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Abstract

Effective integration of local and global contextual infor-

mation is crucial for dense labeling problems. Most existing

methods based on an encoder-decoder architecture simply

concatenate features from earlier layers to obtain higher-

frequency details in the refinement stages. However, there

are limits to the quality of refinement possible if ambiguous

information is passed forward. In this paper we propose

Gated Feedback Refinement Network (G-FRNet), an end-to-

end deep learning framework for dense labeling tasks that

addresses this limitation of existing methods. Initially, G-

FRNet makes a coarse prediction and then it progressively

refines the details by efficiently integrating local and global

contextual information during the refinement stages. We

introduce gate units that control the information passed for-

ward in order to filter out ambiguity. Experiments on three

challenging dense labeling datasets (CamVid, PASCAL VOC

2012, and Horse-Cow Parsing) show the effectiveness of

our method. Our proposed approach achieves state-of-the-

art results on the CamVid and Horse-Cow Parsing datasets,

and produces competitive results on the PASCAL VOC 2012

dataset.

1. Introduction

In recent years, there have been rapid advances in deep

learning applied to problems in computer vision. This has

been met with a great deal of success, and has given rise to

proliferation of significant variety in the structure of neural

networks. Many current deep learning models apply a cas-

cade comprised of repeated convolutional stages, followed

by spatial pooling. Down-sampling by pooling allows for

a very large pool of distinct and rich features, albeit at the

expense of spatial resolution. For recognition problems, the

loss of spatial precision is not especially problematic. How-

ever, dense image labeling problems (e.g. semantic segmen-

tation) require pixel-level precisions. They typically involve

a decoding process that gradually recovers a pixel level spec-

ification of categories. In some cases this decoding is done in

Figure 1. An illustration of the relationship between receptive field

size across layers, and ambiguity that may arise. In this case, the

larger (and more discriminative) receptive field (blue) resides at

a deeper layer of the network, and may be of value in refining

the representation carried by an earlier layer (orange) to resolve

ambiguity and improve upon labeling performance.

one step [21]. While in other instances, both the encoding of

patterns, and gradual recovery of spatial resolution are hierar-

chical. It is interesting to note that this mirrors the observed

computational structure of human vision wherein space is

abstracted away in favour of rich features, and recognition

of patterns precedes their precise localization [10].

Some models that have shown success for segmentation

problems [1, 22] share a common structure involving stage-

wise encoding of an input image, followed by stage-wise

decoding to recover a per-pixel categorization. At an abstract

level, this is reminiscent of a single network that involves

a feedforward pass, followed by a recurrent pass from the

top layer downward where additional computation and re-

finement ensues. There are tangible distinctions though, in

that decoding is typically driven only by information flow

that satisfies solving a specific labeling problem, and that

all decoding may be informed only by the representation

carried by the highest encoder layer.

At the deepest stage of encoding, one has the richest

possible feature representation, and relatively poor spatial

resolution from a per-neuron perspective. While spatial

resolution may be poor from a per-neuron perspective, this
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does not necessarily imply that recovery of precise spatial

information is impossible. For example, a coarse coding

strategy [13, 7] may allow for a high degree of precision

in spatial localization but at the expense of the diversity

of features encoded and involved in discrimination. An

important implication of this, is that provided the highest

layer does not require the power to precisely localize patterns,

a much richer feature level representation is possible.

Information carried among earlier layers of encoding do

have greater spatial locality, but may be less discriminative.

Given that there is an extant representation of image charac-

teristics at every layer, it is natural to assume that value may

be had in leveraging earlier encoding representations at the

decoding stage. In this manner, spatial precision that may be

lost at deep layers in encoding may be gradually recovered

from earlier representations. This removes some of the onus

on deeper layers to represent highly discriminative character-

istics of the image, while simultaneously facilitating precise

localization. This intuition appears in the model we propose,

as seen in connections between encoder layers and decoder

layers in our network. This implies the shift in responsibility

among encoding layers, and the associated discriminative

power or capacity deeper in the network.

