
Self-calibration-based Approach to Critical Motion Sequences of

Rolling-shutter Structure from Motion

Eisuke Ito† and Takayuki Okatani†,∗
†Tohoku University

980-8579 Sendai, Miyagi, Japan

∗RIKEN Center for Advanced Intelligence Project
1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan

{ito,okatani}@vision.is.tohoku.ac.jp

Abstract

In this paper we consider critical motion sequences

(CMSs) of rolling-shutter (RS) SfM. Employing an RS cam-

era model with linearized pure rotation, we show that the RS

distortion can be approximately expressed by two internal

parameters of an “imaginary” camera plus one-parameter

nonlinear transformation similar to lens distortion. We then

reformulate the problem as self-calibration of the imaginary

camera, in which its skew and aspect ratio are unknown and

varying in the image sequence. In the formulation, we de-

rive a general representation of CMSs. We also show that

our method can explain the CMS that was recently reported

in the literature, and then present a new remedy to deal with

the degeneracy. Our theoretical results agree well with ex-

perimental results; it explains degeneracies observed when

we employ naive bundle adjustment, and how they are re-

solved by our method.

1. Introduction

Most consumer imaging devices such as smartphones
and action cameras use CMOS sensors, the majority of
which use a rolling-shutter. In recent years, increasing at-
tention has been paid to performing SfM (structure-from-
motion) from multi-view images with distortion created by
a rolling shutter (RS). A number of methods have been pro-
posed that can deal with RS distortion in several different
problem settings [7, 1, 12, 6, 3]. The standard formulation
is RS bundle adjustment (BA), which is to assume a model
of RS distortion and optimize its model parameters together
with standard camera parameters in the framework of bun-
dle adjustment [12, 11, 24].

Despite the many studies of RS SfM, there were few
studies about its degeneracy. An only exception is the re-
cent study of Albl et al. [4]. They showed that there is
a degenerate case in RS SfM and then they explained the
mechanism of why it arises. However, the study only deals

with a single, specific case of degeneracy. Thus, there re-
main several open questions, for instance, are there more

degeneracy and critical cases?

A central motivation behind this study is to answer such
questions. We wish to derive general representation of
degeneracy in RS SfM. However, it is not a simple task,
since RS SfM is a highly nonlinear problem with many un-
knowns. To mitigate this difficulty, in this paper, we limit
our attention to a simple but practically important type of
RS distortion, and then borrow the classical formulation of
self-calibration of a camera, in which CMSs were previ-
ously studied extensively. To be specific, we first assume
that camera motion inducing the RS distortion is pure rota-
tion with a constant angular velocity, which may be inde-
pendent of the camera pose of the viewpoint. Further as-
suming that the rotation is small and can be linearized, we
then show that the RS distortion can be expressed by two
internal parameters, specifically, skew and aspect ratio, of
an imaginary camera, along with a parameter of a nonlin-
ear transformation that is similar to (and may be regarded
as a special type of) lens distortion. Assuming this model,
we show that RS SfM can be recasted as self-calibration of
the imaginary camera in the case where the above parame-
ters are unknown and varying in an image sequence. In this
self-calibration formulation, we will derive a general rep-
resentation of critical motion sequences (CMSs). We also
derive an explicitly represented CMS, which coincides with
the one derived in [4], with a new remedy to deal with it.
We will finally show the usefulness and effectiveness of our
approach through a series of experimental results.

2. Related work

A number of studies have been conducted to deal with
RS distortion in single or multi-view images. Depending on
the type of problems, they are classified into absolute pose
problem [1, 18, 3, 23], relative pose problem [5], multi-
view optimization (bundle adjustment) [11, 12, 24], stereo
[2, 22], and rectification/stabilization [6, 21, 16, 9].
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The most closely related to our study is the study of Albl
et al. [4]. Their study is the first to show that there is degen-
eracy in RS SfM. Specifically, employing the most widely
used RS model with linearized rotation and constant veloc-
ity translation, they showed the existence of a CMS. The
CMS is that “all images are captured by cameras with iden-

tical y (i.e., RS readout) direction in space”. They proved
that these images can also be explained by RS cameras and
a scene all lying in a single plane, meaning degeneracy.

