
Speed/accuracy trade-offs for modern convolutional object detectors

Jonathan Huang Vivek Rathod Chen Sun Menglong Zhu Anoop Korattikara

Alireza Fathi Ian Fischer Zbigniew Wojna Yang Song Sergio Guadarrama

Kevin Murphy

Abstract

The goal of this paper is to serve as a guide for se-

lecting a detection architecture that achieves the right

speed/memory/accuracy balance for a given application

and platform. To this end, we investigate various ways to

trade accuracy for speed and memory usage in modern con-

volutional object detection systems. A number of successful

systems have been proposed in recent years, but apples-to-

apples comparisons are difficult due to different base fea-

ture extractors (e.g., VGG, Residual Networks), different

default image resolutions, as well as different hardware and

software platforms. We present a unified implementation of

the Faster R-CNN [30], R-FCN [6] and SSD [25] systems,

which we view as “meta-architectures” and trace out the

speed/accuracy trade-off curve created by using alterna-

tive feature extractors and varying other critical parameters

such as image size within each of these meta-architectures.

On one extreme end of this spectrum where speed and mem-

ory are critical, we present a detector that achieves real

time speeds and can be deployed on a mobile device. On

the opposite end in which accuracy is critical, we present

a detector that achieves state-of-the-art performance mea-

sured on the COCO detection task.

1. Introduction

A lot of progress has been made in recent years on object

detection due to the use of convolutional neural networks

(CNNs). Modern object detectors based on these networks

— such as Faster R-CNN [30], R-FCN [6], Multibox [39],

SSD [25] and YOLO [28] — are now good enough to be

deployed in consumer products (e.g., Google Photos, Pin-

terest Visual Search) and some have been shown to be fast

enough to be run on mobile devices.

However, it can be difficult for practitioners to decide

what architecture is best suited to their application. Stan-

dard metrics, such as mean average precision (mAP), do not

tell the entire story, since for real deployments of computer

vision systems, running time and memory usage are also

critical. For example, mobile devices often require a small

memory footprint, and self driving cars require real time

performance. Server-side production systems, like those

used in Google, Facebook or Snapchat, have more leeway

to optimize for accuracy, but are still subject to throughput

constraints. While the methods that win competitions, such

as the COCO challenge [24], are optimized for accuracy,

they often rely on model ensembling and multicrop meth-

ods which are too slow for practical usage.

Unfortunately, only a small subset of papers (e.g., R-

FCN [6], SSD [25] YOLO [28]) discuss running time in

any detail. Furthermore, these papers typically only state

that they achieve some frame-rate, but do not give a full

picture of the speed/accuracy trade-off, which depends on

many other factors, such as which feature extractor is used,

input image sizes, etc.

In this paper, we seek to explore the speed/accuracy

trade-off of modern detection systems in an exhaustive and

fair way. While this has been studied for full image clas-

sification((e.g., [3]), detection models tend to be signif-

icantly more complex. We primarily investigate single-

model/single-pass detectors, by which we mean models

that do not use ensembling, multi-crop methods, or other

“tricks” such as horizontal flipping. In other words, we only

pass a single image through a single network. For simplicity

(and because it is more important for users of this technol-

ogy), we focus only on test-time performance and not on

how long these models take to train.

Though it is impractical to compare every recently pro-

posed detection system, we are fortunate that many of the

leading state-of-the-art approaches have, at a high level,

converged on a common methodology. This has allowed

us to implement and compare a large number of detection

systems in a unified way. In particular, we have created

implementations of the Faster R-CNN, R-FCN and SSD

meta-architectures, which all consist of a single convolu-

tional network, trained with a mixed regression and classifi-

cation objective, and use sliding window style predictions.

To summarize, our main contributions are as follows:

• We provide a concise survey of modern convolutional

detection systems, and describe how the leading ones

follow very similar designs.

• We describe our flexible and unified implementation

of three meta-architectures (Faster R-CNN, R-FCN

17310

and SSD) in Tensorflow which we use to do exten-

sive experiments that trace the accuracy/speed trade-

off curve for different detection systems, varying meta-

architecture, feature extractor, image resolution, etc.

• Our findings show that using fewer proposals for

Faster R-CNN can speed it up significantly without

a big loss in accuracy, making it competitive with its

faster cousins, SSD and RFCN. We show that SSD’s

performance is less sensitive to the quality of the fea-

ture extractor than Faster R-CNN and R-FCN. And we

identify “sweet spots” on the accuracy/speed trade-off

curve where gains in accuracy are only possible by sac-

rificing speed (within our family of detectors).

• Several of the meta-architecture and feature-extractor

combinations that we report have never appeared be-

fore in literature. We discuss how we used some of

these novel combinations to train the winning entry of

the 2016 COCO object detection challenge.

2. Convolutional detection meta-architectures

Neural nets have become the leading method for high

quality object detection in recent years. In this section we

survey some of the highlights of this literature. The R-CNN

paper by Girshick et al. [11] was among the first modern

incarnations of convolutional network based detection. In-

spired by recent successes on image classification [20], the

R-CNN method took the straightforward approach of crop-

ping externally computed box proposals out of an input im-

age and running a neural net classifier on these crops. This

approach can be expensive however because many crops

are necessary, leading to significant duplicated computation

from overlapping crops. Fast R-CNN [10] alleviated this

problem by pushing the entire image once through a feature

extractor then cropping from an intermediate layer so that

crops share the computation load of feature extraction.

