
Real-Time Neural Style Transfer for Videos

Haozhi Huang†‡∗ Hao Wang‡ Wenhan Luo‡ Lin Ma‡

Wenhao Jiang‡ Xiaolong Zhu‡ Zhifeng Li‡ Wei Liu‡∗

†Tsinghua University ‡Tencent AI Lab
∗Correspondence: huanghz08@gmail.com wliu@ee.columbia.edu

Abstract

Recent research endeavors have shown the potential of

using feed-forward convolutional neural networks to ac-

complish fast style transfer for images. In this work, we

take one step further to explore the possibility of exploiting

a feed-forward network to perform style transfer for videos

and simultaneously maintain temporal consistency among

stylized video frames. Our feed-forward network is trained

by enforcing the outputs of consecutive frames to be both

well stylized and temporally consistent. More specifically,

a hybrid loss is proposed to capitalize on the content in-

formation of input frames, the style information of a given

style image, and the temporal information of consecutive

frames. To calculate the temporal loss during the train-

ing stage, a novel two-frame synergic training mechanism

is proposed. Compared with directly applying an existing

image style transfer method to videos, our proposed method

employs the trained network to yield temporally consistent

stylized videos which are much more visually pleasant. In

contrast to the prior video style transfer method which relies

on time-consuming optimization on the fly, our method runs

in real time while generating competitive visual results.

1. Introduction

Recently, great progress has been achieved by apply-

ing deep convolutional neural networks (CNNs) to image

transformation tasks, where a feed-forward CNN receives

an input image, possibly equipped with some auxiliary in-

formation, and transforms it into a desired output image.

This kind of tasks includes style transfer [12, 27], seman-

tic segmentation [19], super-resolution [12, 7], coloriza-

tion [11, 31], etc.

A natural way to extend image processing techniques to

videos is to perform a certain image transformation frame

by frame. However, this scheme inevitably brings temporal

inconsistencies and thus causes severe flicker artifacts. The

second row in Fig. 1 shows an example of directly applying

the feed-forward network based image style transfer method

Style Image

Figure 1: Video style transfer without and with temporal

consistency. The first row displays two consecutive input

frames and a given style image. The second row shows

the stylized results generated by the method of Johnson

et al. [12]. The zoom-in regions in the middle show that

the stylized patterns are of different appearances between

the consecutive frames, which creates flicker artifacts. The

third row shows the stylized results of our method, where

the stylized patterns maintain the same appearance.

of Johnson et al. [12] to videos. It can be observed that the

zoom-in content marked by white rectangles is stylized in-

to different appearances between two consecutive frames,

therefore creating flicker artifacts. The reason is that slight

variations between adjacent video frames may be amplified

by the frame-based feed-forward network and thus result in

obviously different stylized frames. In the literature, one

solution to retain temporal coherence after video transfor-

mation is to explicitly consider temporal consistency during

the frame generation or optimization process [18, 1, 14, 22].

While effective, they are case-specific methods and thus

cannot be easily generalized to other problems. Among

them, the method of Ruder et al. [22] is specifically de-

signed for video style transfer. However, it relies on time-

consuming optimization on the fly, and takes about three

minutes to process a single frame even with pre-computed

optical flows. Another solution to maintaining temporal

consistency is to apply post-processing [15, 2]. A draw-
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back of post-processing is that it can only deal with image

transformations whose edited results have pixel-wise corre-

spondences to their inputs, which is not the case that style

transfer obeys. Moreover, both solutions need to compute

optical flows for new input video sequences, which prevents

their usage for real-time video style transfer.

