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Abstract

As autonomous vehicles become an every-day reality,

high-accuracy pedestrian detection is of paramount practi-

cal importance. Pedestrian detection is a highly researched

topic with mature methods, but most datasets focus on com-

mon scenes of people engaged in typical walking poses on

sidewalks. But performance is most crucial for dangerous

scenarios, such as children playing in the street or people

using bicycles/skateboards in unexpected ways. Such “in-

the-tail” data is notoriously hard to observe, making both

training and testing difficult. To analyze this problem, we

have collected a novel annotated dataset of dangerous sce-

narios called the Precarious Pedestrian dataset.

Even given a dedicated collection effort, it is relatively

small by contemporary standards (≈ 1000 images). To al-

low for large-scale data-driven learning, we explore the use

of synthetic data generated by a game engine. A significant

challenge is selected the right “priors” or parameters for

synthesis: we would like realistic data with poses and ob-

ject configurations that mimic true Precarious Pedestrians.

Inspired by Generative Adversarial Networks (GANs), we

generate a massive amount of synthetic data and train a dis-

criminative classifier to select a realistic subset, which we

deem the Adversarial Imposters. We demonstrate that this

simple pipeline allows one to synthesize realistic training

data by making use of rendering/animation engines within

a GAN framework. Interestingly, we also demonstrate that

such data can be used to rank algorithms, suggesting that

Adversarial Imposters can also be used for “in-the-tail”

validation at test-time, a notoriously difficult challenge for

real-world deployment.

(a) (b) (c)

Figure 1: (a) Examples from our novel Precarious Pedes-

trian Dataset of dangerous, but rare pedestrian scenes. One

important scenario is that of pedestrians on their phone (row

2, col 2), who may not be adequately aware of their sur-

roundings. (b) Examples in Caltech Dataset tend not to

capture such rare scenarios. (c) Examples from a set of

Adveserial Imposters, which are synthetic images that are

adversarially-trained to mimic the set of Precarious Pedstri-

ans. We demonstrate that such images can be used to both

train and evaluate robust pedestrian recognition systems tar-

geting such dangerous scenarios.

1. Introduction

There’s no software designer in the world that’s ever going to be

smart enough to anticipate all the potential circumstances an

autonomous car is going to encounter. The dog that runs out into

the street, the person who runs up the street, the bicyclist, the

policeman or the construction worker.

C. Hart, Chairman of National Transport. Safety Board

As autonomous vehicles become an every-day reality,

high-accuracy pedestrian detection is of paramount practi-

cal importance. Pedestrian detection is a highly researched

2243



topic with mature methods, but most datasets focus on

“everyday” scenes of people engaged in typical walking

poses on sidewalks [9, 6, 13, 12, 48]. However, perhaps

the most important operating point for a deployable sys-

tem is its behaviour in dangerous, unexpected scenarios,

such as children playing in the street or people using bi-

cycles/skateboards in unexpected ways.

Precarious Pedestrian Dataset: Such “in-the-tail” data is

notoriously hard to observe, making both training and eval-

uation of existing systems difficult. To analyze this prob-

lem, we have collected a novel annotated dataset of dan-

gerous scenarios called the Precarious Pedestrian Dataset.

Even given a dedicated collection effort, it is relatively

small by contemporary standards (≈ 1000 images). To ex-

plore large-scale data-driven learning, we explore the use of

synthetic data generated by a game engine. Synthetic train-

ing data is an actively explored topic because it provides a

potentially infinite well of annotated data for training data-

hungry architectures [24, 30, 14, 19, 40, 42]. Particularly

attractive are approaches that combine a large amount of

synthetic training data with a small amount of real data (that

may have been difficult to acquire and/or label).

Challenges in Synthesis: We see two primary difficulties

with the use of synthetic training data. The first is that not

all data is created “equal”: when combining synthetic data

with real data, synthesizing common scenes may not be par-

ticularly useful since they will likely already appear in the

training set. Hence we argue that the real power of synthetic

data is generating examples “in-the-tail”, which would oth-

erwise have been hard to collect. The second difficulty

arises in building good generative models of images, a no-

toriously difficult problem. Rather than building generative

pixel-level models, we make use of state-of-the-art render-

ing/animation engines that contain an immense amount of

knowledge (about physics, light transfer, etc.). The chal-

lenge of generative synthesis then lies in constructing the

right “priors”, or scene-parameters, to render/animate. In

our case, these correspond to body poses and spatial config-

urations of people and other objects in the scene.