While both R-CNN and Fast R-CNN relied on an exter-

nal proposal generator, recent works have shown that it is

possible to generate box proposals using neural networks

as well [40, 39, 8, 30]. In these works, it is typical to have a

collection of boxes overlaid on the image at different spatial

locations, scales and aspect ratios that act as “anchors”

(sometimes called “priors” or “default boxes”). A model

is then trained to make two predictions for each anchor:

(1) a discrete class prediction for each anchor, and (2) a

continuous prediction of an offset by which the anchor

needs to be shifted to fit the groundtruth bounding box.

Papers that follow this anchors methodology then

minimize a combined classification and regression loss that

we now describe. For each anchor a, we first find the best

matching groundtruth box b (if one exists). If such a match

can be found, we call a a “positive anchor”, and assign it

(1) a class label ya ∈ {1 . . .K} and (2) a vector encoding

of box b with respect to anchor a (called the box encoding

φ(ba; a)). If no match is found, we call a a “negative

anchor” and we set the class label to be ya = 0. If for

the anchor a we predict box encoding floc(I; a, θ) and

corresponding class fcls(I; a, θ), where I is the image and

θ the model parameters, then the loss for a is measured as

a weighted sum of a location loss and a classification loss:

L(a, I; θ) = α · 1[a is positive] · ℓloc(φ(ba; a)− floc(I; a, θ))
+ β · ℓcls(ya, fcls(I; a, θ)), (1)

where α, β are weights balancing localization and classi-

fication losses. To train the model, Equation 1 is averaged

over anchors and minimized with respect to parameters θ.

The choice of anchors has significant implications both

for accuracy and computation. In the (first) Multibox

paper [8], these anchors (called “box priors” by the au-

thors) were generated by clustering groundtruth boxes in

the dataset. In more recent works, anchors are generated

by tiling a collection of boxes at different scales and aspect

ratios regularly across the image. The advantage of hav-

ing a regular grid of anchors is that predictions for these

boxes can be written as tiled predictors on the image with

shared parameters (i.e., convolutions) and are reminiscent

of traditional sliding window methods, e.g. [43]. The Faster

R-CNN [30] paper and the (second) Multibox paper [39]

(which called these tiled anchors “convolutional priors”)

were the first papers to take this new approach.

2.1. Metaarchitectures
In our paper we focus primarily on three recent (meta)-

architectures: SSD (Single Shot Multibox Detector [25]),

Faster R-CNN [30] and R-FCN (Region-based Fully Con-

volutional Networks [6]). While these papers were orig-

inally presented with a particular feature extractor (e.g.,

VGG, Resnet, etc), we now review these three methods, de-

coupling the choice of meta-architecture from feature ex-

tractor so that conceptually, any feature extractor can be

used with SSD, Faster R-CNN or R-FCN.

Single Shot Detector (SSD). Though the SSD paper was

published only recently (Liu et al., [25]), we use the term

SSD to refer broadly to architectures that use a single feed-

forward convolutional network to directly predict classes

and anchor offsets without requiring a second stage per-

proposal classification operation (Figure 1(a)). Under this

definition, the SSD meta-architecture has been explored

in a number of precursors to [25]. Both Multibox and

the Region Proposal Network (RPN) stage of Faster R-

CNN [39, 30] use this approach to predict class-agnostic

box proposals. [32, 28, 29, 9] use SSD-like architectures to

predict final (1 of K) class labels. And Poirson et al., [27]

extended this idea to predict boxes, classes and pose.

Faster R-CNN. In the Faster R-CNN setting, detection

happens in two stages (Figure 1(b)). In the first stage, called

the region proposal network (RPN), images are processed

7311

Paper Meta-architecture Feature Extractor Matching Box Encoding φ(ba, a) Location Loss functions

Szegedy et al. [39] SSD InceptionV3 Bipartite [x0, y0, x1, y1] L2

Redmon et al. [28] SSD Custom (GoogLeNet inspired) Box Center [xc, yc,
√
w,

√
h] L2

Ren et al. [30] Faster R-CNN VGG Argmax [xc

wa

,
yc
ha

, logw, log h] SmoothL1

He et al. [13] Faster R-CNN ResNet-101 Argmax [xc

wa

,
yc
ha

, logw, log h] SmoothL1

Liu et al. [25] (v1) SSD InceptionV3 Argmax [x0, y0, x1, y1] L2

Liu et al. [25] (v2, v3) SSD VGG Argmax [xc

wa

,
yc
ha

, logw, log h] SmoothL1

Dai et al [6] R-FCN ResNet-101 Argmax [xc

wa

,
yc
ha

, logw, log h] SmoothL1

Table 1. Convolutional detection models that use one of the meta-architectures described in Section 2. Boxes are encoded with respect to a matching

anchor a via a function φ (Equation 1), where [x0, y0, x1, y1] are min/max coordinates of a box, xc, yc are its center coordinates, and w, h its width and

height. In some cases, wa, ha, width and height of the matching anchor are also used. Notes: (1) We include an early arXiv version of [25], which used a

different configuration from that published at ECCV 2016; (2) [28] uses a fast feature extractor described as being inspired by GoogLeNet [38], which we

do not compare to; (3) YOLO matches a groundtruth box to an anchor if its center falls inside the anchor (we refer to this as BoxCenter).