Our study differs from theirs in that we derive a gen-

eral representation of CMSs, although we assume an RS
model of rotation-only camera motion. We also show that
our method can explain the same CMS as [4] but in a differ-
ent way, and then present a new method to cope with it. An-
other difference is that our derivation needs approximation
beyond the approximation of linearized rotation. Thus, rig-
orously speaking, our results state that, at least in the range
where our approximation is effective, RS SfM will suffer
from the same degeneracy. However, considering the na-
ture of the employed approximations, it will probably have
at least instability beyond this range. These agree well with
our experimental results that will be shown later.

As mentioned earlier, the central idea of our approach
is to formulate the problem as self-calibration of cameras.
Self-calibration of cameras was studied extensively from
1990’s to early 2000’s [19, 14, 20, 13, 15]. It had been
shown that when internal camera parameters are all un-
known for all images, one cannot resolve projective ambi-
guity emerging in reconstruction of SfM. It was then shown
that if skew is zero or if at least one of the internal pa-
rameters is unknown but constant among images, projective
ambiguity can be resolved and self-calibration is feasible.
However, these results only guarantee that self-calibration
is feasible if camera motion is general. When camera mo-
tion is a CMS, the problem can become degenerate and self-
calibration is no longer feasible. As CMSs differ for differ-
ent settings of self-calibration, only a few settings which
are practically important were well studied [26, 17], such as
when focal lengths are unknown and varying and all other
parameters are known [27]. In this paper, we consider the
case where skew and aspect ratio are unknown and varying
and all others are known. This setting was not considered
previously probably because of lack of its usefulness, and
ours is the first attempt in the literature of self-calibration.

3. Modeling rolling shutter distortion

3.1. Constant motion model

Let X ≡ [X,Y,Z]⊤ and x ≡ [x, y, z]⊤ denote the world
and camera coordinates, respectively. The coordinate trans-
formation between these two is given by

x = R(X  p), (1)

where R is a rotation matrix and p is a 3-vector (the world
coordinates of camera position). Assuming constant camera
motion during frame capture, rolling shutter (RS) distortion
is modeled by
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∝ R(rφ)R{X  (p + rv)}, (2)

where c and r are column (x) and row (y) coordinates, re-
spectively; the shutter is closed in the ascending order of
r; R(rφ) and v represent the rotation matrix and translation
vector of the camera motion; φ = [φ1, φ2, φ3]⊤ is the axis
and angle representation of the rotation. Note that R and p

are the camera pose when the shutter closes at r = 0.
Assuming the angle of φ to be small, we approximate

Eq.(2) as follows:
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∝ (I + r[φ]×)R{X  (p + rv)}, (3)

where
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. (4)

This model slightly differs from previous studies (e.g., [3])
in the representation of the translational component of the
camera motion during frame capture. Our model parame-
terizes the position of the camera in space independently of
its rotation, which is physically more natural.

3.2. Rotationonly motion model

In what follows we consider the case where v is small
and negligible. This is generally a good approximation un-
less a camera is close to objects in a scene. Setting v = 0

and using Eq.(1) with x ≡ [x, y, z]⊤, Eq.(3) can be rewritten
as follows:
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, (5)

where x′ ≡ x/z and y′ ≡ y/z.

3.3. A twostep model based on affine camera ap
proximation

Eq.(5) models the RS distortion induced by rotating a
perspective camera with a constant velocity. Now, we ap-
proximate the camera with an affine camera as
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, (6)
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where ε =  rφ2x′ + rφ1y′. This model captures the “princi-
pal components” of the RS distortion, as the approximation
will be accurate when x′, y′, and r are small. This is true
for image points around the principal points in the case of
general cameras or for any points in the case of cameras
with a telephoto lens. Note, however, that we will not use
this affine camera approximation for the projection model
used in SfM; regarding the projection from (c, r) to image
coordinates (u, v), we will use a standard perspective cam-
era model, as in Eq.(12). Thus, in the above approximation
we simply neglect the effects of the second order terms of
the image coordinates within the model of RS distortion.
(Another proof without using this affine camera assumption
is given in the supplementary material.) The validity of this
approximated model will be shown experimentally in Sec-
tion 5.

Eq.(6) gives a transformation f : [x′, y′] 7→ [c, r]. We
show that f can be approximated by a composition of two
transformations.