In view of the efficacy of feed-forward networks on im-

age transformation tasks, a natural thinking will be whether

a feed-forward network can be adapted to video transfor-

mation tasks by including temporal consistency. In this

paper, we testify this idea on the problem of video style

transfer. We demonstrate that a feed-forward network can

not only capture content and style information in the spa-

tial domain, but also encourage consistency in the temporal

domain. We propose to use a hybrid loss in the training

stage that combines the losses in the spatial and temporal

domains together. Aided by the supervision of the spatial

loss, our proposed video style transfer model can well pre-

serve high-level abstract contents of the input frames and

introduce new colors and patterns from a given style im-

age. Meanwhile, the introduced temporal loss, guided by

pre-computed optical flows, enables our feed-forward net-

work to capture the temporal consistency property between

consecutive video frames, therefore enforcing our model to

yield temporally consistent outputs. To enable the calcula-

tion of the temporal loss during the training stage, a nov-

el two-frame synergic training method is proposed. After

training, no more optical flow computation is needed dur-

ing the inference process. Our extensive experiments verify

that our method generates much more temporally consistent

stylized videos than the method of Johnson et al. [12]. An

example result of our method is shown in the last row of

Fig. 1, from which we can see that the stylized patterns in-

cur no more flicker artifacts. The experiments also corrob-

orate that our method is able to create stylized videos at a

real-time frame rate, while the previous video style transfer

method [22] needs about three minutes for processing a sin-

gle frame. This makes us to believe that a well-posed feed-

forward network technique has a great potential for avoid-

ing large computational costs of traditional video transfor-

mation methods.

The main contributions of this paper are two-fold:

• A novel real-time style transfer method for videos is

proposed, which is solely based on a feed-forward con-

volutional neural network and avoids computing opti-

cal flows on the fly.

• We demonstrate that a feed-forward convolutional neu-

ral network supervised by a hybrid loss can not on-

ly stylize each video frame well, but also maintain

the temporal consistency. Our proposed novel two-

frame synergic training method incorporates the tem-

poral consistency into the network.

2. Related Work

Style transfer aims to transfer the style of a reference

image/video to an input image/video. It is different from

color transfer in the sense that it transfers not only colors

but also strokes and textures of the reference. Image analo-

gy is the first classic style transfer method for images [10],

which learns a mapping between image patches. As an ex-

tension to image analogy, Lee et al. [16] further incorpo-

rated edge orientation to enforce gradient alignment. Re-

cently, Gatys et al. [9] proposed to perform style transfer in

an optimization manner by running back-propagation with

a perceptual loss defined on high-level features of the pre-

trained VGG-19 network [23]. Though impressive stylized

results are achieved, Gatys et al.’s method takes quite a long

time to infer the stylized image. Afterwards, Johnson et al.

[12] proposed to train a feed-forward CNN using a similar

perceptual loss defined on the VGG-16 network [23] to re-

place the time-consuming optimization process, which en-

ables real-time style transfer for images. Some follow-up

work was conducted to further improve the feed-forward C-

NN based image style transfer method. Li and Wand [17]

proposed to use patches of neural feature maps to compute

a style loss to transfer photo-realistic styles. Ulyanov et

al. [28] suggested instance normalization in lieu of batch

normalization, which gives more pleasant stylized results.

Dumolin et al. [8] demonstrated that a feed-forward CNN

can be trained to capture multiple different styles by intro-

ducing conditional instance normalization.

Simply treating each video frame as an independent im-

age, the aforementioned image style transfer methods can

be directly extended to videos. However, without consid-

ering temporal consistency, those methods will inevitably

bring flicker artifacts to generated stylized videos. In order

to suppress flicker artifacts and enforce temporal consisten-

cy, a number of approaches have been investigated and ex-

ploited for different tasks [18, 15, 1, 30, 14, 2, 22]. Specif-

ically, Ruder et al. [22] used a temporal loss guided by op-

tical flows for video style transfer. On one hand, Ruder et

al.’s approach depends on an optimization process which is

much slower than a forward pass through a feed-forward

network. On the other hand, the on-the-fly computation

of optical flows makes this approach even slower. In this

paper, we show that temporal consistency and style trans-

fer can be simultaneously learned by a feed-forward CNN,

which avoids computing optical flows in the inference stage

and thus enables real-time style transfer for videos.