Feature Extractor

(vgg,	incep+on,	

resnet,	etc)	

Box
Regression

Multiway
Classification

Detection Generator

(a) SSD

Multiway
Classification

Box
Refinement

Box Classifier

Feature Extractor

(vgg,	incep+on,	

resnet,	etc)	

Box
Regression

Objectness
Classification

Proposal Generator

(b) Faster R-CNN

Multiway
Classification

Box
Refinement

Box Classifier

Feature Extractor

(vgg,	incep+on,	

resnet,	etc)	

Box
Regression

Objectness
Classification

Proposal Generator

(c) R-FCN

Figure 1. High level diagrams of the detection meta-architectures compared in this paper.

by a feature extractor (e.g., VGG-16), and features at some

selected intermediate level (e.g., “conv5”) are used to pre-

dict class-agnostic box proposals. The loss function for this

first stage takes the form of Equation 1 using a grid of an-

chors tiled in space, scale and aspect ratio.

In the second stage, these (typically 300) box proposals

are used to crop features from the same intermediate feature

map which are subsequently fed to the remainder of the fea-

ture extractor (e.g., “fc6” followed by “fc7”) in order to pre-

dict a class and class-specific box refinement for each pro-

posal. The loss function for this second stage box classifier

also takes the form of Equation 1 using the proposals gener-

ated from the RPN as anchors. Notably, one does not crop

proposals directly from the image and re-run crops through

the feature extractor, which would be duplicated computa-

tion. However there is part of the computation that must be

run once per region, and thus the running time depends on

the number of regions proposed by the RPN.

Since appearing in 2015, Faster R-CNN has been par-

ticularly influential, and has led to a number of follow-up

works [2, 34, 33, 45, 13, 5, 19, 44, 23, 46] (including SSD

and R-FCN). Notably, half of the submissions to the COCO

object detection server as of November 2016 are reported to

be based on the Faster R-CNN system in some way.

R-FCN. While Faster R-CNN is an order of magnitude

faster than Fast R-CNN, the fact that the region-specific

component must be applied several hundred times per im-

age led Dai et al. [6] to propose the R-FCN (Region-based

Fully Convolutional Networks) method which is like Faster

R-CNN, but instead of cropping features from the same

layer where region proposals are predicted, crops are taken

from the last layer of features prior to prediction (Fig-

ure 1(c)). This approach of pushing cropping to the last

layer minimizes the amount of per-region computation that

must be done. Dai et al. argue that the object detection

task needs localization representations that respect transla-

tion variance and thus propose a position-sensitive cropping

mechanism that is used instead of the more standard ROI

pooling operations used in [10, 30] and the differentiable

crop mechanism of [5]. They show that the R-FCN model

(using Resnet 101) could achieve comparable accuracy to

Faster R-CNN often at faster running times. Recently, the

R-FCN model was also adapted to do instance segmenta-

tion in the recent TA-FCN model [21], which won the 2016

COCO instance segmentation challenge.

3. Experimental platform for detection

The introduction of standard benchmarks such as Im-

agenet [31] and COCO [24] has made it easier in recent

years to compare detection methods with respect to ac-

curacy. However, when it comes to speed and memory,

apples-to-apples comparisons have been harder to come by.

Prior works have relied on different deep learning frame-

works (e.g., DistBelief [7], Caffe [18], Torch [4]) and dif-

ferent hardware. Some papers have optimized for accuracy;

others for speed. And finally, in some cases, metrics are

reported using slightly different training sets (e.g., COCO

training set vs. combined training+validation sets).

In order to better perform apples-to-apples comparisons,

we have created a detection platform in Tensorflow [1] and

have recreated training pipelines for SSD, Faster R-CNN

and R-FCN meta-architectures on this platform. Having a

unified framework has allowed us to easily swap feature ex-

tractor architectures, loss functions, and having it in Ten-

sorflow allows for easy portability to diverse platforms for

7312

deployment. In the following we discuss ways to configure

model architecture, loss function and input on our platform

— knobs that can be used to trade speed and accuracy.

3.1. Architectural configuration

Feature extractors. In all of the meta-architectures, we

first apply a convolutional feature extractor to the input im-

age to obtain high-level features. The choice of feature ex-

tractor is crucial as the number of parameters and types of

layers directly affect memory, speed, and performance of

the detector. We have selected six representative feature ex-

tractors to compare in this paper and, with the exception

of MobileNet [14], all have open source Tensorflow imple-

mentations and have had sizeable influence on the vision

community.

In more detail, we consider the following six feature ex-

tractors. We use VGG-16 [36] and Resnet-101 [13], both

of which have won many competitions such as ILSVRC and

COCO 2015 (classification, detection and segmentation).

We also use Inception v2 [16], which set the state of the art

in the ILSVRC 2014 classification and detection challenges,

as well as its successor Inception v3 [41]. Both of the In-

ception networks employ ‘Inception units’ which make it

possible to increase the depth and width of a network with-

out increasing its computational budget. Recently, Szegedy

et al. [37] proposed Inception Resnet (v2), which combines

the optimization benefits conferred by residual connections

with the computation efficiency of Inception units. Fi-

nally, we compare against the new MobileNet network [14],

which has been shown to achieve VGG-16 level accuracy

on Imagenet with only 1/30 of the computational cost and

model size. MobileNet is designed for efficient inference in

various mobile vision applications. Its building blocks are

depthwise separable convolutions which factorize a stan-

dard convolution into a depthwise convolution and a 1 × 1
convolution, effectively reducing both computational cost

and number of parameters.

