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Figure 1. The proposed selective multimodal Long Short-Term Memory network (sm-LSTM) (best viewed in colors).

Abstract

Effective image and sentence matching depends on how

to well measure their global visual-semantic similarity.

Based on the observation that such a global similarity aris-

es from a complex aggregation of multiple local similarities

between pairwise instances of image (objects) and sentence

(words), we propose a selective multimodal Long Short-

Term Memory network (sm-LSTM) for instance-aware im-

age and sentence matching. The sm-LSTM includes a multi-

modal context-modulated attention scheme at each timestep

that can selectively attend to a pair of instances of im-

age and sentence, by predicting pairwise instance-aware

saliency maps for image and sentence. For selected pair-

wise instances, their representations are obtained based on

the predicted saliency maps, and then compared to measure

their local similarity. By similarly measuring multiple local

similarities within a few timesteps, the sm-LSTM sequen-

tially aggregates them with hidden states to obtain a final

matching score as the desired global similarity. Extensive

experiments show that our model can well match image and

sentence with complex content, and achieve the state-of-the-

art results on two public benchmark datasets.

1. Introduction

Matching image and sentence plays an important role

in many applications, e.g., finding sentences given an im-

age query for image annotation and caption, and retrieving

images with a sentence query for image search. The key

challenge of such a cross-modal matching task is how to

accurately measure the image-sentence similarity. Recent-

ly, various methods have been proposed for this problem,

which can be classified into two categories: 1) one-to-one

matching and 2) many-to-many matching.

One-to-one matching methods usually extract global rep-

resentations for image and sentence, and then associate

them using either a structured objective [9, 18, 34] or a

canonical correlation objective [40, 20]. But they ignore

the fact that the global similarity commonly arises from a

complex aggregation of local similarities between image-

sentence instances (objects in an image and words in a sen-

tence). Accordingly, they fail to perform accurate instance-

aware image and sentence matching.

Many-to-many matching methods [16, 17, 29, 32] pro-

pose to compare many pairs of image-sentence instances,

and aggregate their local similarities. However, it is not op-

timal to measure local similarities for all the possible pairs

of instances without any selection, since only partial salien-

t instance pairs describing the same semantic concept can

actually be associated and contribute to the global similari-

ty. Other redundant pairs are less useful which could act as

noise that degenerates the final performance. In addition, it

is not easy to obtain instances for either image or sentence,

so these methods usually have to explicitly employ addi-

tional object detectors [6], dependency tree relations [11],
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or expensive human annotations.

To deal with these issues mentioned above, we propose a

sequential model, named selective multimodal Long Short-

Term Memory network (sm-LSTM), that can recurrently

select salient pairs of image-sentence instances, and then

measure and aggregate their local similarities within several

timesteps. As shown in Figure 1, given a pair of image and

sentence with complex content, the sm-LSTM first extracts

their instance candidates, i.e., words of the sentence and re-

gions of the image. Based on the extracted candidates, the

model exploits a multimodal context-modulated attention

scheme at each timestep to selectively attend to a pair of de-

sired image and sentence instances (marked by circles and

rectangles with the same color). In particular, the attention

scheme first predicts pairwise instance-aware saliency map-

s for the image and sentence, and then combines saliency-

weighted representations of candidates to represent the at-

tended pairwise instances. Considering that each instance

seldom occurs in isolation but co-varies with other ones

as well as the particular context, the attention scheme uses

multimodal global context as reference information to guide

instance selection.

Then, the local similarity of the attended pairwise in-

stances can be measured by comparing their obtained rep-

resentations. During multiple timesteps, the sm-LSTM ex-

ploits hidden states to capture different local similarities of

selected pairwise image-sentence instances, and sequential-

ly accumulates them to predict the desired global similarity

(i.e., the matching score) of image and sentence. Our model

jointly performs pairwise instance selection, local similari-

ty learning and aggregation in a single framework, which

can be trained from scratch in an end-to-end manner with

a structured objective. To demonstrate the effectiveness of

the proposed sm-LSTM, we perform experiments of image

annotation and retrieval on two publicly available datasets,

and achieve the state-of-the-art results.