If one were to label categories within the image using

only early layers, this may be problematic, especially in

instances where local parts are ambiguous. The re-use of

information from earlier encoder layers at the decoding stage

is weakened by their lack of discrimination. For example, if

one assumes reliance on convolution, and unpooling (which

involve a fixed set of weights) to recover information and

ultimately assign labels, this implies that any ambiguous

representations are necessarily involved in decoding, which

may degrade the quality of predictions. For example, while

a convolutional layer deep within the network may provide

strong discrimination between a cow and a horse, represen-

tations from earlier layers may be specific to animals, but

express confidence for both. If this confidence is passed on

to the decoding stage, and a fixed scheme for combining

these representations is present, this contributes to error in

labeling. This observation forms the motivation for the most

novel and important aspect of our proposed model and this

intuition is illustrated in Fig. 1. While information from early

encoding layers may be of significant value to localization,

it is sensible to filter this information such that categorical

ambiguity is reduced. Moreover, it is natural to use deeper,

more discriminative layers in filtering information passed

on from less discriminative, but more finely localized earlier

layers.

The precise scheme that achieves this is discussed in de-

tail in the remainder of this paper. We demonstrate that a

high degree of success may be achieved across a variety of

benchmarks, using a relatively simple model structure in

applying a canonical gating mechanism that may be applied

to any network comprised of encoder and decoder compo-

nents. This is also an area in which parallels may be drawn

to neural information processing in humans, wherein more

precisely localized representations that may be ambiguous

are modulated or gated by higher-level features, iteratively

and in a top-down fashion [24].

2. Background

In this section, we describe background most relevant for

our proposed model.

Encoder-Decoder Architecture: Our model (Fig. 2) is

based on the deep encoder-decoder architecture (e.g. [1, 22])

used for dense image labeling problems, such as semantic

segmentation. The encoder network extracts features from an

image and the decoder network produces semantic segmen-

tation from the features generated by the encoder network.

The encoder network is typically a CNN with alternating

layers of convolution, pooling, non-linear activation, etc.

The output of each convolution layer in the encoder network

can be interpreted as features with different receptive fields.

Due to spatial pooling, the spatial dimensions of the fea-

ture map produced by the encoder network are smaller than

the original image. The decoder network will then enlarge

the feature map using upsampling and unpooling in order

to produce the final semantic segmentation result. Many

popular CNN-based semantic segmentation models fall into

this encoder-decoder framework, e.g. FCN [21], SegNet [1],

DeconvNet [22].

Skip Connections: In a standard encoder-decoder archi-

tecture, the feature map from the top layer of the encoder

network is used as the input for the decoder network. This

feature map contains high-level features that tend to be in-

variant to “nuisance factors” such as small translation, illumi-

nation, etc. This invariance is crucial for certain high-level

tasks such as object recognition, but is not ideal for many

dense image labeling tasks (e.g. semantic segmentation)

that require precise pixel-wise information, since important

relationships may be abstracted away. One possible solution

is to use “skip connections” [12, 21]. A skip connection

directly links an encoder layer to a decoder layer. Since

the bottom layers in the encoder network tend to contain

precise pixel-wise information, the skip connections allow

this information to be directly passed to the decoder network

to produce the final segmentation result.

3. Gated Feedback Refinement Network

In this section, we describe our proposed Gated Feedback

Refinement Network (G-FRNet) for the dense image labeling

problem.
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Figure 2. Overview of our Gated Feedback Refinement Network (G-FRNet). We use feature maps with different spatial dimensions produced

by the encoder (f1, f2,..., f7) to reconstruct a small (i.e. coarse) label map PmG. The decoder progressively refines the label map by adding

details from feature maps in the encoder network. At each stage of the decoding, a refinement unit (RU1, RU2,..., RU5) produces a new

label map with larger spatial dimensions by taking information from the previous label map and encoder layers as inputs (denoted by the

edge connecting Gi and RUi). The main novelty of the model is that information from earlier encoder layers passes through a gate unit

before being forwarded to the decoder. We use standard 2x bilinear upsampling on each class score map before passing it to the next stage

refinement module. We also use down-sampled ground-truth label maps to provide supervision (l1, l2, ..., l6) at each decoding stage.