For each feature extractor, there are choices to be made

in order to use it within a meta-architecture. For both Faster

R-CNN and R-FCN, one must choose which layer to use for

predicting region proposals. In our experiments, we use the

choices laid out in the original papers when possible. For

example, we use the ‘conv5’ layer from VGG-16 [30] and

the last layer of conv 4 x layers in Resnet-101 [13]. For

other feature extractors, we have made analogous choices.

See supplementary materials for more details.

Liu et al. [25] showed that in the SSD setting, using

multiple feature maps to make location and confidence pre-

dictions at multiple scales is critical for good performance.

For VGG feature extractors, they used conv4 3, fc7 (con-

verted to a convolution layer), as well as a sequence of

added layers. In our experiments, we follow their method-

ology closely, always selecting the topmost convolutional

feature map and a higher resolution feature map at a lower

level, then adding a sequence of convolutional layers with

spatial resolution decaying by a factor of 2 with each addi-

tional layer used for prediction. However unlike [25], we

use batch normalization in all additional layers.

For comparison, feature extractors used in previous

works are shown in Table 1. In this work, we evaluate all

combinations of meta-architectures and feature extractors,

most of which are novel. Notably, Inception networks have

never been used in Faster R-CNN frameworks and until re-

cently were not open sourced [35]. Inception Resnet (v2)

and MobileNet have not appeared in the detection literature

to date.

Number of proposals. For Faster R-CNN and R-FCN,

we can also choose the number of region proposals to be

sent to the box classifier at test time. Typically, this number

is 300 in both settings, but an easy way to save computation

is to send fewer boxes potentially at the risk of reducing re-

call. In our experiments, we vary this number of proposals

between 10 and 300 in order to explore this trade-off.

Output stride settings for Resnet and Inception Resnet.

Our implementation of Resnet-101 is slightly modified

from the original to have an effective output stride of 16

instead of 32; we achieve this by modifying the conv5 1

layer to have stride 1 instead of 2 (and compensating for re-

duced stride by using atrous convolutions in further layers)

as in [6]. For Faster R-CNN and R-FCN, in addition to the

default stride of 16, we also experiment with a (more ex-

pensive) stride 8 Resnet-101 in which the conv4 1 block is

additionally modified to have stride 1. Likewise, we exper-

iment with stride 16 and stride 8 versions of the Inception

Resnet network. We find that using stride 8 instead of 16

improves the mAP by a factor of 5%1, but increased run-

ning time by a factor of 63%.

3.2. Loss function configuration

Beyond selecting a feature extractor, there are choices in

configuring the loss function (Equation 1) which can impact

training stability and final performance. Here we describe

the choices that we have made in our experiments and Ta-

ble 1 again compares how similar loss functions are config-

ured in other works.

Matching. Determining classification and regression tar-

gets for each anchor requires matching anchors to

groundtruth instances. Common approaches include greedy

bipartite matching (e.g., based on Jaccard overlap) or many-

to-one matching strategies in which bipartite-ness is not re-

quired, but matchings are discarded if Jaccard overlap be-

tween an anchor and groundtruth is too low. We refer to

these strategies as Bipartite or Argmax, respectively. In

our experiments we use Argmax matching throughout with

thresholds set as suggested in the original paper for each

1 i.e., (map8 - map16) / map16 = 0.05.

7313

meta-architecture. After matching, there is typically a sam-

pling procedure designed to bring the number of positive

anchors and negative anchors to some desired ratio. In our

experiments, we also fix these ratios to be those recom-

mended by the paper for each meta-architecture.

Box encoding. To encode a groundtruth box with respect

to its matching anchor, we use the box encoding function

φ(ba; a) = [10 · xc

wa

, 10 · yc

ha

, 5 · logw, 5 · log h] (also used

by [11, 10, 30, 25]). Note that the scalar multipliers 10 and

5 are typically used in all of these prior works, even if not

explicitly mentioned.

Location loss (ℓloc). Following [10, 30, 25], we use the

Smooth L1 (or Huber [15]) loss function in all experiments.

3.3. Input size configuration.

In Faster R-CNN and R-FCN, models are trained on im-

ages scaled to M pixels on the shorter edge whereas in SSD,

images are always resized to a fixed shape M × M . We

explore evaluating each model on downscaled images as

a way to trade accuracy for speed. In particular, we have

trained high and low-resolution versions of each model. In

the “high-resolution” settings, we set M = 600, and in

the “low-resolution” setting, we set M = 300. In both

cases, this means that the SSD method processes fewer pix-

els on average than a Faster R-CNN or R-FCN model with

all other variables held constant.

3.4. Training and hyperparameter tuning

We jointly train all models end-to-end using asyn-

chronous gradient updates on a distributed cluster [7]. For

Faster RCNN and R-FCN, we use SGD with momentum

with batch sizes of 1 (due to these models being trained

using different image sizes) and for SSD, we use RM-

SProp [42] with batch sizes of 32 (in a few exceptions we

reduced the batch size for memory reasons). Finally we

manually tune learning rate schedules individually for each

feature extractor. For the model configurations that match

works in literature ([30, 6, 13, 25]), we have reproduced or

surpassed the reported mAP results.2

Note that for Faster R-CNN and R-FCN, this end-to-

end approach is slightly different from the 4-stage train-

ing procedure that is typically used. Additionally, in-

stead of using the ROI Pooling layer and Position-sensitive

ROI Pooling layers used by [30, 6], we use Tensorflow’s

“crop and resize” operation which uses bilinear interpola-

tion to resample part of an image onto a fixed sized grid.