2. Related Work

2.1. One­to­one Matching

Frome et al. [9] propose a deep image-label embedding

framework that uses Convolutional Neural Networks (CN-

N) [21] and Skip-Gram [26] to extract representations for

image and label, respectively, and then associates them with

a structured objective in which the matched image-label

pairs have small distances. With a similar framework, Kiros

et al. [18] use Recurrent Neural Networks (RNN) [12] for

sentence representation learning, Vendrov et al. [34] re-

fine the objective to preserve the partial order structure of

visual-semantic hierarchy, and Wang et al. [36] combine

cross-view and within-view constraints to learn structure-

preserving embedding. Yan et al. [40] associate represen-

tations of image and sentence using deep canonical correla-

tion analysis where the matched image-sentence pairs have

high correlation. Using a similar objective, Klein et al. [20]

propose to use Fisher Vectors (FV) [28] to learn discrimi-

native sentence representations, and Lev et al. [22] exploit

RNN to encode FV for further performance improvement.

Huang et al. [14] consider the cross-modal learning prob-

lem in a general unconstrained setting in which some data

modalities are missing.

2.2. Many­to­many Matching

Karpathy et al. [17, 16] make the first attempt to perform

local similarity learning between fragments of images and

sentences with a structured objective. Plummer et al. [29]

collect region-to-phrase correspondences for instance-level

image and sentence matching. But they indistinctively use

all pairwise instances for similarity measurement, which

might not be optimal since there exist many matching-

irrelevant instance pairs. In addition, obtaining image and

sentence instances is not trial, since either additional object

detectors or expensive human annotations need to be used.

In contrast, our model can automatically select salient pair-

wise image-sentence instances, and sequentially aggregate

their local similarities to obtain global similarity.

Other methods for image caption [25, 8, 7, 35, 4] can

be extended to deal with image-sentence matching, by first

generating the sentence given an image and then comparing

the generated sentence with groundtruth word-by-word in

a many-to-many manner. But this kind of models are es-

pecially designed to predict a grammar-completed sentence

close to the groundtruth sentence, rather than select salient

pairwise sentence instances for similarity measurement.

2.3. Deep Attention­based Models

Our proposed model is related to some models simu-

lating visual attention [37, 38, 15]. Ba et al. [1] present

a recurrent attention model that can attend to some label-

relevant image regions of an image for multiple object-

s recognition. Bahdanau et al. [2] propose a neural ma-

chine translator which can search for relevant parts of a

source sentence to predict a target word. Xu et al. [39]

develop an attention-based caption model which can auto-

matically learn to fix gazes on salient objects in an image

and generate the corresponding annotated words. Different

from these models, our sm-LSTM focuses on joint multi-

modal instance selection and matching, which uses a mul-

timodal context-modulated attention scheme to jointly pre-

dict instance-aware saliency maps for both image and sen-

tence.

3. Selective Multimodal LSTM

We will present the details of the proposed selective mul-

timodal Long Short-Term Memory network (sm-LSTM)
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Figure 2. Details of the proposed sm-LSTM, including (a) instance candidate extraction, (b) instance-aware saliency map prediction, and

(c) similarity measurement and aggregation (best viewed in colors).

from the following three aspects: (a) instance candi-

date extraction for both image and sentence, (b) instance-

aware saliency map prediction with a multimodal context-

modulated attention scheme, and (c) local similarity mea-

surement and aggregation with a multimodal LSTM.

3.1. Instance Candidate Extraction

Sentence Instance Candidates. For a sentence, its un-

derlying instances mostly exist in word-level or phrase-

level, e.g., “dog” and “man”. So we simply tokenlize and

split the sentence into words, and then obtain their represen-

tations by sequentially processing them with a bidirectional

LSTM (BLSTM) [30], where two sequences of hidden s-

tates with different directions (forward and backward) are

learnt. We concatenate the vectors of two directional hid-

den states at the same timestep as the representation for the

corresponding input word.