Proposition 1. When φ1, φ2, and φ3 are small, f :
[x′, y′] 7→ [c, r] can be approximated as

f ≈ fp ◦ fd, (7)

where fd : [x′, y′] 7→ [x′′, y′′] is defined as

x′′ = x′  φ3y′2, (8a)

y′′ = y′ + φ3x′y′, (8b)

and fp : [x′′, y′′] 7→ [c, r] as
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. (9)

Proof. We will show that the approximation (7) holds true,
that is, its left and right hand sides are equal, in the first-
order approximation with respect to φ1, φ2, and φ3. Substi-
tuting Eqs.(8) into Eq.(9) and neglecting the second order
terms of φ1, φ2, and φ3, we have

c = x′ + φ2y′  φ3y′2, (10a)

r = y′  φ1y′ + φ3x′y′. (10b)

Substituting the second component of Eq.(6), r = rφ3x′ +

y′  rφ1, into the first component and then neglecting the
second order terms also gives (10a). Conducting similar
substitution of r into r itself and neglecting the second order
terms yields (10b). �

4. Self-calibrating rolling-shutter cameras

We employ Eqs.(7)-(9) as our RS camera model. We
first show that SfM based on the model is formulated as a
self-calibration problem.

4.1. Problem formulation

Proposition 2. Suppose SfM from images captured by a

camera with known internal parameters. Assume the RS

camera model given by Eqs.(7)-(9) with unknown motion

parameters for each image. Then, the SfM problem is equiv-

alent to self-calibration of an imaginary camera that has

unknown, varying skew and aspect ratio along with varying

lens distortion of a special kind.

Proof. The first component fd of our two-step model f =
fp ◦ fd may be interpreted as a kind of lens distortion. The
most widely used model of lens distortion would be

x′′ = x′ + x′(k1λ
2 + k2λ

4) + 2p1 x′y′ + p2(λ2 + 2x′2) (11a)

y′′ = y′ + y′(k1λ
2 + k2λ

4) + p1(λ2 + 2y′2) + 2p2 x′y′, (11b)

where x′ ≡ x/z and y′ ≡ y/z; λ2 ≡ x′2 + y′2. The second
terms on the right hand sides represent radial distortion and
the third and fourth terms represent tangential distortion.
The transformation fd of Eq.(8) has a similar form; there
are second-order additive terms y′2 and x′y′, which appear
in the tangential distortion terms.

Consider the second component fp of Eq.(9). The row
and column coordinate [c, r] are transformed to image co-
ordinates [u, v] by the matrix K of internal parameters as
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, (12)

where f and (u0, v0) are the focal length and the principal
point of this camera. We assume here zero skew and unit
aspect ratio for the sake of simplicity. The choice of other
values will not change the discussions below. The substitu-
tion of Eq.(9) into the above yields
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.

The matrix gives an internal parameter matrix of the imagi-
nary camera; 1  φ1 is its aspect ratio, and φ2 is its skew. �

4.2. Theory of selfcalibration

Generally, self-calibration is to estimate (partially) un-
known internal parameters of cameras from only images
of a scene and thereby obtain metric 3D reconstruction of
the scene. It was extensively studied from 1990’s to early
2000’s [19, 14, 20, 13, 15, 10]. In what follows, while sum-
marizing these studies, we will describe how our problem
can be dealt with.

4.2.1 Feasibility

If the internal parameters of cameras are all unknown, we
can obtain 3D reconstruction up to projective ambiguity.
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It was studied previously what kind of knowledge about
which internal parameters is necessary to resolve projec-
tive ambiguity. It was shown [20, 13] that it is sufficient if
skew vanishes for all the images. It was also shown [15]
that it suffices that only one of the five internal parameters
is constant (but unknown) for all the images; others may
be unknown and varying for different images. This result
proves that we can indeed perform self-calibration formu-
lated above.

Thus, theoretically, one can conduct self-calibration only
if she/he has a little knowledge about internal parameters.
Practically, however, this is not true because of two rea-
sons. One is the existence of critical motion sequences
(CMSs), which will be discussed later. The other is that
when a large portion of internal parameters are unknown,
it becomes hard to determine them with practical accuracy.
Considering practical requirements, it is the most popular
to assume only focal lengths [20] (and sometimes addition-
ally principal points [17]) to be unknown and varying, and
all other parameters to be known. It is interesting to point
out that our case is the complete reversal in the choice of
known/unknown parameters.

Additionally, simple counting argument gives a neces-
sary condition for self-calibration. Let m be the number
of cameras (viewpoints), nk be the number of known inter-
nal parameters, and n f be the number of constant (but un-
known) internal parameters. Then, a necessary condition is
given [10] by

mnk + (m  1)n f ≥ 8. (13)

In our case, nk = 3 and n f = 0, from which we have m ≥ 3
as a necessary condition.