This is similar to the differentiable cropping mechanism

of [5], the attention model of [12] as well as the Spatial

2In the case of SSD with VGG, we have reproduced the number re-

ported in the ECCV version of the paper, but the most recent version on

ArXiv uses an improved data augmentation scheme to obtain somewhat

higher numbers, which we have not yet experimented with.

Transformer Network [17]. However we disable backpropa-

gation with respect to bounding box coordinates as we have

found this to be unstable during training.

Our networks are trained on the COCO dataset, using

all training images as well as a subset of validation images,

holding out 8000 examples for validation.3 Finally at test

time, we post-process detections with non-max suppression

using an IOU threshold of 0.6 and clip all boxes to the image

window. To evaluate our final detections, we use the official

COCO API [22], which measures mAP averaged over IOU

thresholds in [0.5 : 0.05 : 0.95], amongst other metrics.

4. Results and discussion
In this section we analyze the data that we have col-

lected by training and benchmarking detectors, sweeping

over model configurations as described above. Each config-

uration includes a choice of meta-architecture, feature ex-

tractor, stride (for Resnet, Inception Resnet), resolution and

number of proposals (for Faster R-CNN and R-FCN).

For each such model configuration, we measure timings

on GPU, memory demand, number of parameters and float-

ing point operations as described below. We make the entire

table of results available in the supplementary material, not-

ing that as of the time of this submission, we have include

147 model configurations; models for a small subset of ex-

perimental configurations (namely some of the high resolu-

tion SSD models) have yet to converge, so we have for now

omitted them from analysis.

Benchmarking procedure. To time our models, we use a

machine with 32GB RAM, Intel Xeon E5-1650 v2 proces-

sor and an Nvidia GeForce GTX Titan X GPU card. Tim-

ings are reported on GPU for a batch size of one. The im-

ages used for timing are COCO images resized so that the

smallest size is at least k pixels in length and then cropped

to k × k where k is either 300 or 600 based on the model.

We average the timings over 500 images.

We include postprocessing in our timing which includes

non-max suppression (NMS) and currently runs only on the

CPU. NMS can take up the bulk of the running time for

the fastest models at ∼ 40ms and currently caps our maxi-

mum framerate at 25 fps. Among other things, this means

that while our timing results are comparable amongst each

other, they may not be directly comparable to other reported

speeds in the literature. Other potential differences include

hardware, software drivers, framework (Tensorflow in our

case), and batch size (e.g., the Liu et al. [25] report tim-

ings using batch sizes of 8). Finally, we use tfprof [26] to

measure the total memory demand of the models during in-

ference; this gives a more platform independent measure of

memory demand. We average the memory measurements

over three images.

3We remark that this dataset is similar but slightly smaller than the

trainval35k set that has been used in several papers, e.g., [2, 25].

7314

SSD	w/MobileNet,	Lo	Res	

R-FCN	w/

ResNet,	Hi	Res,	

100	Proposals	

Faster	R-CNN	w/ResNet,	Hi	

Res,	50	Proposals	

Faster	R-CNN	w/Incep.on	

Resnet,	Hi	Res,	300	

Proposals,	Stride	8	

SSD	w/Incep.on	V2,	Lo	Res	

(a) (b)

Figure 2. mAP vs gpu wallclock time colored by (a) meta-architecture and (b) feature extractor. Each (meta-architecture, feature extractor) pair can

correspond to multiple points on this plot due to changing input sizes, stride, etc.

Figure 3. Memory vs GPU time for different feature extractors.

4.1. Analyses

Figure 2(a) is a scatterplot visualizing the mAP of each

of our model configurations colored by meta-architecture

and Figure 2(b) shows the same points colored by feature

extractor. Running time per image ranges from tens of mil-

liseconds to almost 1 second. Generally we observe that

R-FCN and SSD models are faster on average while Faster

R-CNN tends to lead to slower but more accurate models,

requiring at least 100 ms per image. However, as we dis-

cuss below, Faster R-CNN models can be just as fast if we

limit the number of regions proposed. We have also over-

laid an imaginary “optimality frontier” representing points

at which better accuracy can only be attained within this

family of detectors by sacrificing speed. Figure 3 is a plot

of memory demand versus inference time with different fea-

ture extractors. Not surprisingly larger feature extractors are

both slower and demand more memory. In the following,

we highlight some of the key points along the optimality

frontier as the best detectors to use and discuss the effect of

the various model configuration options in isolation.

Critical points on the optimality frontier. (Fastest: SSD

w/MobileNet): On the fastest end of this optimality fron-

tier, we see that SSD models with Inception v2 and Mo-

bilenet are most accurate of the fastest models. Note that if

we ignore postprocessing, Mobilenet seems to be roughly

twice as fast as Inception v2 while being slightly worse

in accuracy. (Sweet Spot: R-FCN w/Resnet or Faster R-

CNN w/Resnet and only 50 proposals): There is an “el-

bow” in the middle of the optimality frontier occupied by

R-FCN models using Residual Network feature extractors

which seem to strike the best balance between speed and

accuracy among our model configurations. As we discuss

below, Faster R-CNN w/Resnet models can attain similar

speeds if we limit the number of proposals to 50. (Most

Accurate: Faster R-CNN w/Inception Resnet at stride 8):

Finally Faster R-CNN with dense output Inception Resnet

models attain the best possible accuracy on our optimality

frontier, achieving (at time of submission) the state-of-the-

art single model performance. However these models are

slow, requiring nearly a second of processing time.