Image Instance Candidates. For an image, directly ob-

taining its instances is very difficult, since the visual content

is unorganized where the instances could appear in any lo-

cation with various scales. To avoid the use of additional

object detectors, we evenly divide the image into regions as

instance candidates as shown in Figure 2 (a), and represen-

t them by extracting feature maps of the last convolutional

layer in a CNN. We concatenate feature values at the same

location across different feature maps as the feature vector

for the corresponding convolved region.

3.2. Instance­aware Saliency Map Prediction

Apparently, neither the split words nor evenly divided

regions can precisely describe the desired sentence or im-

age instances. It is attributed to the fact that: 1) not all in-

stance candidates are necessary since both image and sen-

tence consist of too much instance-irrelevant information,

and 2) the desired instances usually exist as a combination

of multiple candidates, e.g., the instance “dog” covers about

twelve image regions. Therefore, we have to evaluate the

instance-aware saliency of each instance candidate, with the

aim to highlight those important and ignore those irrelevant.

To achieve this goal, we propose a multimodal context-

modulated attention scheme to predict pairwise instance-

aware saliency maps for image and sentence. Different from

[39], this attention scheme is designed for multimodal da-

ta rather than unimodal data, especially for the multimodal

matching task. More importantly, we systematically study

the importance of global context modulation in the atten-

tional procedure. It results from an observation that each

instance of image or sentence seldom occurs in isolation

but co-varies with other ones as well as particular context.

In particular, previous work [27] has shown that the global

image scene enables humans to quickly guide their attention

to regions of interest. A recent study [10] also demonstrates

that the global sentence topic capturing long-range context

can greatly facilitate inferring about the meaning of words.

As illustrated in Figure 2 (b), we denote the previous-

ly obtained instance candidates of image and sentence as
{

ai|ai ∈ R
F
}

i=1,··· ,I
and

{
wj |wj ∈ R

G
}

j=1,··· ,J
, respec-

tively. ai is the representation of the i-th divided region in

the image and I is the total number of regions. wj describes

the j-th split word in the sentence and J is the total num-

ber of words. F is the number of feature maps in the last

convolutional layer of CNN while G is twice the dimension

of hidden states in the BLSTM. We regard the output vector

of the last fully-connected layer in the CNN as the global

context m ∈ R
D for the image, and the hidden state at the

last timestep in a sentence-based LSTM as the global con-

text n ∈ R
E for the sentence. Based on these variables, we

can perform instance-aware saliency map prediction at the
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t-th timestep as follows:

pt,i = ep̂t,i/
∑I

i=1
ep̂t,i , p̂t,i = fp(m, ai, ht−1),

qt,j = eq̂t,j/
∑J

j=1
eq̂t,j , q̂t,j = fq(n,wj , ht−1)

(1)

where pt,i and qt,j are saliency values indicating the prob-

abilities that the i-th image instance candidate and the j-th

sentence instance candidate will be attended to at the t-th
timestep, respectively. fp(·) and fq(·) are two function-

s implementing the detailed context-modulation attention,

where the input global context plays an essential role as ref-

erence information.

3.3. Global Context as Reference Information

To illustrate the details of the context-modulated atten-

tion, we take an image for example in Figure 3, the case

for sentence is similar. The global feature m provides a s-

tatistical summary of the image scene, including semantic

instances and their relationships with each other. Such a

summary can not only provide reference information about

expected instances, e.g., “man” and “dog”, but also cause

the perception of one instance to generate strong expecta-

tions about other instances [5]. The local representations
{

ai|ai ∈ R
F
}

i=1,··· ,I
describe all the divided regions inde-

pendently and are used to compute the initial saliency map.

The hidden state at the previous timestep ht−1 indicates the

already attended instances in the image, e.g., “man”.