Adversarial Imposters: We address both concerns

with a novel variant of Generative Adversarial Networks

(GANs) [17], a method for synthesizing data from latent

noise vectors. Traditional GANs learn generative feedfor-

ward models that process latent noise vectors, typically

from a fixed known prior distribution. Instead, we fix the

feedforward model to be a rendering engine, but use an ad-

verserial framework to learn the latent priors. To do so,

we define a rendering pipeline that takes an input a vec-

tor of scene parameters capturing object attributes and spa-

tial layout. We use rejection sampling to construct a set

of scene parameters (and their associated rendered images)

that maximally confuse the discriminator. We call such ex-

amples Adversarial Imposters, and use them within a sim-

(a) (b)

Figure 2: (a) Scene that’s built for generating synthetic im-

ages. (b) 3D models that we use in this project.

ple pipeline for adapting detectors from synthetic data to the

world of real images.

RPN+: We use our dataset of real and imposter images to

train a suite of contemporary detectors. We find surpris-

ingly good results with a (to our knowledge) novel variant

of region proposal network (RPN) [49] tuned for particu-

lar objects (precarious people) rather than a general class of

objectness detections. Instead of classifying a sparse set of

proposed windows (as nearly all contemporary object de-

tection systems based on RCNN do [38]), this network re-

turns a dense heatmap of pedestrian detections, along with

regressed bounding box location for each pixel location in

the heatmap. We call this detector RPN+. Our experiments

show that our RPN+, trained on real+imposter data, outper-

forms other detectors trained only on real data.

Validation: Interestingly, we also demonstrate that our Ad-

verserial Imposter Dataset can be used to rank algorithms,

suggesting that our pipeline can also be used for “in-the-

tail” validation at test-time, a notoriously difficult challenge

for real-world deployment.

Contributions: The contribution of our work is as follows:

(1) a novel dataset of pedestrians in dangerous situations

(Precarious Pedestrians) (2) a general architecture for cre-

ating realistic synthetic data “in-the-tail”, for which lim-

ited real data can be collected and (3) demonstration of our

overall pipeline for the task of pedestrian detection using a

novel detector. Our datasets and code can be found here:

https://github.com/huangshiyu13/RPNplus.

2. Related work

Synthetic Data: Synthetic datasets have been used to train

and evaluate the performance of computer vision algo-

rithms. Some forms of ground truth are hard to obtain from

hand-labelling, such as optical flow, but easy to synthesize

via simulation [14]. Adam et al. [24] used a 3D game

engine to generate synthetic data and learned an intuitive

physics model to predict falling towers of blocks. Mayer et

al. [30] released a benchmark suite of various tasks using

synthetic data, including disparity and optical flow. Richter
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et al. [40] used synthetic data to improve image segmenta-

tion performance, but notably do not control the scene as

to explore targeted arrangements of objects. German Ros

et al. [42] used Unity Development Platform to generate a

synthetic urban scene dataset.

3D Models for Detection: A notable application of 3D

computer graphics model in vision has been the model-

ing of the human body shapes [18, 4, 1, 29, 36, 3, 41].

Moreover, 3D simulation can also been used for car detec-

tion [34, 32, 20] and scene understanding [45, 23]. Marin et

al. [29] used a game engine to generate synthetic training

data. Pishchulin et al. [35] used 8 HD cameras to scan hu-

man body and built real 3D human models. Then they used

synthetic data and some labelled real data to train pedestrian

detectors. Hattori et al. [19] used 3D modelling software

to build a special scene and randomly put 3D models on a

special background for pedestrian detection. Most of these

works use synthetic data “as-is”, while we analyze statisti-

cal differences between synthetic and real data, describing a

pipeline for reconciling such differences through adversar-

ial domain adaption.