3.1. Network Overview

Our G-FRNet is inspired by the encoder-decoder architec-

ture [22, 1, 14] for dense image labeling. An overview of the

G-FRNet architecture is shown in Fig. 2. Our encoder net-

work is based on the VGG-16 network [25] while removing

the softmax and fully connected layers in VGG-16. Follow-

ing [22, 3, 21], we add two convolution layers conv6 and

conv7 at the end of encoder. For an input image I , the en-

coder network produces 7 feature maps (f1, f2, ..., f7) with

decreasing spatial resolution. The feature map f7 obtained

from conv7 has smaller spatial dimensions than the input im-

age. We obtain the coarse prediction map PmG by applying

a 3×3 convolution on f7 where we set the number of output

channels equal to the number of possible labels. In other

words, PmG is an h×w×C map where C is the number of

classes. PmG corresponds to confidence used in predicting

each spatial position as one of the C classes. Since PmG

has smaller spatial dimensions than the input image, it only

carries a coarse labeling of the image. Although we can

directly upsample PmG (e.g. using bilinear interpolation) to

match the input image size, the upsampled label map will not

be very precise since the finer image details (e.g. boundaries

and fine structure) are missing in PmG. In order to obtain

a more accurate label map, we use the decoder network to

progressively enlarge the label map while including finer

details in label predictions. Note that we use Pm to denote

prediction (or label) map throughout the paper.

We propose a Feedback Refinement Network (FRN)

which forms our decoder network. Following previous work

on skip connections [21, 14], FRN leverages feature maps

from encoder layers to provide the finer details needed for

producing an enlarged label map. For example, in order to

obtain an enlarged label map PmRU1 , we can use the infor-

mation from the encoder layer f5. The conventional way of

doing this is to use skip connections that directly connect

two layers in a network, i.e. an encoder layer to an decoder

layer. For example, in the network architecture of Fig. 2, a

traditional skip connection might connect f5 with PmRU1 .

Although this allows the network to pass finer detailed infor-

mation from the early encoder layers to the decoder, it may

degrade the quality of predictions. As mentioned earlier, the

categorical ambiguity in early encoder layers may be passed

to the decoder.

The main novelty of our work is that we use a gating

mechanism to modulate the information being passed via

the skip connections. For example, say we want to have a

skip connection to pass information from the encoder layer

f5 to the decoder layer PmRU1 . Instead of directly passing

the feature map f5, we first compute a gated feature map G1

based on f5 and an encoder layer above (i.e. f6 in Fig. 2).

The intuition is that f6 contains information that can help

resolve ambiguity present in f5. For instance, some of the

neurons in f6 might fire on image patches that look like an

animal (either cow or horse). This ambiguity about cate-

gories (cow vs. horse) cannot be resolve by f5 alone since

the receptive field corresponding to this encoder layer might

not be large or discriminative enough. But the encoder layer

(e.g. f6) above may not be subject to these limitations and

provide unambiguous confidence for the correct category.

By computing the gated feature map from f5 and f6, cat-

egorical ambiguity can be filtered out before reaching the
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decoding stage. Fig. 1 provides an example of categorical

ambiguity.

The gated feature map from G1 contains information

about finer image details. We then combine it with the coarse

label map PmG to produce an enlarged label map PmRU1 .

We repeat this process to produce progressively larger label

maps (PmRU1 , PmRU2 , PmRU3 , PmRU4 , PmRU5 ).

We describe in detail how the gating feature is com-

posed (Sec. 3.2) and how we compute the enlarged label

map at one stage in the decoder (Sec. 3.3) in the following

sections.

3.2. Gate Unit

Previous work [23] proposed refinement across different

levels by combining convolution features from earlier layers.

Instead of combining convolution features with coarse label

maps directly, we introduce gate units to control the infor-

mation passed on. The gate units are designed to control

the information passed on by modulating the response of

encoder layers for each spatial region in a top-down manner.

Fig. 2 (right) illustrates the architecture of a gate unit.