To select which instance to attend to next, the attention

scheme should first refer to the global context to find an

instance, and then compare it with previous context to see

if this instance has already been attended to. If yes (e.g.,

selecting the “man”), the scheme will refer to the global

context again to find another instance. Otherwise (e.g., se-

lecting the “dog”), regions in the initial saliency map corre-

sponding to the instance will be highlighted. For efficien-

t implementation, we simulate such a context-modulated

attentional procedure using a simple three-way multilayer

perceptrons (MLP) as follows:

fp(m, ai, ht−1) = wp(σ(mWm + bm) + σ(aiWa + ba)

+ σ(ht−1Wh + bh)) + bp
(2)

where σ denotes the sigmoid activation function. wp and

bp are a weight vector and a scalar bias, respectively. Here

we only take fp(·) for example, the case for fq(·) is similar.

Note that in this equation, the information in initial salien-

cy map is additively modulated by the global context and

subtractively modulated by the previous context, to finally

produce the instance-aware saliency map.

The attention schemes in [39, 2, 1] consider only pre-

vious context without global context at each timestep, they

have to alternatively use step-wise labels serving as expect-

ed instance information to guide the attentional procedure.

Global context

Local representations

Previous context

Figure 3. Illustration of context-modulated attention (the lighter

areas indicate the attended instances, best viewed in colors).

But such strong supervision can only be available for lim-

ited tasks, e.g., the sequential words of sentence for im-

age caption [39], and multiple class labels for multi-object

recognition [1]. For image and sentence matching, the

words of sentence cannot be used as supervision informa-

tion since we also have to select salient instances from the

sentence to match image instances. In fact, we perform ex-

periments without using global context in Section 4.7, but

find that some instances like “man” and “dog” cannot be

well attended to. It mainly results from the reason that with-

out global context, the attention scheme can only refer to

the initial saliency map to select which instance to attend

to next, but the initial saliency map is computed from lo-

cal representations that contain little instance information

as well as relationships among instances.

3.4. Similarity Measurement and Aggregation

According to the predicted pairwise instance-aware

saliency maps, we compute the weighted sum representa-

tions a′t and w′
t to adaptively describe the attended image

and sentence instances, respectively. We sum all the prod-

ucts of element-wise multiplication between each local rep-

resentation (e.g., ai) and its corresponding saliency value

(e.g., pt,i):

a′t =
∑I

i=1
pt,iai, w′

t =
∑J

j=1
qt,jwj (3)

where instance candidates with higher saliency values con-

tribute more to the instance representations. Then, to mea-

sure the local similarity of the attended pairwise instances

at the t-th timestep, we jointly feed their obtained represen-

tations a′t and w′
t into a two-way MLP, and regard the output

st as the representation of the local similarity, as shown in

Figure 2 (c).

From the 1-st to T -th timestep, we obtain a sequence of

representations of local similarities {st}t=1,··· ,T , where T
is the total number of timesteps. To aggregate these local

similarities for the global similarity, we use a LSTM net-

work to sequentially take them as inputs, where the hidden
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Table 1. Comparison results of image annotation and retrieval on the Flickr30K dataset. (∗ indicates the ensemble or multi-model methods,

and † indicates using external text corpora or manual annotations.)

Method
Image Annotation Image Retrieval

Sum
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

RVP (T+I) [4] 12.1 27.8 47.8 11 12.7 33.1 44.9 12.5 178.4
Deep Fragment [16] 14.2 37.7 51.3 10 10.2 30.8 44.2 14 188.4
DCCA [40] 16.7 39.3 52.9 8 12.6 31.0 43.0 15 195.5
NIC [35] 17.0 - 56.0 7 17.0 - 57.0 7 -
DVSA (BRNN) [17] 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2 235.2
MNLM [18] 23.0 50.7 62.9 5 16.8 42.0 56.5 8 251.9
LRCN [7] - - - - 17.5 40.3 50.8 9 -
m-RNN [25] 35.4 63.8 73.7 3 22.8 50.7 63.1 5 309.5