4.2.2 Critical motion sequences

Even in cases where the above theories justify the feasibility
of self-calibration, there could emerge degeneracy depend-
ing on camera poses. A set of camera poses for which the
parameters cannot be uniquely determined is called a criti-
cal motion sequence (CMS).

CMSs were studied in parallel with the above studies of
the feasibility of self-calibration. A catalog of CMSs for
the case of constant camera parameters is shown in [26].
There are also studies for cases where some parameters are
known and/or some vary. In [17], each of the cases where
skew vanishes, additionally aspect ratio is known, and fur-
ther additionally principal points are known are studied. In
[27], a catalog of CMSs is shown for the case where focal
length is unknown and varying, and others are known; this
is the most popular setting of self-calibration.

However, the case considered in this paper, i.e., when
skew and aspect ratio are both unknown and varying
whereas all others are known, has not been considered in

the literature. This may be due to lack of applications of
the setting. Thus, we will examine CMSs for this case in
Sec.4.3.

4.2.3 Lens distortion

When conducting self-calibration of cameras (or simply
bundle adjustment), it is common to jointly estimate lens
distortion (i.e., k1, . . . and p1, . . . in Eq.(11)) together with
other parameters. Researchers have traditionally treated the
lens distortion parameters separately from the five internal
camera parameters. In fact, their uniqueness and existence
have not been rigorously discussed until very recently [30].
This treatment is indeed reasonable considering nonlinear
nature of the lens distortion; projective transformation maps
a line onto a line, whereas lens distortion does not. In this
study, adopting the same position and assuming that the pa-
rameter φ3 of fd can be treated equally to lens distortion
parameters, we assume that φ3 can be determined uniquely
independently of other parameters.

4.3. CMSs for RS camera selfcalibration

We now consider CMSs for our self-calibration problem.
We begin with derivation of general-purpose equations fol-
lowing Sec.19.2 of [10], and then tailor them for our case.

4.3.1 Equations of self-calibration

Suppose that a projective reconstruction {Pi,X j} is given,
where Pi is a projection matrix and X j is a scene point. Let
Pi = [Ai | ai]. By choosing a coordinate system we may
assume that A1 = I and a1 = 0. Let Ki be the internal pa-
rameter matrix of camera i. The DIAC (dual image of the
absolute conic) for image i is given by ω∗i = KiKi⊤. A three-
dimensional projective transformation H that transforms the
projective reconstruction {Pi,X j} into a metric reconstruc-
tion {PiH, H 1X j} can be encoded as

H =

[

K1 0

 p⊤K 1

]

. (14)

Then, equations of self-calibration (i = 1, . . .) are given by

ω∗i =
(

Ai  aip⊤
)

ω∗1
(

Ai  aip⊤
)⊤
. (15)

Here, ω∗i (i = 1, . . .) and p are unknowns. If there is knowl-
edge about some internal parameters, it gives constraint(s)
on the elements of ω∗i.

We now derive such constraints in our case. As the prin-
cipal point is known for any image, we can transform image
coordinates so that it will be (0, 0). Then the internal param-
eter matrix will be

Ki =





















f i si f i 0
0 αi f i 0
0 0 1





















. (16)
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The DIAC will be

ω∗i = KiKi⊤ =





















f 2 + s2 f 2 sα f 2 0
sα f 2 α2 f 2 0

0 0 1





















, (17)

where superscripts (i’s) are omitted in the matrix. From this
we have constraints on the elements of the DIACs. The
elimination of s and α from the upper-left 2×2 block yields

ω∗i
11ω

∗i
22 = ω

∗i
22 f 2 + ω∗i2

12 , (18a)

and the (1, 3) and (2, 3) elements vanish as

ω∗i
13 = ω

∗i
23 = 0. (18b)

Substituting Eq.(15) into the above equations to eliminate
the elements of ω∗i (i , 1), we have equations that have ω∗1

and p as only unknowns. Solving them for these unknowns,
we can determine H, from which we can obtain a metric
reconstruction.

4.3.2 Representation of CMSs

A CMS is a set of camera poses for which the above equa-
tions becomes degenerate. Specifically, there are three
equations for each camera i, which are obtained by substi-
tuting Eq.(15) into Eqs.(18) as described above. They differ
for different cameras owing to the difference in Ai and ai.
However, they can be degenerate if there is some special
relation in {Ai, ai} among cameras.