3. Method

Our style transfer model consists of two parts: a stylizing

network and a loss network, as shown in Fig. 2. The styliz-

ing network takes one frame as input and produces its corre-

sponding stylized output. The loss network, pre-trained on
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Figure 2: An overview of our proposed model. It consists of two parts: a stylizing network and a loss network. Black, green

and red rectangles represent an input frame, an output frame and a given style image, respectively. A hybrid loss function

including spatial and temporal components is defined on the loss network. Specifically, the spatial loss is computed separately

for each of two consecutive frames and the temporal loss is computed based on both of them. This hybrid loss is used to train

the stylizing network.

the ImageNet classification task [6], first extracts the fea-

tures of the stylized output frames and then computes the

losses, which are leveraged for training the stylizing net-

work. On one hand, these features are used to compute a

spatial loss in order to evaluate the style transfer quality in

the spatial domain, which is a weighted sum of a content

loss and a style loss. The content loss evaluates how close

the high-level contents of the input and the stylized output

are. The style loss measures how close the style features

of the given style image and the stylized output are. On

the other hand, a novel term, namely temporal loss, is in-

troduced in our model to enforce temporal consistency be-

tween the stylized outputs. During the training process, two

stylized output frames x̂
t−1

and x̂
t

of two consecutive in-

put frames xt−1 and xt are fed to the loss network to com-

pute the temporal loss, which measures the Euclidian color

distance between the corresponding pixels referring to pre-

computed optical flows.

The stylizing network and loss network are fully coupled

during the training process. The spatio-temporal loss com-

puted by the loss network is employed to train the stylizing

network. With sufficient training, the stylizing network, al-

though taking one single frame as input, has encoded the

temporal coherence learned from a video dataset and can

thus generate temporally consistent stylized video frames.

Given a new input video sequence, the stylized frames are

yielded by executing a feed-forward process through the

stylizing network, so real-time style transfer performance

is achieved.

3.1. Stylizing Network

The stylizing network accounts for transforming a sin-

gle video frame to a stylized one. The architecture of the

stylizing network is outlined in Table 1. After three convo-

lutional blocks, the resolution of the feature map is reduced

to a quarter of the input. Then five residual blocks are sub-

sequently followed, leading to fast convergence. Finally, af-

Table 1: The stylizing network architecture. Conv denotes

the convolutional block (convolutional layer + instance nor-

malization + activation); Res denotes the residual block;

Deconv denotes the deconvolutional block (deconvolutional

layer + instance normalization + activation).

Layer Size Stride Channel Activation

Stylizing Network

Conv 3 1 16 ReLU

Conv 3 2 32 ReLU

Conv 3 2 48 ReLU

Res × 5

Deconv 3 0.5 32 ReLU

Deconv 3 0.5 16 ReLU

Conv 3 1 3 Tanh

Res
Conv 3 1 48 ReLU

Conv 3 1 48

ter two deconvolutional blocks and one more convolutional

block, we obtain a stylized output frame which is of the

same resolution as the input frame.

Compared to the existing feed-forward network for im-

age style transfer [12], an important benefit of our network

is that it uses a smaller number of channels to reduce the

model size, which turns out to infer faster without a notice-

able loss in the stylization quality. More discussions on the

model size can be found in Sec. 4.5.2. Moreover, instance

normalization [28] is adopted in our stylizing network in

lieu of batch normalization for achieving better stylization

quality. Although with a similar architecture, the most dis-

tinguishable difference of our network from [12] is that the

temporal coherence among video frames has been encoded

into our stylizing network. As such, the stylizing network

can simultaneously perform style transfer and preserve tem-

poral consistency. As will be demonstrated in Sec. 4, our

stylizing network yields much more temporally consistent

stylized video sequences.