The gate unit takes two consecutive feature map f i
g and

f i+1
g as its input. The features in f i

g are of high-resolution

with smaller receptive fields (i.e. small context), whereas

features in f i+1
g are of low-resolution with larger receptive

fields (i.e. large context). A gate unit combines f i
g and f i+1

g

to generate rich contextual information. Other approaches

which use refinement process straight away combines con-

volution features (using skip connections [21]) with coarse

label maps through concatenation to generate a new label

map. In this case, it is less likely that the model take full

advantage of the contribution of higher resolution feature

maps if they carry activation that is ambiguous with respect

to class. As a result, skip connections alone have inherent

limits in discerning missing spatial details. Therefore, unlike

skip connections we first obtain a gated feature map before

passing on the higher resolution encoding to the refinement

unit.

We now explain how we obtain a gated feature map from

a gate unit. The two input feature maps f i
g and f i+1

g have

different spatial dimensions and channel dimensions. A se-

quence of operations is carried out on f i
g and f i+1

g followed

by a element-wise product. Firstly, we apply a 3× 3 convo-

lution with batch normalization and ReLU to both feature

maps. After these operations, let cig and ci+1
g be the number

of channels in f i
g and f i+1

g such that cig = ci+1
g . f i+1

g is then

upsampled by a factor of 2 to produce a new feature map

f i+1
g′ whose spatial dimensions match f i

g . We obtain the ith

stage gated (from gate Gi in Fig. 2) feature map Mf from

the element-wise product between f i
g and f i+1

g′ . Finally, the

resultant feature map Mf is fed to the gated refinement unit

(see Sec. 3.3). The formulation of obtaining a gated feature

Figure 3. Detailed overview of a Gated Refinement Unit. The re-

finement unit is unfolded here for ith stage. The refinement module

(similar to [14]) is composed of convolution, batch normalization,

concatenation, and upsampling operations.

map Mf from gate unit Gi can be written as follows:

vi = Tf (f
i+1
g ), ui = Tf (f

i
g),Mf = vi ⊙ ui (1)

where Tf denotes the transformation function comprised of

sequence of operations mentioned and ⊙ denotes element-

wise product.

3.3. Gated Refinement Unit

Fig. 3 shows in detail the architecture of our gated refine-

ment unit (see RU in Fig. 2). Each refinement unit RU i

takes a coarse label map Rf with channel kir (generated at

(i − 1)th stage of the FRN) and gated feature map Mf as

its input. RUs learn to aggregate information and generate

a new label map R′

f with larger spatial dimensions through

the following sequence of operations: First, we apply a

3× 3 convolution followed by a batch normalization layer

on Mf to obtain a feature map mf with channel kim. In our

model configuration, kim = kir = C where C is the num-

ber of possible labels. Next, mf is concatenated with the

prior stage label map Rf , producing feature map (R+m)f
with kim + kir channels. There are two reasons behind mak-

ing kim = kir. First, the channel dimension of the feature

map obtained from the encoder is typically very large (i.e.

cig ≫ kir). So directly concatenating Rf with a feature map

containing a larger number of channels is computationally

expensive. Second, concatenating two feature maps having

a large difference in the number of channels risks dropping

signals from the representation with fewer layers. Finally,

the refined label map R′

f is generated by applying a 3 × 3

convolution. Note that R′

f is the ith stage prediction map.

The prediction map R′

f is upsampled by a factor of 2 and

fed to the next stage (i+ 1)th gated refinement unit. These

operations can be summarized as follows:

mf = C3×3

(

Mf

)

, γ = mf ⊕Rf , R
′

f = C3×3(γ) (2)

where C(.), and ⊕ refer to batch normalization, convolution,

and concatenation respectively.

3.4. Stagewise Supervision

Our network produces a sequence of label maps with

increasing spatial dimensions at the decoder stage, although
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Figure 4. Visualization of hierarchical gated refinement scheme.

The refinement process integrates higher-frequency details with

the lower resolution label map at each stage. Class-wise activation

maps for each gate are shown as heatmaps.

we are principally interested in the label map at the last

stage of the decoding. Label maps produced at earlier stages

of decoding might provide useful information as well and

allow for supervision earlier in the network. Following [14],

we adopt the idea of deep supervision [18] in our network

to provide stage-wise supervision on predicted dense label

maps. In more specific terms, let I ∈ R
h×w×d be a training

sample with ground-truth mask η ∈ R
h×w. We obtain k

resized ground-truth maps (R1, R2, ...., Rk) by resizing η.