FV†∗ [20] 35.0 62.0 73.8 3 25.0 52.7 66.0 5 314.5
m-CNN∗ [24] 33.6 64.1 74.9 3 26.2 56.3 69.6 4 324.7

RTP+FV†∗ [29] 37.4 63.1 74.3 - 26.0 56.0 69.3 - 326.1

RNN+FV† [22] 34.7 62.7 72.6 3 26.2 55.1 69.2 4 320.5

DSPE+FV† [36] 40.3 68.9 79.9 - 29.7 60.1 72.1 - 351.0

Ours:
sm-LSTM-mean 25.9 53.1 65.4 5 18.1 43.3 55.7 8 261.5
sm-LSTM-att 27.0 53.6 65.6 5 20.4 46.4 58.1 7 271.1
sm-LSTM-ctx 33.5 60.6 70.8 3 23.6 50.4 61.3 5 300.1
sm-LSTM 42.4 67.5 79.9 2 28.2 57.0 68.4 4 343.4
sm-LSTM∗ 42.5 71.9 81.5 2 30.2 60.4 72.3 3 358.7

states
{

ht ∈ R
H
}

t=1,··· ,T
dynamically propagate the cap-

tured local similarities until the end. The LSTM includes

various gate mechanisms including memory state ct, hid-

den state ht, input gate it, forget gate ft and output gate ot,

which can well suit the complex nature of similarity aggre-

gation:

it = σ(Wsist +Whiht−1 + bi),

ft = σ(Wsfst +Whfht−1 + bf),

ct = ft ⊙ ct−1 + it ⊙ tanh(Wscst +Whcht−1 + bc),

ot = σ(Wsost +Whoht−1 + bo), ht = ot ⊙ tanh(ct)

(4)

where ⊙ denotes element-wise multiplication.

The hidden state at the last timestep hT can be regarded

as the aggregated representation of all the local similarities.

We use a MLP that takes hT as the input and produces the

final matching score s as global similarity:

s = whs (σ (Whhht + bh)) + bs. (5)

3.5. Model Learning

The proposed sm-LSTM can be trained with a structured

objective function that encourages the matching scores of

matched images and sentences to be larger than those of

mismatched ones:

∑

ik
max {0,m− sii + sik}+max {0,m− sii + ski}

(6)

where m is a tuning parameter, and sii is the score of

matched i-th image and i-th sentence. sik is the score of

mismatched i-th image and k-th sentence, and vice-versa

with ski. We empirically set the total number of mis-

matched pairs for each matched pair as 100 in our experi-

ments. Since all modules of our model including the extrac-

tion of local representations and global contexts can consti-

tute a whole deep network, our model can be trained in an

end-to-end manner from raw image and sentence to match-

ing score, without pre-/post-processing. For efficient op-

timization, we fix the weights of CNN and use pretrained

weights as stated in Section 4.2.

In addition, we add a pairwise doubly stochastic regular-

ization to the objective, by constraining the sum of saliency

values of any instance candidates at all timesteps to be 1:

λ
(∑

i
(1−

∑

t
pt,i) +

∑

j
(1−

∑

t
qt,j)

)

(7)

where λ is a balancing parameter. By adding this constraint,

the loss will be large when our model attends to the same

instance for multiple times. Therefore, it encourages the

model to pay equal attention to every instance rather than

a certain one for information maximization. In our experi-

ments, we find that using this regularization can further im-

prove the performance.

4. Experimental Results

To demonstrate the effectiveness of the proposed sm-

LSTM, we perform experiments in terms of image anno-

tation and retrieval on two publicly available datasets.

4.1. Datasets and Protocols

The two evaluation datasets and their corresponding ex-

perimental protocols are described as follows. 1) Flickr30k
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Table 2. Comparison results of image annotation and retrieval on the Microsoft COCO dataset. (∗ indicates the ensemble or multi-model

methods, and † indicates using external text corpora or manual annotations.)