3.2. Loss Network

For training the stylizing network, reliable and meaning-

ful features of the original frame, the stylized frame, and the
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style image need to be extracted for computing the spatial

and temporal losses. In this paper, we use VGG-19 as our

loss network, which has demonstrated its effectiveness on

the image content and style representations [9]. Other loss

network architectures for image style transfer have been in-

vestigated by Nikulin et al. [21], which is beyond the focus

of this paper.
Different from the image style transfer approaches [9,

12, 28] which only employ the spatial loss for training,
video style transfer is more complicated. Temporal consis-
tency, as one of the most significant perceptual factors for
videos, needs to be taken into consideration. Therefore, we
define a hybrid loss as follows:

Lhybrid =
∑

i∈{t,t−1}

Lspatial(x
i
, x̂

i
, s)

︸ ︷︷ ︸

spatial loss

+λLtemporal(x̂
t
, x̂

t−1)
︸ ︷︷ ︸

temporal loss

,

(1)

where xt is the input video frame at time t, x̂
t

is the corre-

sponding output video frame, and s is the given style image.

The spatial loss mainly resembles the definitions in [9, 12],

which ensures that each input frame is transferred into the

desired style. The newly introduced temporal loss is lever-

aged to enforce the adjacent stylized output frames to be

temporally consistent. While the spatial loss is computed

separately for two consecutive stylized frames x̂
t

and x̂
t−1

,

the temporal loss is computed based on both of them.

3.2.1 Spatial Loss

The spatial loss is tailored to evaluate the style transfer qual-
ity in the spatial domain for each frame. It is defined as the
weighted sum of a content loss, a style loss, and a total vari-
ation regularizer:

Lspatial(x
t
, x̂

t
, s) = α

∑

l

L
l
content(x

t
, x̂

t)

︸ ︷︷ ︸

content loss

+β
∑

l

L
l
style(s, x̂

t)

︸ ︷︷ ︸

style loss

+ γRV η

︸ ︷︷ ︸

TV regularizer

,

(2)

where l denotes a feature extraction layer in VGG-19. The

content loss defined at layer l is the mean square error be-

tween the feature maps of an input frame xt and its stylized

output x̂
t
:

Ll
content(x

t, x̂
t) =

1

ClHlWl

∥

∥φl(x
t)− φl(x̂

t)
∥

∥

2

2
, (3)

where φl(x
t) denotes the feature maps at level l, Cl ×Hl ×

Wl is the dimension of the level l feature maps. This con-

tent loss is motivated by the observation that high-level fea-

tures learned by CNNs represent abstract contents, which

are what we intend to preserve for the original input in the

style transfer task. Therefore, by setting l as a high-level

layer, the content loss ensures the abstract information of

the input and stylized output to be as similar as possible. In

this paper, we use the high-level layer ReLU4 2 to calculate

the content loss.

Besides high-level abstractions preserved from the orig-

inal frame, for the purpose of style transfer, we also need

to stylize the details according to a reference style image.

Therefore, a style loss is incorporated to evaluate the style

difference between the style image and the stylized frame.

In order to well capture the style information, a Gram ma-

trix Gl ∈ R
Cl×Cl at layer l of the loss network is defined

as:

Gl
ij(x

t) =
1

HlWl

Hl
∑

h=1

Wl
∑

w=1

φl(x
t)h,w,iφl(x

t)h,w,j . (4)

Here Gl
ij is the (i, j)-th element of Gram matrix Gl, which

is equal to the normalized inner product between the vec-

torized feature maps of channel i and j at layer l. The

Gram matrix Gl evaluates which channels tend to activate

together, which is shown to be able to capture the style in-

formation [9, 12]. The style loss is thus defined as the mean

square error between the Gram matrixes of the style image

s and stylized output frame x̂
t
:

Ll
style(s, x̂

t) =
1

C2
l

∥

∥Gl(s)−Gl(x̂t)
∥

∥

2

F
. (5)

In order to fully capture the style information at differen-

t scales, a set of Gram matrixes in different layers of the

loss network are used to calculate the overall style loss. We

choose ReLU1 2, ReLU2 2, ReLU3 2, ReLU4 2 as the lay-

ers for computing the style loss. Other layers could also be

used as style layers but will give stylized results of different

flavors, which depend on personal tastes.
Additionally, to encourage spatial smoothness and sup-

press checkerboard artifacts in the stylized output frame, we
also add a total variation regularizer:

RV η =
∑

i,j

(∥
∥x̂

t
i,j+1 − x̂

t
i,j

∥
∥2

+
∥
∥x̂

t
i+1,j − x̂

t
i,j

∥
∥2

) η
2

, (6)

where x̂
t
i,j represents the pixel of stylized frame x̂

t
at the

spatial position (i, j), and η is set to be 1 empirically [20].