We define a loss function li (pixel-wise cross entropy loss is

used) to measure the difference between the resized ground-

truth Ri(η) and the predicted label map at each stage of

decoding. We can write these operations as follows:

lk =







ξ
(

Ri(η), PmG
)

i = 1

ξ
(

Ri(η), PmRUi

)

otherwise
(3)

where ξ denotes cross-entropy loss. The loss function in

our network is the summation of cross-entropy losses (i.e.

loss(I) =
∑6

k=1
ℓk) at various stages of refinement net-

work. The network is trained using back-propagation to

optimize this loss.

Fig. 4 illustrates the effectiveness of the gated refinement

scheme. We can see that the refinement scheme progressively

improves the spatial details of dense label maps. It also

shows that the top convolution layer (conv7 in our encoder

network) can predict a coarse label map without capturing

finer image details. The feedback refinement network is able

to recover missing details (e.g. the boundaries of the bus and

the car) in the coarse label map.

4. Experiments

In this section, we first discuss some implementation de-

tails (Sec. 4.1). Then we present experimental results on

three challenging dense labeling benchmark datasets: Cam-

bridge Driving Labeled Video (CamVid) (Sec. 4.2), PASCAL

VOC 2012 (Sec. 4.3), and Horse-Cow Parsing (Sec. 4.4).

4.1. Implementation Details

We have implemented our network using Caffe [15] on a

single Titan X GPU. Pre-trained VGG-16 [25] parameters

are used to initialize the convolution layers in the encoder

network (i.e. conv1 to conv5 layer). Other convolution

layers’ parameters are randomly assigned based on Xavier

initialization. Randomly cropped patches of size (hmin ×

wmin) are fed into the network. We set (hmin × wmin)
to 320 × 320 for Pascal VOC and 360 × 480 for CamVid

and Horse-Cow parsing datasets. For the PASCAL VOC

2012 dataset, we normalize the data using VGG-16 mean

and standard deviation. We employ pixel-wise cross entropy

loss (with equal weights) as the objective function to be

optimized for all the semantic categories. For the CamVid

dataset, since the classes are not balanced, we use weighted

cross entropy loss following previous work [1]. The weights

are computed using the class balancing technique proposed

in [6].

During testing, our network can take an image at its origi-

nal size, as all the gated refinement modules can handle an

input of any size. The network therefore produces dense

predictions at the original resolution for each test image.

4.2. CamVid

The Cambridge-driving Labeled Video (CamVid)

dataset [2] consists of 701 high resolution video frames

extracted from a video footage recorded in a challenging

urban setting. Ground-truth labels are annotated according

to one of 32 semantic categories. Following [17, 1, 28], we

consider 11 larger semantic classes (road, building, sky, tree,

sidewalk, car, column-pole, fence, pedestrian, bicyclist, and

sign-symbol) for evaluation. We split the dataset into train-

ing, validation, and test sets following [26]. Finally, we have

367 training images, 100 validation images, and 233 test

images. In order to make our experimental settings compa-

rable to previous works [17, 32, 28, 1], we downsample the

images in the dataset by a factor of 2 (i.e. 480× 360).

Table 1 shows the results of our model and comparisons

with other state-of-the-art approaches on this dataset, demon-

strating that we achieve state-of-the-art results on this dataset.

For each method, we report the category-wise IoU score and

mean IoU score. LRN [14] outperforms SegNet [1] by more

than 11% (in terms of mean IoU) while our approach (i.e.

G-FRNet) achieves an accuracy gain of 6% when compared

with DeepLab [3] and by almost 2% over Dilation [32] and

FSO [17].

Fig. 5 shows some qualitative results on this dataset. We

can see that our model is especially accurate for challenging

object categories, such as column-pole, side-walk, bicyclist,

and sign-symbols compared to [17].