Method
Image Annotation Image Retrieval

Sum
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

STD†∗ [19] 33.8 67.7 82.1 3 25.9 60.0 74.6 4 344.1
m-RNN [25] 41.0 73.0 83.5 2 29.0 42.2 77.0 3 345.7

FV†∗ [20] 39.4 67.9 80.9 2 25.1 59.8 76.6 4 349.7
DVSA [17] 38.4 69.9 80.5 1 27.4 60.2 74.8 3 351.2
MNLM [18] 43.4 75.7 85.8 2 31.0 66.7 79.9 3 382.5
m-CNN∗ [24] 42.8 73.1 84.1 2 32.6 68.6 82.8 3 384.0

RNN+FV† [22] 40.8 71.9 83.2 2 29.6 64.8 80.5 3 370.8
OEM [34] 46.7 - 88.9 2 37.9 - 85.9 2 -

DSPE+FV† [36] 50.1 79.7 89.2 - 39.6 75.2 86.9 - 420.7

Ours:
sm-LSTM-mean 33.1 65.3 78.3 3 25.1 57.9 72.2 4 331.9
sm-LSTM-att 36.7 69.7 80.8 2 29.1 64.8 78.4 3 359.5
sm-LSTM-ctx 39.7 70.2 84.0 2 32.7 68.1 81.3 3 376.0
sm-LSTM 52.4 81.7 90.8 1 38.6 73.4 84.6 2 421.5
sm-LSTM∗ 53.2 83.1 91.5 1 40.7 75.8 87.4 2 431.8

[41] consists of 31783 images collected from the Flick-

r website. Each image is accompanied with 5 human an-

notated sentences. We use the public training, validation

and testing splits [18], which contain 28000, 1000 and 1000

images, respectively. 2) Microsoft COCO [23] consists of

82783 training and 40504 validation images, each of which

is associated with 5 sentences. We use the public train-

ing, validation and testing splits [18], with 82783, 4000 and

1000 images, respectively.

4.2. Implementation Details

The commonly used evaluation criterions for image an-

notation and retrieval are “R@1”, “R@5” and “R@10”, i.e.,

recall rates at the top 1, 5 and 10 results. Another one is

“Med r” which is the median rank of the first ground truth

result. We compute an additional criterion “Sum” to evalu-

ate the overall performance for both image annotation and

retrieval as follows:

Sum = R@1 + R@5 + R@10
︸ ︷︷ ︸

Image annotation

+R@1 + R@5 + R@10
︸ ︷︷ ︸

Image retrieval

To systematically validate the effectiveness, we experi-

ment with five variants of sm-LSTMs: (1) sm-LSTM-mean

does not use the attention scheme to obtain weighted sum

representations for selected instances but instead directly

uses mean vectors, (2) sm-LSTM-att only uses the atten-

tion scheme but does not exploit global context, (3) sm-

LSTM-ctx does not use the attention scheme but only ex-

ploits global context, (4) sm-LSTM is our full model that

uses both the attention scheme and global context, and (5)

sm-LSTM∗ is an ensemble of the described four model-

s above, by summing their cross-modal similarity matrices

together in a similar way as [24].

We use the 19-layer VGG network [31] to initialize our

CNN to extract 512 feature maps (with a size of 14×14)

in “conv5-4” layer as representations for image instance

candidates, and a feature vector in “fc7” layer as the im-

age global context. We use the MNLP [18] to initialize our

sentence-based LSTM and regard the hidden state at the last

timestep as the sentence global context, while our BLSTM

for representing sentence candidates is directly learned from

raw sentences with a dimension of hidden state as 512. For

image, the dimensions of local and global context features

are F=512 and D=4096, respectively, and the total number

of local regions is I=196 (14×14). For sentence, the di-

mensions of local and global context features are G=1024
and E=1024, respectively. We set the max length for all

the sentences as 50, i.e., the number of split words J=50,

and use zero-padding when a sentence is not long enough.

Other parameters are empirically set as follows: H=1024,

λ=100, T=3 and m=0.2.