3.2.2 Temporal Loss

As aforementioned, by simply applying an image style

transfer method to video frames, flicker artifacts will be

inevitably introduced. Therefore, besides the spatial loss

that leads to style transfer for each frame, we incorporate a

temporal loss to enforce the temporal consistency between

adjacent frames. As illustrated in Eq. (1), two consecutive

frames are fed simultaneously into the network to measure

the temporal consistency. The temporal loss is defined as

the mean square error between the stylized output at time t
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Gothic Candy

Dream Mosaic

Composition Starry Night

Figure 3: Video style transfer results of six styles. The high-level abstract content of each original input video is kept, while

the colors and textures are transferred from each style image.

and the warped version of the stylized output at time t− 1,

namely the short-term temporal loss defined in [22]:

Ltemporal(x̂
t
, x̂

t−1) =
1

D

D
∑

k=1

ck
(

x̂
t

k
− f(x̂t−1

k
)
)2
, (7)

where x̂
t

and x̂
t−1

are the stylized results of the curren-

t frame and previous one, respectively. f(x̂t−1

k
) is a function

that warps the stylized output at time t− 1 to time t accord-

ing to a pre-computed optical flow. D = H ×W ×C is the

dimension of the output. c ∈ [0, 1]D denotes the per-pixel

confidence of the optical flow: 0 in occluded regions and at

motion boundaries, and 1 otherwise.

Unlike the calculations of the content loss and style loss,

the output of the stylizing network is directly employed to

compute the temporal loss other than the high-level features

of the loss network. We have tried using the higher-level

feature maps of the loss network to compute the temporal

loss, but encounter terrible flicker artifacts. The main rea-

son is that higher-level feature maps only capture abstract

information. Hence, we insist on using the stylized out-

put of the stylizing network to compute the temporal loss,

which enforces the pixel-wise temporal consistency.

In our experiments, we use Deepflow [29] to compute

the optical flows needed for the temporal loss computation.

Alternative methods for optical flow calculation can also be

used. Please note that the optical flows only need to be

computed once for our training dataset. The temporal loss

based on the optical flows can enforce our stylizing network

to create temporally consistent stylized output frames, thus

suppressing the flicker artifacts. In the testing (or inference)

stage, the optical flow information is no longer required. As

the feed-forward stylizing network has already incorporated

the temporal consistency, we can apply the network on ar-

bitrary input video sequences to generate temporally coher-

ent stylized video sequences. Besides, we have also trained

our stylizing network with non-consecutive frames to en-

courage long-term temporal consistency [22], which gives

similar results with longer training time. For more discus-

sions on the long-term temporal consistency, please refer to

Sec. 4.5.1.

4. Experiments

4.1. Implementation Details

We download 100 videos of different scenes collected

from Videvo.net [26]. 91 videos (about 40,000 frames) are

used as the training dataset and 9 videos are used as the val-

idation dataset. All video frames are resized to 640 × 360.

Given a style image, we train a feed-forward stylizing net-

work with a batch size of 2 for 80,000 iterations, reaching

roughly two epoches over the training dataset. For each

batch, the stylizing network simultaneously forwards two

consecutive input frames xt−1 and xt, and outputs two styl-

ized frames x̂
t−1

and x̂
t
. Then x̂

t−1
and x̂

t
will be fed to

the loss network to compute the hybrid loss. And a back-

propagation process is performed to update the parameters

of the stylizing network according to the gradients of the hy-

brid loss function. Note that the parameters of the loss net-

work are fixed during the training process. The stochastic

gradient descent technique we use in training is Adam [13],

with a learning rate of 10−3. The total variation strength γ

is set to 10−3 to enforce spatial smoothness of the stylized

frames. The default content strength α, the style strength

β, and the temporal strength λ are set to 1, 10 and 104, re-

spectively. All the hyperparameters are chosen based on the

results of the validation set. We implement our video style

transfer method using Torch [5] and cuDNN [4]. Training a

787



Table 2: Temporal errors of three different methods on five

testing videos in the Sintel dataset.