4.3. PASCAL VOC 2012

PASCAL VOC 2012 [8] is a challenging dataset for se-

mantic segmentation. This dataset consists of 1,464 training

images and 1,449 validation images of 20 object classes (plus

the background class). There are 1,456 test images for which
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SegNet [1] 68.7 52 87 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 50.2

Spatial-temporal DPN [20] 80.6 73.1 91.4 77.9 40 90.8 43.9 29.2 16 71.9 47.9 60.25

DeepLab-LargeFOV [3] 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6

Dilation [32] 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.29

Dilation + FSO [17] 84.0 77.2 91.3 85.7 49.8 92.6 59.3 37.6 16.9 76.2 56.8 66.11

Dilation + FSO – DiscreteFlow [17] 84.0 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.12

LRN [14] 78.6 73.6 76.4 75.2 40.1 91.7 43.5 41.0 30.4 80.1 46.5 61.7

G-FRNet 82.5 76.8 92.1 81.8 43.0 94.5 54.6 47.1 33.4 82.3 59.4 68.0

Table 1. Quantitative results on the CamVid dataset [2]. We report per-class IoU and mean IoU for each method. Our approach achieves the

state-of-the-art results on this dataset. Note that the improvements on smaller and finer objects are particularly pronounced for our model.

image ground-truth FSO [17] G-FRNet

Figure 5. Qualitative results on the CamVid dataset. G-FRNet

is capable of retaining the shape of smaller and finer object cate-

gories (e.g. column-pole, side-walk, bicyclist, and sign-symbols)

accurately compared to FSO [17].

ground-truth labels are not publicly available. We obtained

results on the test set by submitting our final predictions

to the evaluation server. Following prior work [3, 21, 1],

we augment the training set with extra labeled PASCAL

VOC images from [11]. In the end, we have 10,582 labeled

training images.

In Table 2, we compare our results on the validation

set with previous works. G-FRNet + CRF achieves best

result with 71.0% mean IoU accuracy compared to encoder-

decoder based architecture ([22, 31, 21]). When we switch

to a base model that exhibits stronger performance (e.g.

ResNet-101 [4] instead of VGG) our model G-FRNet-

Res101 + CRF achieves 77.8% mean IoU which is very

competitive compared to recent ResNet based state-of-the-art

methods. Table 3 shows quantitative results of our method

on the test set. We achieve very competitive performance

compared to other baselines. LRN [14] achieves 64.2%

mean IoU which outperforms FCN [21] and SegNet [1].

Our proposed approach G-FRNet improves the mean IoU

accuarcy by 4%. Many existing works (e.g. [3, 22, 4, 5])

use a CRF model [16] as a postprocessing to improve the

performance. When we apply CRF on top of our final predic-

tion (G-FRNet + CRF), we further improve the mean IoU to

70.4% on the test set. G-FRNet-Res101 (with CRF) further

improves the performance and yields 79.3% mean IoU on

Method Mean IoU (%)

DeepLab-MSc-CRF-LargeFOV [3] 68.7

FCN [21] 61.3

OA-Seg + CRF [31] 70.3

DeconvNet [22] 67.1

Attention [5] 71.4

DeepLabv2 [4] 77.7

LRN [14] 62.8

G-FRNet 68.7

G-FRNet + CRF 71.0

G-FRNet-Res101 + CRF 77.8

Table 2. Comparison of different methods on PASCAL VOC 2012

validation set. Note that DeconvNet [22] result is taken from [31].

test set which is very competitive compared to existing state-

of-the-art approaches. Fig. 6 shows qualitative results on the

PASCAL VOC 2012 validation set. In recent years, many

semantic segmentation methods have been proposed based

on PASCAL VOC 2012 which are increasingly more precise

in terms of IoU measure, and also introduce significant addi-

tional model complexity. However, there are only few recent

methods [22, 1] that use a simpler encoder-decoder archi-

tecture for this problem, and it is most natural to compare

our approach directly with this related family of models. Un-

like other baseline methods, we obtain these results without

employing any performance enhancing techniques, such as

using object proposals [22] and multi-stage training [22]. It

is worth noting that while the proposed model is shown to be

highly capable across several datasets, a deeper ambition of

this paper is to demonstrate the power of basic information

routing mechanisms provided by gating in improving perfor-

mance. The encoder-decoder based architecture provides a

natural vehicle for this demonstration. It is expected that a

wide variety of networks that abstract away spatial precision

in favor of a more complex pool of features may benefit from

installing similar logic.
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method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