Domain Adaptation: Domain Adaptation is a standard

strategy to deal with data across different domains, such as

synthetic versus real. Large synthetic datasets can be used

to bootstrap detectors and then adapted to real data by mov-

ing to the target domain distribution. Sun and Saenko [46]

used 3D models to train detectors for real objects. Such

work typically used shallow detectors defined on fixed fea-

ture sets, while we focus on gradient-based adaption of

“deep” detection networks (such as RCNN). From this per-

spective, our work is inspired by approaches for deep do-

main adaptation [15, 16, 26, 27]. Such work typically as-

sumes that one has access to large amounts of unlabeled

data from the target domain. In our case, assembling a large

target dataset of unlabelled examples (of real Precarious

Pedestrians) is itself challenging, necessitating the need for

alternative approaches that make stronger use of the source

dataset.

Generative Adversarial Nets: GANs [17] are deep net-

works that can generate synthetic images from latent noise

vectors. They do so by adversarially-training a neural net-

work to discriminate between real versus synthetic images.

Recent works have shown impressive performance in gen-

eration of synthetic images [31, 7, 37, 44, 5]. However,

it appears challenging to synthesize high-resolution images

with semantically-valid content. We circumvent these lim-

itations with a rendering-based adversarial approach to im-

age synthesis.

(a) Precarious Dataset (b) Caltech Dataset

(c) Precarious Dataset (d) Caltech Dataset

Figure 3: (a) and (b) show the percentage of the number

of people per image in both datasets. (c) and (d) show the

percentage of the different types of people in both datasets.

Precarious Dataset contains more cyclists and motorcyclists

than Caltech Dataset.

3. Datasets

3.1. Precarious Pedestrian Dataset

We begin by describing our Precarious Pedestrian

Dataset. We perform a dedicated search for targeted key-

words (such as “pedestrian fall”, “traffic violation” and

“dangerous bike rider”) on Google Images, Baidu Images,

and some selected images from MPII Dataset [2], producing

a total of 951 reasonable images. We then label bounding

boxes for each image manually. Precarious Pedestrians con-

tains various kinds scenes, such as children running on the

road, people tripping, motorcyclists performing dangerous

movements, people interacting with objects (such as bicy-

cles or umbrellas). One important dangerous but increas-

ingly common scenario consists of people watching their

phones or texting while crossing the street, which is poten-

tially dangerous as the person may not be aware of their

surroundings (Figure 1). To quantify the (dis)similarity of

Precarious Pedestrians to standard pedestrian benchmarks

such as Caltech [10], we tabulate the percentage of images

with more than one people, as well as the number of irregu-

lar “pedestrians” such as bicyclists or motorcyclists. Com-

pared to Caltech, Precarious Pedestrians contains images

with many more overall people as well as many more cy-

clists and motorbikes (Figure 3). We split the Precarious

dataset equally for training and testing.

3.2. Synthetic Dataset

To help both train and evaluate algorithms for detecting

precarious pedestrians, we make use of a synthetic data. In

this section, we describe our rendering pipeline for gener-

ating synthetic data. We use the Unity 3D game engine as

our basic platform for simulation and rendering, due to the

large availability of both commercial and user-generated

assets, in the form of 3D models and character animations.
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Range

Number of 3D models [4, 8]
Index of background images [0, 1726)

Index of 3D models [0, 20)
Position of 3D models Within the field of vision

Index of Animations [0,maxnumber)
Time of animation [0, 1]

Model’s angle on the x axis [−90◦, 90◦]
Model’s angle on the y axis [−180◦, 180◦]
Model’s angle on the z axis [−90◦, 90◦]

Light intensity [0.5, 2]
Light’s angle on the x axis [−45◦, 45◦]
Light’s angle on the y axis [−45◦, 45◦]

Table 1: Constraints of parameters for synthesizing images.

The index and time(normalized) of animations will jointly

decide the gestures of 3D models .

