5 3.8 15

Table 3. Top algorithms on KITTI-2012 test set. Out-Noc3 (resp.

Out-All3) is the percentage of pixels with flow error above 3 pixels

in non-occluded areas (resp. all pixels).

Method Out

All3

Out

Bg3

Out

Fg3

Time

∼Sec.

SOF[33] 16.81% 14.63% 27.73% 360

RicFlow 19.52% 18.73% 23.49% 5

PatchBatch[14] 21.69% 19.98% 30.24% 50

DDF[16] 21.92% 20.36% 29.69% 60

DiscreteFlow[26] 22.38% 21.53% 26.68% 180

CPM-Flow[20] 23.23% 22.32% 27.79% 4

FullFlow[9] 24.26% 23.09% 30.11% 240

EpicFlow[31] 27.10% 25.81% 33.56% 15

Table 4. Top algorithms on KITTI-2015 test set. Out-Bg3 (resp.

Out-Fg3) is the percentage of outliers averaged only over back-

ground regions (resp. foreground regions).

failed when using low-density matches as input (see KPM

matching in Figure 4). On the other hand, the piecewise

model estimation relies on the neighbor system of the graph

constructed based on over-segmentations. The third column

in Figure 7 shows an example of this failure case (near the

feet of the character). It should be improved by using some

information like semantic segmentations, which is also our

nearly future work.

5. Conclusion

We have proposed an interpolation method of correspon-

dences for optical flow estimation, which is tolerant of in-

put matching noise. It uses superpixel techniques to over-

segment the scenes under the assumption that most scenes

of interest consist of regions with a consistent motion pat-

tern. We focus on the estimation of the piecewise models

using a RANSAC-like method for robust estimation. We

introduce a novel model propagation to estimate many mod-

els simultaneously based on the insight that the models of

neighboring superpixels are spatially-related. The extensive

experiments on MPI-Sintel, KITTI-2012 and KITTI-2015

have shown its advantages over other competing methods.

This work confirms the benefit of piecewise models for op-

tical flow estimation. It may be possible to achieve better

results using information of semantic segmentations [33, 2].

It is also an interesting research direction to implement our

method on GPU for real-time optical flow estimation.
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