FCN-8s [21] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

SegNet [1] 74.5 30.6 61.4 50.8 49.8 76.2 64.3 69.7 23.8 60.8 54.7 62.0 66.4 70.2 74.1 37.5 63.7 40.6 67.8 53.0 59.1

DeconvNet[22] 87.8 41.9 80.6 63.9 67.3 88.1 78.4 81.3 25.9 73.7 61.2 72.0 77.0 79.9 78.7 59.5 78.3 55.0 75.2 61.5 70.5

DeepLab [3] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

Dilation [32] 91.7 39.6 87.8 63.1 71.8 89.7 82.9 89.8 37.2 84.0 63.0 83.3 89.0 83.8 85.1 56.8 87.6 56.0 80.2 64.7 75.3

Attention [5] 93.2 41.7 88.0 61.7 74.9 92.9 84.5 90.4 33.0 82.8 63.2 84.5 85.0 87.2 85.7 60.5 87.7 57.8 84.3 68.2 76.3

LRR [9] 92.4 45.1 94.6 65.2 75.8 95.1 89.1 92.3 39.0 85.7 70.4 88.6 89.4 88.6 86.6 65.8 86.2 57.4 85.7 77.3 79.3

DeepLabv2 [4] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

LRN [14] 79.3 37.5 79.7 47.7 58.3 76.5 76.1 78.5 21.9 67.7 47.6 71.2 69.1 82.1 77.5 46.8 70.1 40.3 71.5 57.4 64.2

G-FRNet 84.8 39.6 80.3 53.9 58.1 81.7 78.2 78.9 28.8 75.3 55.2 74.7 75.5 81.9 79.7 51.7 76.3 43.2 80.1 62.3 68.2

G-FRNet + CRF 87.7 42.9 85.4 51.6 61.0 82.9 81.7 81.6 29.1 79.3 56.1 77.6 78.6 84.6 81.6 52.8 79.0 45.0 82.1 64.1 70.4

G-FRNet-Res101 91.4 44.6 91.4 69.2 78.2 95.4 88.9 93.3 37.0 89.7 61.4 90.0 91.4 87.9 87.2 63.8 89.4 59.9 87.0 74.1 79.3

Table 3. Quantitative results in terms of mean IoU on PASCAL VOC 2012 test set. Note that G-FRNet-Res101 includes CRF.

image LRN G-FRNet G-FRNet-Res101

Figure 6. Qualitative results on PASCAL VOC 2012 validation set.

4.4. HorseCow Parsing Dataset

To further confirm the value and generality of our model

for dense labeling problems, we evaluate our model on object

parts parsing dataset introduced in [29]. This dataset contains

images of horse and cow images only, which are manually

selected from the PASCAL VOC 2010 benchmark [8] based

on most observable instances. The task is to label each pixel

according to whether this pixel belongs to one of the body

parts (head, leg, tail, body). We split the dataset following

[29] and obtain 294 training images and 227 test images.

Table 4 shows the performance of our models and compar-

isons with other baseline methods. The proposed G-FRNet

architecture outperforms all the baselines in terms of mean

IoU. The superior performance achieved by our model in-

dicates that integrating gate units in the refinement process

is very effective in capturing complex contextual patterns

within images which play a critical role in distinguishing and

segmenting different localized semantic parts of an instance.

4.5. Ablation Analysis

In this section, we investigate the contribution of each

proposed component of the network by leaving out one or

more components. We first perform a controlled study to

isolate the effect of gate units. Then we include the gate units

and train the network on all the datasets. Fig. 7 shows the

stage-wise performance of G-FRNet and LRN [14]. From

this analysis, it is clear that the inclusion of gate units not

only improves the overall performance of the network, but

also achieves performance gains at each stage of the feedback

refinement network.

5. Discussion

From the qualitative results shown in Fig. 5 and Fig. 6 ,

we can see that our predictions are more precise and seman-

tically meaningful than the baselines. For example, smaller

regions (e.g. tail) in the horse-cow parsing dataset and thin-

ner objects (e.g. column-pole, pedestrian, sign-symbol) in

the CamVid dataset can be precisely labeled by G-FRNet.