This analysis of degeneracy theoretically gives a com-
plete set of CMSs. Indeed, one can check whether any
given camera motion is a CMS or not. However, it is only
implicitly represented, which makes intuitive understand-
ing hard. This is also the case with other, more popular
self-calibration settings such as the case of constant, un-
known internal parameters [26] and the case of zero skew
and known aspect ratio [17]. For such cases, researchers
have derived several practically important cases. Similarly,
we derive an intuitive CMS here, which coincides with the
one given in [4]. Thus, the following gives yet another ex-
planation of the CMS.

Proposition 3. All images are captured by cameras hav-

ing the parallel y axis. This camera motion is a CMS. The

translational components may be arbitrary.

Proof. We denote rotation about the y axis with angle ϕ by
Ry(ϕ). Choosing the world coordinate system, we may write
the image projection of a scene point [X,Y,Z]⊤ as

K
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 X sinϕ + Z cosϕ + tZ





















,

(19)

where K is parameterized as in Eq.(16). It is observed that
the image will not change if we multiply Y+tY by k and both
s and α by 1/k, as s(Y+ tY ) = sk  1 ·k(Y+ tY ) and α(Y+ tY ) =
αk  1 · k(Y + tY ). This means that we cannot determine the
scale k from only these images, and this camera motion is a
CMS. �

An example of this CMS is the case where one acquires
images while holding a camera horizontally with zero eleva-
tion angle. This style of capturing images is quite common.
Even if a camera motion does not exactly match this CMS,
if it is somewhat close to it, estimation accuracy could de-
teriorate depending on how close it is; see [4] for more de-
tailed discussions.

4.3.3 A method for resolving the CMS

Besides simply avoiding it, there are several possible ways
to cope with this CMS. We propose to use some method
outside the framework of self-calibration to determine ei-
ther φ1 or φ2 for a single camera that is selected somehow.
Specifying only a single value resolves the ambiguous scale
k mentioned above, resolving the ambiguity of solutions. A
practically easy way to do this is to find out an image i in the
sequence that undergoes no RS distortion (or as small dis-
tortion as possible), for which we set φi

1 = 0 and/or φi
2 = 0.

We will show through experiments that this is indeed effec-
tive, provided that there exists such a distortion-free image
in the sequence and it can be identified. Besides finding a
viewpoint with φi

1 = 0 or φi
2 = 0, we will be able to employ

various methods depending on external information avail-
able.

5. Experimental results

Our self-calibration-based formulation of RS SfM can
be used not only for deriving CMSs but also for perform-
ing RS SfM in practice. To demonstrate how degeneracy
arising in RS SfM can be treated by our method and also
to evaluate the validity of the employed approximation of
the RS model, we apply it to RS images and compare the
results with the ground truths and those obtained by stan-
dard BA with/without the standard rotation-only linearized
RS camera model etc.

5.1. Incorporating the RS camera model to SfM

The proposed RS model can be incorporated into bundle
adjustment in the following way. The projection of a scene
point X when our RS model is assumed is as follows: X

is first transformed by Eq.(1) into the camera coordinates x,
and then transformed by Eqs.(8) and Eq.(13) in turn to yield
image coordinates [u, v]. We assume the (genuine) internal
parameters (i.e., K of Eq.(12)) of each camera to be known.
Thus, unknowns per each camera are the six parameters of
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Figure 1. Example of images of points. Upper: Two original im-
ages of fountain-P11. Lower: With simulated RS distortion.

Table 1. Image sequences used in the experiments.
Sequence Dataset # of images
fountain-P11 EPFL[25]1 11
Herz-Jesu-P8 EPFL 8
castle-P19 EPFL 19
Temple Middleburry2 10(templeR0014-0023)

camera pose plus the three RS parameters [φ1, φ2, φ3]. Bun-
dle adjustment is performed over these parameters for all
the cameras in addition to the parameters of point cloud.
We used ceres-solver [8] for implementing bundle adjust-
ment in our experiments. The initial values of the RS pa-
rameters are set to 0, since their true values should be small
due to the nature of RS distortion. The initial values of cam-
era poses and point cloud are obtained by using these initial
values for the RS parameters.

5.2. Synthetic image experiments

We first show results using synthetic images, for which
we can evaluate accuracy of 3D reconstructions using their
ground truths. In the experiment, for given point cloud
(scene points) and camera poses, we synthetically gener-
ate images by projecting the points onto each camera with
the RS camera model (2); Fig.1 shows examples. RS distor-
tion can generally affect every step of the SfM pipeline, i.e.,
matching points among images, computing initial values of
camera poses as well as point cloud, and finally bundle ad-
justment. As the proposed method is only concerned with
the last step, this experiment enables to evaluate its effec-
tiveness independently of others.