Figure 2 shows the commercial 3D human models

that we use for data generation, consisting of 20 models

spanning different women, men, cyclists and skateboarder

avatars. Because these are designed for game engine

play, each 3D model is associated with characteristic

animations such as jumping, talking, running, cheering and

applauding. We animate these models in a 3D scene with

a 2D billboard to capture the scene background [11], as

shown in Figure 2. Billboards are randomly sampled from

the 1726 background images from INRIA dataset [6] and

a custom set of outdoor scenes downloaded from Internet.

Our approach can generate a diverse set of background

scenes, unlike approaches that are limited to a single virtual

urban city [29].

Scene parameters: To build a large library of synthetic im-

ages that will potentially be used for training and evaluation,

we first define a set of parameters and parameter ranges. We

index the set of background images, the set of 3D models,

and the animation frame number for each model. In brief,

the scene parameters include directional light intensity and

direction (capturing sunlight), the background image index,

the number of 3D models, and for each model, an index

specifying the avatar ID and animation frame, as well as a

root position and orientation (rotation in the ground plane).

We assume a fixed camera viewpoint. Note that the root po-

sition affects both the location and scale of the 3D model

in the rendered image. All these parameters can be summa-

rized as a variable-length vector z ∈ Z , where each vector

corresponds to a particular scene instantiation.

Synthesis: Our generator G(z), or rendering engine, syn-

thesizes an image corresponding to z. Importantly, we can

also synthesize labels L(z) for each rendered image, spec-

(a) (b)

Figure 4: (a) Imposter images that are chosen by selector.

(b) Synthetic images that are not in Imposter Dataset.

ifying object type, 3D location, pixel segmentation masks,

etc. In practice, we make use of only 2D object bounding

boxes. Table 1 shows the viable ranges of each parameter.

In addition, we found the following heuristic to simulate

reasonable object layouts: we enforce the maximum over-

lap between any two 3D models to be 20% (to avoid con-

gestion) and the projected location of the 3D models should

lie within the camera’s field-of-view. These conditions are

straightforward to verify for a given vector z without ren-

dering any pixels, and so can be efficiently enforced though

rejection sampling (i.e., generate a random vector and only

render those that pass these conditions). Unlike Hironori et

al. [19], who generate training data by manually tuning z

to match specific scenes, our approach is not scene specific

and does not require any manual intervention.

Pre-processing: Synthesized images and Precarious Pedes-

trian images may be of different sizes. We isotropically

scale each image to a resolution of 960×720, zero-padding

as necessary. Our experiments also make use of the Cal-

tech Pedestrian benchmark, to which we apply the same

pre-processing.

4. Proposed Method

Domain adaption: In this section, we introduce a novel

framework for adversarially adapting detectors from syn-

thetic training data to real training data. We use x ∈ X to

denote an image and y ∈ Y to denote its label vector (a set

of bounding box labels). Let ps(x,y) to refer to the dis-

tribution of image-label pairs from the source domain (of

synthetic images), and pt(x,y) to refer to the target domain

(of real Precarious Pedestrians). In our problem, we ex-

pect large amounts of source samples, but a limited amount

of target ones. We factorize the joint into a marginal over
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image appearance and conditional on label given the ap-

pearance - e.g., ps(x)ps(y|x). Importantly, we discrimi-

natively train a feedforward function fs(x) = ps(y|x) to

match the conditional distribution. Our central question is

how to transfer feedforward predictors trained from source

samples fs(x) to the target domain ft(x).
Fine-tuning: The most natural approach to domain adap-

tion may simply be to fine-tune a predictor fs(x), origi-

nally trained on the source, with samples from the target

pt(x,y). Indeed, virtually all contemporary methods for vi-

sual recognition makes use of fine-tuned models that were

pre-trained on Imagenet [43]. We compare to such a strat-

egy in our experiments, but find that fine-tuning works best

when source and target distributions are similar. As we

argue, while rendering engines can produce photorealistic

scenes, it is difficult to specify a prior over scene parameters

that mimic real (Precarious) scenes. We describe a solution

that adversarially learns a prior.