G-FRNet is also capable of efficiently handling categories

that are similar in visual appearance (e.g. horse and cow).

Regions with similar appearance (e.g. body parts of horse

and cow) can be discriminated by the global contextual guid-

ance via the gate units. The local boundaries for different

semantic regions are preserved using the low-frequency in-

formation from earlier layers. Fig. 8 shows that prediction

quality progressively improves with each successive stage

of refinement. In coarse-level predictions, the network is

only able to identify some parts of objects or semantic cate-

gories. With each stage of gated refinement, missing parts of

the object are recovered and mislabeled parts are corrected.

Fig. 9 shows comparison between different methods in terms

of the total number of model parameters and mean IoU (%)

on PASCAL VOC 2012 dataset. Although our model has

only 12 to 25 percent of the number of parameters of other

state-of-the-art methods (FCN [21] and DeconvNet [22]),

it achieves very competitive performance. This shows the
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Horse Cow

Method Bkg head body leg tail IoU Bkg head body leg tail IoU

SPS- Guidance [27] 76.0 55.0 52.4 46.8 37.2 50.3 69.7 57.6 62.7 38.5 11.8 48.03

HC [12] 85.71 57.30 77.88 51.93 37.10 61.98 81.86 55.18 72.75 42.03 11.04 52.57

JPO [30] 87.34 60.02 77.52 58.35 51.88 67.02 85.68 58.04 76.04 51.12 15.00 57.18

DeepLab-LargeFoV [3] 87.44 64.45 80.70 54.61 44.03 66.25 86.56 62.76 78.42 48.83 19.97 59.31

LG - LSTM [19] 89.64 66.89 84.20 60.88 42.06 68.73 89.71 68.43 82.47 53.93 19.41 62.79

LRN [14] 90.11 53.23 81.57 56.50 48.03 65.89 90.30 64.41 81.52 53.44 23.03 62.53

G-FRNet 91.79 60.44 84.37 64.07 53.47 70.83 91.48 69.26 84.10 57.58 24.31 65.35

Table 4. Comparison of object parsing performance with state-of-the-art methods on Horse-Cow parsing dataset [29]. Note that LRN [14]

does not report results on this dataset.
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Figure 7. Comparison of stage-wise mean IoU on (a) CamVid dataset; (b) PASCAL VOC 2012 validation set (c) Horse parsing and (d) Cow

parsing dataset between LRN [14] and proposed network G-FRNet.

Figure 8. Class-wise heatmap visualization on PASCAL VOC 2012

validation set images after each stage of refinement. Interestingly,

the network gradually aligns itself more precisely with semantic

labels, while correcting initially mislabeled regions. The rightmost

column shows the heatmap of the final prediction layer.
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Model Params
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Figure 9. Analysis on the number of model parameters (in millions)

and the mean IoU (%) on PASCAL VOC 2012 validation set for

different methods. The rightmost method is our proposed model,

which achieves best performance, even with considerably fewer

parameters, and a more parsimonious model structure.

efficiency of the proposed model despite its simplicity and

also the broader value of the proposed gating mechanism.

Additionally, the value of the gating mechanism is demon-

strated in each of the experiments, with its strengths evident

in both the qualitative and quantitative results. The LRN

method uses the upper layer feature map alone. We reported

the result of LRN for all datasets. It is clear that the pro-

posed gating mechanism in G-FRNet significantly improves

performance compared with LRN.

6. Conclusion

We have presented a novel end-to-end deep learning

framework for dense image labeling deemed a gated feed-

back refinement network. Our model uses an encoder-

decoder architecture to progressively produce finer resolu-

tion dense labeling. The gate units in our model are able to

effectively modulate signals passed forward from encoding,

in order to resolve ambiguity. Our experimental results on

several challenging datasets demonstrate that the proposed

model performs either comparable to, or significantly better

than state-of-the-art approaches. In addition, experimental

results based on ablation analysis reveal generality in the

value of coarse-to-fine gated refinement. A wide range of

CNNs may benefit from these simple architectural modifica-

tions, given that gated refinement combines naturally with a

wide array of canonical neural network architectures.
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