The effect of adjusting the Feature Extractor. Intu-

itively, stronger performance on classification should be

positively correlated with stronger performance on COCO

detection. To verify this, we investigate the relationship be-

tween overall mAP of different models and the Top-1 Ima-

genet classification accuracy attained by the pretrained fea-

ture extractor used to initialize each model. Figure 5 in-

dicates that there is indeed an overall correlation between

classification and detection performance. However this cor-

relation appears to only be significant for Faster R-CNN and

R-FCN while the performance of SSD appears to be less re-

liant on its feature extractor’s classification accuracy.

While Figure 5 suggests that SSD is apparently un-

able to fully leverage the power of the ResNet and Incep-

tion ResNet feature extractors, it also suggests that using

cheaper feature extractors does not hurt SSD too much. In

fact when we partition performance of the same models by

object size (Figure 4(a)), we see that even though SSD mod-

els typically have (very) poor performance on small objects,

they are competitive with Faster RCNN and R-FCN on large

objects, even outperforming these meta-architectures for the

faster and more lightweight feature extractors.

The effect of adjusting image size. It has been observed

by other authors that input resolution can significantly im-

pact detection accuracy. From our experiments, we observe

7315

(a) (b)

Figure 4. (a) mAP for each object size by meta-architecture and feature extractor (for size 300 inputs). Interestingly, SSD shows strong performance on

large objects across all feature extractors, while Faster RCNN and R-FCN both have decreased accuracy in this regime for Inception v2 and Mobilenet; (b)

mAP on small objects vs mAP on large objects colored by input resolution. The two green points in the upper left hand corner are SSD models, where using

high resolution inputs helps with large object performance, but can only do so much to help its already very poor performance with small objects.

V
G
G
-1
6
	

M
o
b
il
e
N
e
t	

In
ce
p
.
o
n
	V
2
	

R
e
sN

e
t-
1
0
1
	

In
ce
p
.
o
n
	V
3
	

In
ce
p
.
o
n
	R
e
sn
e
t	
V
2
	

Figure 5. mAP vs. Top-1 Accuracy of the Feature Extractor on Imagenet

(to avoid crowding the plot, we show only the low resolution models).

Incep
.on	R

esne
t	V2	

Resn
et	10

1	

Incep
.on	V

2	

Mobile
Net	

(a)

Incep.on	
Resnet	V2

	

Resne
t	101	

Incep
.on	V

2	

MobileN
et	

(b)

Figure 6. Effect of proposing fewer regions in (a) Faster R-CNN and

(b) R-FCN on mAP (solid) and inference time (dotted). Surprisingly, for

Faster R-CNN with Inception Resnet, we obtain 96% of the accuracy of

using 300 proposals by using only 50 proposals, which reduces running

time by a factor of 3.

that decreasing resolution by a factor of two in both dimen-

sions consistently lowers accuracy (by 15.88% on average)

but also reduces inference time by a relative factor of 27.4%
on average. One reason for this effect is that high reso-

lution inputs allow for small objects to be resolved. Fig-

ure 4(b), which compares detector performance on large

objects against that on small objects, confirms that high res-

olution models lead to significantly better mAP results on

small objects (by a factor of 2 in many cases) and somewhat

better mAP results on large objects as well. We also see that

strong performance on small objects implies strong perfor-

mance on large objects in our models, (but not vice-versa as

SSD models do well on large objects but not small).

The effect of adjusting the number of proposals. For

Faster R-CNN and R-FCN, we can adjust the number of

proposals computed by the region proposal network. The

authors in both papers use 300 boxes, however, our experi-

ments suggest that this number can be significantly reduced

without harming mAP (by much). In some feature extrac-

tors where the “box classifier” portion of Faster R-CNN is

expensive, this can lead to significant computational sav-

ings. Figure 6(a) visualizes this trade-off curve for Faster

R-CNN models with high resolution inputs for different fea-

ture extractors. We see that Inception Resnet, which has

35.4% mAP with 300 proposals can still have surprisingly

high accuracy (29% mAP) with only 10 proposals. The

sweet spot is probably at 50 proposals, where we are able

to obtain 96% of the accuracy of using 300 proposals while

reducing running time by a factor of 3. While the compu-

tational savings are most pronounced for Inception Resnet,

we see that similar tradeoffs hold for all feature extractors.

Figure 6(b) visualizes the same trade-off curves for R-

FCN models and shows that savings from using fewer pro-

posals in the R-FCN setting are minimal — this is not sur-

prising as the box classifier (the expensive part) is only run

once per image. We see in fact that at 100 proposals, the

speed and accuracy for Faster R-CNN models with ResNet

becomes comparable to that of equivalent R-FCN models

which use 300 proposals in both mAP and GPU speed.