4.3. Comparison with State­of­the­art Methods

We compare sm-LSTMs with several recent state-of-the-

art methods on the Flickr30k and Microsoft COCO datasets

in Tables 1 and 2, respectively. We can find that sm-LSTM∗

can achieve much better performance than all the compared

methods on both datasets. Our best single model sm-LSTM

outperforms the state-of-the-art DSPE+FV† in image anno-

tation, but performs slightly worse than it in image retrieval.

Different from DSPE+FV† that uses external text corpora

to learn discriminative sentence features, our model learns

them directly from scratch in an end-to-end manner. Be-

side DSPE+FV†, the sm-LSTM performs better than other

compared methods by a large margin. These observations

demonstrate that dynamically selecting image-sentence in-

stances and aggregating their similarities is very effective

for cross-modal retrieval.

When comparing among all the sm-LSTMs, we can con-

clude as follows. 1) Our attention scheme is effective, since
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Figure 4. Visualization of attended image and sentence instances at three different timesteps (best viewed in colors).

Table 3. The impact of different numbers of timesteps on the

Flick30k dataset. T : the number of timesteps in the sm-LSTM.

Image Annotation Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

T = 1 38.8 65.7 76.8 28.0 56.6 68.2
T = 2 38.0 68.9 77.9 28.1 56.5 68.1
T = 3 42.4 67.5 79.9 28.2 57.0 68.4
T = 4 38.2 67.6 78.5 27.5 56.6 68.0
T = 5 38.1 68.2 78.4 28.1 56.0 67.9

sm-LSTM-att consistently outperforms sm-LSTM-mean on

both datasets. When exploiting only context information

without the attention scheme, sm-LSTM-ctx achieves much

worse results than sm-LSTM. 2) Using global context to

modulate the attentional procedure is very useful, since

sm-LSTM greatly outperforms sm-LSTM-att with respect

to all evaluation criterions. 3) The ensemble of four sm-

LSTM variants as sm-LSTM∗ can further improve the per-

formance.

4.4. Analysis on Number of Timesteps

For a pair of image and sentence, we need to manu-

ally set the number of timesteps T in sm-LSTM. Ideally,

T should be equal to the number of salient pairwise in-

stances appearing in the image and sentence. Therefore,

the sm-LSTM can separately attend to these pairwise in-

stances within T steps to measure all the local similarities.

To investigate what is the optimal number of timesteps, in

the following, we gradually increase T from 1 to 5, and an-

alyze the impact of different numbers of timesteps on the

performance of sm-LSTM in Table 3.

From the table we can observe that sm-LSTM can

achieve its best performance when the number of timesteps

is 3. It indicates that it can capture all the local similarity

information by iteratively visiting both image and sentence

for 3 times. Intuitively, most pairs of images and sentences

usually contain approximately 3 associated instances. Note

that when T becomes larger than 3, the performance slight-

ly drops. It results from the fact that an overly complex

Table 4. The impact of different values of the balancing parame-

ter on the Flick30k dataset. λ: the balancing parameter between

structured objective and regularization term.

Image Annotation Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

λ = 0 37.9 65.8 77.7 27.2 55.4 67.6
λ = 1 38.0 66.2 77.8 27.4 55.6 67.7
λ = 10 38.4 67.4 77.7 27.5 56.1 67.6
λ = 100 42.4 67.5 79.9 28.2 57.0 68.4
λ = 1000 40.2 67.1 78.6 27.8 56.9 67.9

network tends to overfit training data by paying attention to

redundant instances at extra timesteps.

4.5. Evaluation of Regularization Term

In our experiments, we find that the proposed sm-LSTM

is inclined to focus on the same instance at all timesteps,

which might result from the fact that always selecting most

informative instances can largely avoid errors. But it is not

good for our model to comprehensively perceive the entire

content in the image and sentence. So we add the pairwise

doubly stochastic regularization term (in Equation 7) to the

structured objective, with the aim to force the model to pay

equal attention to all the potential instances at different lo-

cations. We vary the values of balancing parameter λ from

0 to 1000, and compare the corresponding performance in

Table 4. From the table, we can find that the performance

improves when λ>0, which demonstrates the usefulness

of paying attention to more instances. In addition, when

λ=100, the sm-LSTM can achieve the largest performance

improvement, especially for the task of image annotation.