Method Alley 2 Ambush 5 Bandage 2 Market 6 Temple 2

Ruder et al. [22] 0.0252 0.0512 0.0195 0.0407 0.0361

Johnson et al. [12] 0.0770 0.0926 0.0517 0.0789 0.0872

Ours 0.0439 0.0675 0.0304 0.0553 0.0513

single stylizing network takes about 92 hours with a single

NVIDIA Tesla K80 GPU.

In the following we present the experimental results from

three perspectives. At first, the qualitative results of our

method are given in Sec. 4.2. Then the quantitative com-

parison with existing methods in the literature is presented

in Sec. 4.3. We also compare our method against some

popular commercial Apps in Sec. 4.4. To explore the in-

fluence of long-term consistency and different model sizes,

Sec. 4.5 discusses two variants of our method, and gives the

quantitative results.

4.2. Qualitative Results

We verify our method on 30 testing videos, 10 from the

Sintel dataset [3] and 20 from Videvo.net [26], using more

than 20 styles. For each style, an individual stylizing net-

work is trained. Fig. 3 shows the stylized results using 6

exemplar styles, named as Gothic, Candy, Dream, Mosaic,

Composition and Starry Night. These results show that: (1)

semantic contents of the original input videos are preserved;

(2) colors and textures of the style images are transferred

successfully. Due to the space limit, we cannot include all

the stylized results here. Please refer to our supplementary

material for more results.

4.3. Comparison to Methods in the Literature

We compare our method with two representative meth-
ods in the literature. One is the feed-forward CNN based
method proposed by Johnson et al. [12], which is designed
for image style transfer and runs in real time, but does
not consider any temporal consistency. The other is the
optimization-based method proposed by Ruder et al. [22],
which is designed for video style transfer and maintains
temporal consistency, but needs about 3 minutes for pro-
cessing one frame. Since the Sintel dataset [3] provides
ground truth optical flows, we use it to quantitatively com-
pare the temporal consistencies of different methods. We
defined a term temporal error Etemporal over a video se-
quence to be the average pixel-wise Euclidean color differ-
ence between consecutive frames:

Etemporal =

√
√
√
√ 1

(T − 1)×D

T−1∑

t=1

D∑

k=1

ck
(
x̂
t
k − f(x̂t+1

k )
)2
, (8)

where T represents the total number of frames. This for-

mulation is very similar to Eq. (7), except that we sum the

temporal loss for all consecutive frame pairs in a video se-

quence. The function f(x̂t+1

k ) warps the stylized output at

Figure 4: Comparison to two methods in the literature. The

first row displays two consecutive input video frames. The

following three rows show the error maps of Ruder et al.’s,

our and Johnson et al.’s results. Ruder et al.’s method

achieves the best temporal consistency, our method comes

at the second place, and Johnson et al.’s method is the worst.

time t + 1 back to t because the Sintel dataset only offers

forward optical flows.

Table 2 lists the temporal errors of three different meth-

ods on five testing videos in the Sintel dataset when trans-

ferring the style Candy. It shows that Ruder et al.’s method

achieves the smallest temporal error, our method follows,

and Johnson et al.’s method turns out to be least temporal-

ly coherent. The example error maps of the three method-

s are displayed in Fig. 4. We can intuitively see that our

method achieves smaller temporal errors than Johnson et

al.’s method. Although our method does not outperform

Ruder et al.’s method in terms of the temporal consistency,

the latter needs about 3 minutes for generating one stylized

frame even with the pre-computed optical flows. To sum-

marize, our method generates more temporally consistent

stylized frames than Johnson et al.’s method, while running

at a real-time frame rate.