Generators: As introduced in Sec. 3.2, let z ∈ Z be a

vector of scene parameters, G(z) ∈ X be a feedforward

generator function that renders a synthetic image given the

scene parameters, and L(z) ∈ Y be a function that gener-

ates labels from the scene parameters. We can then repa-

rameterize the distribution over synthetic images as a dis-

tribution over scene parameters pz(z). We now describe a

procedure for learning a prior pz(z) that allows for easier

transfer. Specifically, we learn a prior that fools an adver-

sary that is trying to distinguish samples from the source

and target.

Adversarial generators: To describe our approach, we first

recall a traditional generative adverserial network (GAN):

min
G

max
D

V (D,G) = [Gen. Adversarial Net] (1)

E
x∼pt(x)[logD(x)] + E

z∼pz(z)[log(1−D(G(z)))]

where the minmax optimization jointly tries to estimate a

discriminator D that can distinguish real versus synthesized

data examples, and the generator G tries to synthesize re-

alistic examples that fool the discriminator. Typically, the

discriminator D(x) is trained to output the probability that

x is real (e.g., a real Precarious Pedestrian), while pz(z)
is fixed to be a zero-mean, unit-variance Gaussian. This

optimization can be performed with stochastic gradient up-

dates, that converge (in the limit) to a fixed point of the min-

imax problem. We refer the reader to the excellent introduc-

tion in [17]. Importantly, the generator must encode com-

plex constraints about the manifold of natural images, that

capture amongst other knowledge the physical properties of

light transport and material appearance.

Adversarial priors: We note that rendering engines can

be viewed as generators that already contain much of this

knowledge, and so we fix G to be a production-quality ren-

dering platform (Unity 3D). Instead, we learn the prior over

parameter vectors in a adversarial manner:

min
I

max
D

V (D, I) = [Adversarial Priors] (2)

E
x∼pt(x)[logD(x)] + E

z∼pI(z)[log(1−D(G(z)))]

If the generator G is differentiable with respect to z, it is

possible to use backprop to compute gradient updates for

simple prior distributions pI(z), such as Gaussians [22, 39].

This implies that the above formulation of adversarial priors

is amenable to gradient-based learning.

Imposter search: We see two difficulties with directly ap-

plying (2) to our problem: (1) It seems unlikely that the

optimal prior for precarious scene parameters will be a sim-

ple unimodal distribution with a single mean parameter

vector (and associated covariance matrix). (2) Rendering,

while readily expressed as a feed-forward function, is not

naturally differentiable at object boundaries (where small

changes in parameters can generate large changes in the

rendered image). While approximate differentiable render-

ers do exist [28], we wish to make use of highly-optimized

commercial packages for animation and image synthesis

(such as Unity 3D). As such, we adopt a simple sampling-

based approach that addresses both limitations:

min
I

max
D

V (D, I) = [Imposter Selection] (3)

E
x∼pt(x)[logD(x)] + E

z∼Unif(ZI)[log(1−D(G(z)))]

where ZI ⊆ Z . That is, we search for a subset of parameter

vectors (the “imposters”) that fool the discriminator. One

could employ various sequential sampling strategies for op-

timizing the above; start with a random sample of param-

eter vectors, update the discriminator (with gradient based

updates using a batch of real and synthesized data), gen-

erate additional samples close to those imposters that fool

the discriminator, and repeat. We found a single iteration to

work quite well. Our algorithm for synthesizing a realistic

set of precarious scenes is given in Alg. 1, and the overall

approach for advesarial domain adaption is given in Alg. 2.

Algorithm 1 Imposter Selection

Input: Set of examples from source domain S and target

domain T .

Output: Subset of imposters I ⊆ S.

1. Train a binary discriminator network D(x) that dis-

tinguishes examples x ∈ S from x ∈ T .

2. Return the subset of k samples from S that best fool

the discriminator.

Here, the set S consists of synthetic image-label pairs

rendered from an exhaustive set of scene parameters {z}
and the set T consists of real (Precarious) image-label pairs.

Without Step 2, Alg. 2 reduces to standard fine-tuning from
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Algorithm 2 Domain Adaption with Imposters

Input: Set of examples from source domain S and target

domain T .

Output: Predictor f(x) for target set T .