4.2. Stateoftheart detection on COCO

Finally, we briefly describe how we ensembled some of

our models to achieve the current state of the art perfor-

mance on the 2016 COCO object detection challenge. Our

7316

AP AP@.50IOU AP@.75IOU APsmall APmed APlarge AR@100 ARsmall ARmed ARlarge

Ours 0.413 0.62 0.45 0.231 0.436 0.547 0.604 0.424 0.641 0.748

MSRA2015 0.371 0.588 0.398 0.173 0.415 0.525 0.489 0.267 0.552 0.679

Trimps-Soushen 0.359 0.58 0.383 0.158 0.407 0.509 0.497 0.269 0.557 0.683

Table 2. test-challenge numbers from the 2016 detection challenge. AP and AR refer to (mean) average precision and average recall respectively. Most

notably, our model achieves a relative improvement of nearly 60% on small objects recall over the previous state-of-the-art COCO detector.
AP Feature Extractor Output stride loss ratio Location loss function

32.93 Resnet 101 8 3:1 SmoothL1

33.3 Resnet 101 8 1:1 SmoothL1

34.75 Inception Resnet (v2) 16 1:1 SmoothL1

35.0 Inception Resnet (v2) 16 2:1 SmoothL1

35.64 Inception Resnet (v2) 8 1:1 SmoothL1 + IOU

Table 3. Summary of single models that were automatically selected to be part of the diverse ensemble and their individual level mAP performance. Loss

ratio refers to the multipliers α, β for location and classification losses, respectively.
AP AP@.50IOU AP@.75IOU APsmall APmed APlarge

Faster RCNN with Inception Resnet (v2) 0.347 0.555 0.367 0.135 0.381 0.52

Hand selected Faster RCNN ensemble w/multicrop 0.41 0.617 0.449 0.236 0.43 0.542

Diverse Faster RCNN ensemble w/multicrop 0.416 0.619 0.454 0.239 0.435 0.549

Table 4. Effects of ensembling and multicrop inference. Numbers reported on COCO test-dev dataset. Second row (hand selected ensemble) consists of 6

Faster RCNN models with 3 Resnet 101 (v1) and 3 Inception Resnet (v2) and the third row (diverse ensemble) is described in detail in Table 4.1.

model attains 41.3% mAP@[.5, .95] on the COCO test set

and is an ensemble of five Faster R-CNN models based on

Resnet and Inception Resnet feature extractors and outper-

forms the previous best result (37.1% mAP@[.5, .95]) by

MSRA which used an ensemble of three Resnet-101 mod-

els [13]. Table 4.1 summarizes the performance of our

model and highlights how our model has improved on the

state-of-the-art across all COCO metrics. Most notably,

our model achieves a relative improvement of nearly 60%

on small object recall over the previous best result. Even

though this ensemble with state-of-the-art numbers could be

viewed as an extreme point on the speed/accuracy tradeoff

curves (requires ∼50 end-to-end network evaluations per

image), we have chosen to present this model in isolation

since it is not comparable to the “single model” results that

we focused our analysis on.

To construct our ensemble, we selected a set of five mod-

els from our collection of Faster R-CNN models. Each of

the models was based on Resnet and Inception Resnet fea-

ture extractors with varying output stride configurations, re-

trained using variations on the loss functions, and different

random orderings of the training data. Models were selected

greedily using their performance on a held-out validation

set. However, in order to take advantage of models with

complementary strengths, we also explicitly encourage di-

versity by pruning away models that are too similar to previ-

ously selected models. To do this, we computed the vector

of average precision results across each COCO category for

each model and declared two models to be too similar if

their category-wise AP vectors had cosine distance greater

than some threshold.

Table 4.1 summarizes the final selected model specifi-

cations as well as their individual performance on COCO

as single models.4 Ensembling these five models using the

procedure described in [13] (Appendix A) and using multi-

crop inference then yielded our final model. Note that we do

not use multiscale training, horizontal flipping, box refine-

ment, box voting, or global context which are sometimes

used in the literature. Table 4 compares a single model’s

performance against two ways of ensembling, and shows

that (1) encouraging for diversity did help against a hand

selected ensemble, and (2) ensembling/multicrop were re-

sponsible for a ∼ 7 point improvement over a single model.

5. Conclusion

We have performed an experimental comparison of some

of the main aspects that influence the speed and accuracy

of modern object detectors. We hope this will help practi-

tioners choose an appropriate method when deploying ob-

ject detection in the real world. We have also identified

some new techniques for improving speed without sacri-

ficing much accuracy, such as using many fewer proposals

than is usual for Faster R-CNN.

Acknowledgements

We would like to thank the following people for their advice

and support throughout this project: Tom Duerig, Dumitru

Erhan, Jitendra Malik, George Papandreou, Dominik Rob-

lek, Chuck Rosenberg, Nathan Silberman, Abhinav Srivas-

tava, Rahul Sukthankar, Christian Szegedy, Jasper Uijlings,

Jay Yagnik, Xiangxin Zhu.

4Note that these numbers were computed on a held-out validation set

and are not strictly comparable to the official COCO test-dev data results

(though they are expected to be very close).