4.4. Comparison to Commercial Softwares

There are also some commercial Apps on smartphones,

providing style transfer for videos. Artisto [24] and Pris-

ma [25] are two representatives. Since we are not able to ac-

quire the exact style images they are using, we select some

of the styles that look most similar to ours, and generate re-

sults using their Apps directly. Both Artisto and Prisma sup-

port only square inputs, so we crop and resize all the input

frames to 436×436. The examples of the stylized consecu-

tive frames of different methods transferring the style Goth-

ic are shown in Fig. 5. The results suggest that the tem-

poral consistency of our results is better. The two columns
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Frame 23 Frame 24

Ours

Ours

Ours

Artisto Artisto

Prisma Prisma

Figure 5: Comparison to commercial softwares. The first

row shows two consecutive input frames. The second row

shows our stylized results using style Gothic. The third row

shows Artisto’s results. The fourth row shows Prisma’s re-

sults. The two columns in the middle show the zoom-in

version of white rectangle regions.

in the middle show the zoom-in version of white rectangle

regions. While the patterns change from frame to frame

in Artisto and Prisma’s results (see the regions marked by

white circles), the patterns that our method creates maintain

the same.

Both Artisto and Prisma create stylized videos at a dif-

ferent frame rate from that of an original input video, so

we cannot use the ground truth optical flows of the Sintel

dataset to compute temporal error as in Sec. 4.3. The best

we can do is carrying out a user study. We invite 20 people,

aged from 21 to 35, to participate in our study. 10 of our

30 testing videos are used. We select two styles (Candy and

Gothic) which look like the styles provided by both Prisma

and Artisto, and create 10×2 = 20 testing cases. In this us-

er study, we compare our method with Artisto and Prisma

separately. In each testing case, we simultaneously show

the original input video, our result, and the result of either

Artisto or Prisma on the same screen. The order of the two

stylized videos is arranged randomly to avoid participants’

laziness. To ensure that a user has enough time to distin-

guish the difference and make a careful judge, we loop all

the videos for three times. In each testing case, we ask the

participant which stylized video he/she prefers, or whether

the two stylized videos are equally good, especially taking

the flicker artifacts into account. The user study results af-

ter all testing cases are plotted in Fig. 6, which indicates that

users prefer our method to both Artisto and Prisma.

Comparison to Artisto Comparison to Prisma

Prefer ours 216 332

Prefer the other 91 49

Equal 93 19
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Figure 6: User study results. Comparing with Artisto, our

method receives 216 votes while Artisto receives 91 votes.

Comparing with Prisma, our method receives 332 votes

while Prisma receives 49 votes.

4.5. Variants of Our Model

4.5.1 Long-Term Temporal Consistency

For the optimization-based method of Ruder et al. [22], on-

ly considering a temporal loss between consecutive frames

may not guarantee long-term temporal consistency. See the

first row of Fig. 8, which shows the stylized output frames

of Ruder et al. s method according to style image Starry

Night with a short-term temporal loss. At the top-right cor-

ner of the stylized frames, the color has changed from blue

to yellow after the woman passed by. We would suspect

that the optimization process of frame 30 is initialized with

the previous frame 29 and ends up in a different local opti-

mum from that of frame 1. This process makes the stylized

results highly unstable. To address this issue, Ruder et al.

[22] considered a long-term temporal loss between the cur-

rent stylized frame x̂
t

and a set of previous stylized frames

{x̂
t−1

, x̂
t−10

, x̂
t−20

, x̂
t−40}, which brings a heavier compu-

tational burden and slows down the optimization process

significantly. For our method, since the training process has

already encouraged overall temporal consistencies over a

video dataset, the stylized results are highly stable, mean-

ing that similar contents will end up to be stylized similarly.

This saves us the effort of including a long-term temporal

loss in our proposed loss function. See the second row of

Fig. 8, the content of the top-right corner remains the same

even after the woman passed by, which reveals that our styl-

izing network has already included the long-term temporal

consistency even trained with only a short-term temporal

loss.