1. Pre-Train a predictor f(x) on source set S.

2. Adapt the predictor on T ∪ I , where I is the set of

imposters found with Alg. 1.

3. Fine-tune the predictor on only target set T .

Figure 5: Architecture of RPN+.

a source to a target domain. Step 2 can be thought of as

“marginal distribution adaption”, since the distribution of

imposter images pI(x) mimics the true target distribution

pt(x), at least from the discriminator’s perspective. But im-

portantly, the discriminator D(x) has not made use of labels

y to find imposters, and so imposter labels may not mimic

the true target label distribution. Because of this, we opt to

finally fine-tune f(x) on the target image-label pairs. Al-

ternatively, one may explore a discriminator that directly

operates on pairs of data and labels, as in [21].

4.1. Implementation

Discriminator D(x): Our discriminator D is a VGG16

network trained to output the probability that an input im-

ages is real (with label 1) or synthetic (with label 0). We

found that modest number of images sufficed for training:

500 images from the Precarious Pedestrian train split and

1000 random synthetic images. We downsample images to

384×288 to accelerate training. After training D, we gener-

ate another set of 8000 synthetic images and select various

subsets of size k to define the imposter set (examined fur-

ther in our experiments). We roughly find that 2.5% of the

synthesized images can serve as reasonable imposters.

Predictor f(x): We make use of a detection system based

off on a region proposal network (RPN) [38, 49]. Rather

than training a RPN to return objectness proposals, we train

it to directly return pedestrian bounding boxes. Our net-

work, denoted as RPN+, is illustrated in Figure 5. RPN+ is a

fully convolutional network implemented with TensorFlow.

We concatenate several layers on different stages in order

to improve the ability of locating people in different reso-

lutions. We use 9 anchors (reference boxes with 3 scales

and aspect ratios) at each sliding position. During training,

a candidate bounding box will be treated as a positive if

its intersection-over-union overlap with a ground-truth box

exceeds 50%, and will be a negative for overlaps less than

20%. To accelerate training time, we initialize with a pre-

trained VGG-16 model where the first two convolutional

layers are frozen.

5. Experiments

5.1. Evaluation

We follow the evaluation protocol of the Caltech pedes-

trian dataset [10], which use ROC curves for 2D bounding

box detection at 50% and 70% overlap thresholds.

Testsets: We use three different datasets for evaluation:

our novel Precarious Pedestrian testset of real images, our

novel Adverserial Imposter Testset, and for diagnostics, a

standard pedestrian benchmark dataset (Caltech).

Baselines: We compare our approach with the following

baselines:

ACF: An aggregate channel features detector [8] .

LDCF: A LDCF detector [33].

HOG+Cascade: A cascade of boosted classifiers working

with HOG features [50].

HARR+Cascade: A cascade of boosted classifiers work-

ing with haar-like features[47, 25].

RPN/BF: A RPN detection model trained with boosted

forest [49], which appears to be the state-of-the-art pedes-

trian detection system at the time of publication.

Precarious Pedestrians: Results on Precarious Pedestrians

are presented in Figure 6. Our detector significantly out-

performs alternative approaches, including the state-of-the-

art RPN/BF model. At 10−1 false positive per image, our

miss rate of 42.47% significantly outperforms all baselines,

including the state-of-the-art RPN/BF model (with a miss

rate of 54.5%). Note that all baseline detectors are trained

on Caltech. Comparing to baselines is complicated by the

fact that both the detection system and training dataset have

changed. However, in some sense, our fundamental con-

tribution is method for generating more accurate training

datasets through adversarial imposters. To isolate the im-

pact of our underlying detection network RPN+, we also

train a variant solely on the Caltech training set (denoted as

RPN+Caltech), making it directly comparable to all base-

lines because they use the same training set. RPN+Caltech

performs slightly worse than RPN/BF (with miss-rate of

58.82%), though it outperforms RPN/BF at higher false

positive rates. This suggests that our underlying network is

close to state-of-the-art, and moreover validates the signif-
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(a) Precarious Dataset (b) Precarious Dataset

Figure 6: (a) and (b) are ROC curves for different detec-

tors under different overlap ratio criteria on the Precarious

Pedestrian testset. In the legend, we denote the miss rate at

10−1 false positives per image. RPN+Caltech refers to our

RPN+ network architecture trained only on Caltech, while

Ours refers to our detector (RPN+) trained on synthetic, im-

poster, and real images (Alg 2). Note all detectors besides

Ours are trained on the Caltech Dataset.

icant improvement of training with Adversarial Imposters.