4.6. Visualization of Instance­aware Saliency Maps

To verify whether the proposed model can selectively

attend to salient pairwise instances of image and sentence

at different timesteps, we visualize the predicted sequen-

tial instance-aware saliency maps by sm-LSTM, as shown

in Figure 4. In particular for image, we resize the predict-

ed saliency values at the t-th timestep {pt,i} to the same
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(a) Input image (b) Without global context (by sm-LSTM-att) (c) With global context (by sm-LSTM)

Figure 5. Attended image instances at three different timesteps, without or with global context, respectively (best viewed in colors).

size as its corresponding original image, so that each val-

ue in the resized map measures the importance of an image

pixel at the same location. We then perform element-wise

multiplication between the resized saliency map and the o-

riginal image to obtain the final saliency map, where lighter

areas indicate attended instances. While for sentence, since

different sentences have various lengths, we simply present

two selected words at each timestep corresponding to the

top-2 highest saliency values {qt,j}.

We can see that sm-LSTM can attend to different re-

gions and words at different timesteps in the images and

sentences, respectively. Most attended pairs of regions and

words describe similar semantic concepts. Taking the last

pair of image and sentence for example, sm-LSTM sequen-

tially focuses on words: “people”, “planes” and “air” at

three different timesteps, as well as the corresponding im-

age regions referring to similar meanings.

4.7. Usefulness of Global Context

To qualitatively validate the effectiveness of using global

context, we compare the resulting instance-aware saliency

maps of images generated by sm-LSTM-att and sm-LSTM

in Figure 5. Without the aid of global context, sm-LSTM-

att cannot produce accurate dynamical saliency maps as

those of sm-LSTM. In particular, it cannot well attend to se-

mantically meaningful instances such as “dog” and “cow”

in the first and second images, respectively. In addition,

sm-LSTM-att always finishes attending to salient instances

within the first two steps, and does not focus on meaning-

ful instances at the third timestep any more. Different from

it, sm-LSTM focuses on more salient instances at all three

timesteps. These evidences show that global context modu-

lation can be helpful for more accurate instance selection.

In Figure 6, we also compute the averaged saliency maps

(rescaled to the same size of 500×500) for all the test im-

ages at three different timesteps by sm-LSTM. We can see

that the proposed sm-LSTM statistically tends to focus on

the central regions at the first timestep, which is in consis-

tent with the observation of “center-bias” in human visual

attention studies [33, 3]. It is mainly attributed to the fac-

t that salient instances mostly appear in the cental regions

(a) 1-st timestep (b) 2-nd timestep (c) 3-rd timestep

Figure 6. Averaged saliency maps at three different timesteps.

of images. Note that the model also attends to surrounding

and lower regions at the other two timesteps, with the goal

to find various instances at different locations.

5. Conclusions and Future Work

In this paper, we have proposed the selective multi-

modal Long Short-Term Memory network (sm-LSTM) for

instance-aware image and sentence matching. Our main

contribution is proposing a multimodal context-modulated

attention scheme to select salient pairwise instances from

image and sentence, and a multimodal LSTM network for

local similarity measurement and aggregation. We have sys-

tematically studied the global context modulation in the at-

tentional procedure, and demonstrated its effectiveness with

significant performance improvement. We have applied

our model to the tasks of image annotation and retrieval,

and achieved the state-of-the-art results. In the future, we

will explore more advanced implementations of the context

modulation (in Equation 2). We will also consider to replace

the used fully-connected RNN with a novel recurrent convo-

lutional network [13] to better model the structural content

in images as well as reduce the computational burden.
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