7317

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow. org, 1,

2015. 3

[2] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-

outside net: Detecting objects in context with skip

pooling and recurrent neural networks. arXiv preprint

arXiv:1512.04143, 2015. 3, 5

[3] A. Canziani, A. Paszke, and E. Culurciello. An analysis of

deep neural network models for practical applications. arXiv

preprint arXiv:1605.07678, 2016. 1

[4] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn,

NIPS Workshop, number EPFL-CONF-192376, 2011. 3

[5] J. Dai, K. He, and J. Sun. Instance-aware semantic seg-

mentation via multi-task network cascades. arXiv preprint

arXiv:1512.04412, 2015. 3, 5

[6] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via

region-based fully convolutional networks. arXiv preprint

arXiv:1605.06409, 2016. 1, 2, 3, 4, 5

[7] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,

A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale dis-

tributed deep networks. In Advances in neural information

processing systems, pages 1223–1231, 2012. 3, 5

[8] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scal-

able object detection using deep neural networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2147–2154, 2014. 2

[9] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg.

Dssd: Deconvolutional single shot detector. arXiv preprint

arXiv:1701.06659, 2017. 2

[10] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1440–1448,

2015. 2, 3, 5

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 580–587,

2014. 2, 5

[12] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and

D. Wierstra. Draw: A recurrent neural network for image

generation. In Proceedings of The 32nd International Con-

ference on Machine Learning, pages 1462–1471, 2015. 5

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. arXiv preprint arXiv:1512.03385,

2015. 3, 4, 5, 8

[14] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 4

[15] P. J. Huber et al. Robust estimation of a location parameter.

The Annals of Mathematical Statistics, 35(1):73–101, 1964.

5

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 4

[17] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial

transformer networks. In Advances in Neural Information

Processing Systems, pages 2017–2025, 2015. 5

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In Proceed-

ings of the 22nd ACM international conference on Multime-

dia, pages 675–678. ACM, 2014. 3

[19] K.-H. Kim, S. Hong, B. Roh, Y. Cheon, and M. Park. Pvanet:

Deep but lightweight neural networks for real-time object de-

tection. arXiv preprint arXiv:1608.08021, 2016. 3

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 2

[21] Y. Li, H. Qi, J. Dai, X. Ji, and W. Yichen. Translation-

aware fully convolutional instance segmentation. https:

//github.com/daijifeng001/TA-FCN, 2016. 3

[22] T. Y. Lin and P. Dollar. Ms coco api. https://github.

com/pdollar/coco, 2016. 5

[23] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

arXiv preprint arXiv:1612.03144, 2016. 3

[24] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. Lawrence Zitnick. Microsoft

COCO: Common objects in context. In ECCV, 1 May 2014.

1, 3

[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European Conference on Computer Vision, pages 21–37.

Springer, 2016. 1, 2, 3, 4, 5

[26] X. Pan. tfprof: A profiling tool for tensorflow mod-

els. https://github.com/tensorflow/

tensorflow/tree/master/tensorflow/tools/

tfprof, 2016. 5

[27] P. Poirson, P. Ammirato, C.-Y. Fu, W. Liu, J. Kosecka, and

A. C. Berg. Fast single shot detection and pose estimation.

arXiv preprint arXiv:1609.05590, 2016. 2

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. arXiv

preprint arXiv:1506.02640, 2015. 1, 2, 3

[29] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

arXiv preprint arXiv:1612.08242, 2016. 2

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 1, 2, 3, 4, 5

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 3

[32] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization

7318

https://github.com/daijifeng001/TA-FCN
https://github.com/daijifeng001/TA-FCN
https://github.com/pdollar/coco
https://github.com/pdollar/coco
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tfprof
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tfprof
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tfprof

and detection using convolutional networks. arXiv preprint

arXiv:1312.6229, 2013. 2

[33] A. Shrivastava and A. Gupta. Contextual priming and feed-

back for faster r-cnn. In European Conference on Computer

Vision, pages 330–348. Springer, 2016. 3

[34] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining.

arXiv preprint arXiv:1604.03540, 2016. 3

[35] N. Silberman and S. Guadarrama. Tf-slim: A high

level library to define complex models in tensorflow.

https://research.googleblog.com/2016/08/

tf-slim-high-level-library-to-define.

html, 2016. [Online; accessed 6-November-2016]. 4

[36] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 4

[37] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. arXiv preprint arXiv:1602.07261, 2016. 4

[38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015. 3

[39] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov.

Scalable, high-quality object detection. arXiv preprint

arXiv:1412.1441, 2014. 1, 2, 3

[40] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks

for object detection. In Advances in Neural Information Pro-

cessing Systems, pages 2553–2561, 2013. 2

[41] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision.

arXiv preprint arXiv:1512.00567, 2015. 4

[42] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magnitude.

COURSERA: Neural Networks for Machine Learning, 4(2),

2012. 5

[43] P. Viola and M. J. Jones. Robust real-time face detection.

International journal of computer vision, 57(2):137–154,

2004. 2

[44] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Craft objects from

images. arXiv preprint arXiv:1604.03239, 2016. 3

[45] S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross,

S. Chintala, and P. Dollár. A multipath network for object

detection. arXiv preprint arXiv:1604.02135, 2016. 3

[46] A. Zhai, D. Kislyuk, Y. Jing, M. Feng, E. Tzeng, J. Donahue,

Y. L. Du, and T. Darrell. Visual discovery at pinterest. arXiv

preprint arXiv:1702.04680, 2017. 3

7319

https://research.googleblog.com/2016/08/tf-slim-high-level-library-to-define.html
https://research.googleblog.com/2016/08/tf-slim-high-level-library-to-define.html
https://research.googleblog.com/2016/08/tf-slim-high-level-library-to-define.html