We also carry out an experiment to testify whether in-

cluding a temporal loss of non-consecutive (long-term)

frames will decrease the temporal errors defined in Sec. 4.3.

During the training process, we not only consider the frame

pairs of consecutive frames (xt−1 and xt), but also include

the frame pairs of non-consecutive frames (xt−2 and xt).
Both the consecutive pairs and non-consecutive pairs are

gathered together and disrupted into a random order to for-

malize a training epoch. We compare our default model and
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(a) Input (b) 353-Res48 (c) 353-Res128

Figure 7: Stylized results of two model sizes. Both results are stylized similarly.

Frame 1 Frame 20 Frame 30

Figure 8: Long-term temporal consistency comparison.

The first row gives Ruder et al.’s results without using a

long-term temporal loss. The color of the top-right cor-

ner changes after the woman passed by. The second row

gives our results. Without using a long-term temporal loss,

our stylizing network can produce visually similar results as

those of [22] with long-term consistency.

Table 3: Temporal errors without/with non-consecutive

frame pairs.

Method Alley 2 Ambush 5 Bandage 2 Market 6 Temple 2

(xt−1, xt) 0.0250 0.0406 0.0182 0.0330 0.0297

(xt−2, xt) + (xt−1, xt) 0.0241 0.0394 0.0180 0.0311 0.0283

the model trained including non-consecutive frame pairs on

the videos from the Sintel dataset using style Composition.

Table 3 shows the temporal errors of the two cases. There

is only a slight drop of the temporal errors observed if we

compare these two cases. This leads us to believe that in-

cluding a long-term temporal loss during the training stage

gives a very limited improvement on the temporal consis-

tency, whereas at the cost of double or even more training

time. Thus our default model for video style transfer does

not include a long-term temporal loss.

4.5.2 Influence of Model Compression

The stylizing network proposed by Johnson et al. [12] has

5 residual blocks and each residual block produces 128 fea-

ture maps. In this paper, we find that using a smaller number

of feature maps gives visually similar results while saving

lots of space for storing models and shortening the inference

time.

The design of our model has already been shown in Ta-

ble 1, which has 5 residual blocks and each residual block

Table 4: Temporal errors of different model sizes.

Model Alley 2 Ambush 5 Bandage 2 Market 6 Temple 2

353-Res128 0.0243 0.0408 0.0193 0.0330 0.0296

353-Res48 0.0244 0.0425 0.0195 0.0334 0.0302

produces 48 feature maps. This model is termed as 353-

Res48. We test another stylizing network that mimics the

architecture of Johnson et al. [12], which is obtained by in-

creasing the feature map number to 128 and called as 353-

Res128. The channel number of other layers is also adjusted

accordingly, which is consistent with Johnson et al.’s net-

work. Once again, we use the Sintel dataset [3] to calculate

the temporal errors defined in Sec. 4.3. The results are col-

lected in Table 4, where we can see that 353-Res48 presents

a similar temporal error to 353-Res128. The results in Table

4 illustrate that although the number of learnable parameters

is reduced, 353-Res48 still creates visually similar results as

353-Res128. By reducing the model size, we can accelerate

the inference speed. To perform style transfer for one frame

at the resolution of 1024× 436, our model 353-Res48 takes

about 0.041 seconds, while 353-Res128 takes about 0.098

seconds, both with a single NVIDIA Tesla K80 GPU. This

enables our method to support higher frame rates or higher

resolutions for real-time applications.

5. Conclusions

In this paper, we proposed a novel neural method for

real-time video style transfer. This method relies on train-

ing a feed-forward convolutional neural network to simul-

taneously preserve the high-level abstract contents of in-

put video frames, introduce the colors and patterns from a

given style image, and enforce the temporal consistency a-

mong the stylized video frames. Moreover, the trained feed-

forward network, with the relief of on-the-fly optical flow

computation, is capable of performing real-time video styl-

izing. The extensive experimental results clearly demon-

strate the efficacy and superiority of our method.
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