Figure 7 visualizes the results of RPN+, both trained on Cal-

tech and trained with Adversarial Imposters. Qualitatively,

we find that Precarious Pedestrians tend to take on more

pose variation than typical pedestrians. This requires detec-

tion systems that are able to report back a wider range of

bounding box scales and aspect ratios.

Adversarial Imposters: We also explore how detectors

perform on a testset of Adversarial Imposters. Note that

we can generate an arbitrarily large testset since it is syn-

thetic. Figure 8 and Figure 10 show that the performance

on both real test data and synthetic test data has the same

ranking order. These results suggest that synthetic data may

be useful as a testset for evaluating detectors on rare (but

important) scenarios that are difficult to observe in real test

data.

Caltech: Finally, for completeness, we also test our RPN+

network on the Caltech Dataset in Figure 9. Here, all the

detectors are trained on Caltech Dataset. For reference,

RPN+Caltech model would currently rank 6th out of 68 en-

tries on the Caltech Dataset leaderboard. We also attempted

to evaluate our final model (trained with Adversarial Im-

posters) on Caltech, but saw lackluster performance. We

posit that this is due to the different set of scales and aspect

ratios in Precarious Pedestrians. We leave further cross-

dataset analysis to future work.

5.2. Diagnostics

In this section, we explore various variants of our ap-

proach. Table 2 examines different fine-tuning strategies

for adapting detectors from the source domain of synthetic

images to the target domain of real Precarious images. Fine-

tuning via Imposters performs the best 42.47%, and no-

Fine-tuning method 50% overlap 70% overlap

S 83.49% 95.18%

T 72.39% 93.70%

S ⇒ T 48.45% 77.14%

S ⇒ (T ∪ I) 45.97% 74.94%

S ⇒ (T ∪ I) ⇒ T 42.47% 73.70%

Table 2: Miss rate of different fine-tuning strategies at a

false positive rate of 10−1, where S, T , and I refer to source

datasets (of synthetic images), target dataset (of recarious

real images), and Imposter dataset.

ticeably outperforms the commonplace baselines of tradi-

tional fine-tuning (by 6%) and training on only the target

(by 24%).

Figure 10 examines the effect of k, the size of the im-

poster set. We find good performance when k is equal to

|T |, the size of the target set of Precarious Pedestrians used

for training. In retrospect, this may not be surprising as this

produces a balanced distribution of real images and Adver-

sarial Imposters for training. Finally, Figure 10 also ex-

plores the impact of the discriminator. It plots performance

as a function of the training epoch used to learn D(x). As

we train a better discriminator, the performance of our over-

all adversarial pipeline gets noticeably better.

6. Conclusion

We have explored methods for analyzing “in-the-tail”

urban scenes, which represent important modes of oper-

ations for autonomous vehicles. Motivated by the fact

that rare but dangerous scenes are exactly the scenarios

on which visual recognition should excel, we first analyze

existing datasets and illustrate that they do not contain

sufficient rare scenarios (because they naturally focus on

common or typical urban scenes). To address this gap, we

have collected our own dataset of Precarious Pedestrians,

which we will release to spur further research on this

important (but under explored) problem. Precarious scenes

are challenging because little data is available for both

evaluation and training. To address this challenge, we

propose the use of synthetic data generated with a game

engine. However, it is challenging to ensure that the

synthesized data matches the statistics of real precarious

scenarios. Inspired by generative adversarial networks, we

introduce the use of a discriminative classifier (trained to

discriminate real vs synthetic data) to implicitly specify this

distribution. We then use the synthesized data that fooled

the discriminator (the “synthetic imposters”) to both train

and evaluate state-of-the-art, robust pedestrian detection

systems.
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