The details are as follows. To obtain point cloud and
camera poses that simulate natural scene structures and
camera poses, we used Visual SFM [28, 29] to reconstruct
them from real images. We used several image sequences
listed in Table 1 from public datasets. We then projected
the reconstructed point cloud onto the images of the recon-
structed cameras using the RS camera model (2). The cam-
era motion for each image was randomly generated. For
the rotation R(rφ), the axis φ/|φ| was generated in a full
sphere with a uniform distribution and the angular veloc-
ity |φ| was set so that (rmax  rmin)|φ| equals to a random
variable generated from a Gaussian distribution N(0, σ2

rot),
where rmax and rmin are the top and bottom rows of images.
For the translation, each of its three elements was generated
according to N(0, (σtrans t̄)2), where t̄ is the average distance
between consecutive camera positions in the sequence. We

set σrot = 0.05 radians and σtrans = 0.05. We used the same
internal camera parameters as the original reconstruction.
We added Gaussian noises ε, ε′ ∼ N(0, 0.52) to the x and y

coordinates of each image point.
We conducted the following procedure for 100 trials for

each of the image sequences listed in Table 1. In each trial,
we regenerated the additive image noises and initial values
for bundle adjustment. RS distortion for each image (except
the first image) of each sequence was randomly generated
once and fixed throughout the trials. We intentionally gave
no distortion to the first image.

We applied four methods to the data thus generated. The
first one is ordinary bundle adjustment without any RS cam-
era model, which is referred to as “w/o RS.” The second and
third ones are bundle adjustment incorporating the proposed
RS camera model. The second one is to optimize all the RS
parameters equally in bundle adjustment, which is referred
to as “w/ RS.” The third one is to set φ1

1 = 0 and optimize all
others, which is referred to as “w/ RS*”. This implements
the proposed approach of resolving the CMS mentioned in
Sec.4.3.3. The last one is bundle adjustment incorporating
the exact RS model with linearized rotation (5), which is
referred to as “w/ RS(r[φ]×])”.

Figure 2 shows the results. The plots show cumulative
error histograms of rotation and translation of cameras and
of structure (scene points). The rotation error is measured
by the average of the absolute angle of RiR̂i over the view-
points, where Ri and R̂i are the true and estimated camera
orientations, respectively. To eliminate scaling ambiguity
for the evaluation of translation and structure, we apply a
similarity transformation to them so that the camera trajec-
tory be maximally close to the true one in the least-squares
sense. Then the translation error is measured by the average
of differences between the true camera position pi and the
estimated one p̂i over the viewpoints. The structure error is
measured by the sum of distances between true points and
their estimated counterparts.

Several observations can be made from Fig.2. First, it
is observed that the method “w/ RS*” that fixes φ1

1 shows
the best performance for all the sequences. The method
“w/ RS” rivals “w/ RS*”’ only for Herz-Jesu-P8. This im-
plies that the camera motion of fountain-P11, castle-P19,
and Temple are close to CMSs, whereas that of Herz-Jesu-
P8 is distant from CMSs. In fact, camera orientations in
the former three sequences tend to have small elevation an-
gles, which is one of the conditions for camera motion to
be the CMS discussed in Sec.4.3.2, while those for Herz-
Jesu-P8 tend to have larger elevation angles. Second, it is
seen that “w/ RS(r[φ]×])” (exact RS model) shows similar
behaviors to “w/ RS”. This validates the approximation we
used to derive our RS model (Sec.3.3), i.e., affine camera
approximation and first-order approximation with respect
to (φ1, φ2, φ3).
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Figure 2. Results. Cumulative histogram of errors of estimated rotation and translation components of camera poses and of estimated
points. “w/o RS” is ordinary BA without the proposed RS camera model. “w/ RS” and “w/ RS*” are BA incorporating the proposed RS
model; φ1

1 is fixed to 0 for the latter. “w/ RS(r[φ]×])” is BA incorporating the original RS model (5).

We also show typical reconstruction results for the four
sequences in Figs.3-6. It is seen that for each sequence,
the method “w/ RS*,” consistently yields the most accurate
camera path and point cloud than others. It is also seen that
the method “w/RS” tends to yield structure that is elongated
vertically, which explains the large structure error shown in
the cumulative histograms of Fig.2. This structure elonga-
tion is well explained by the CMS described in Proposition
3.

Figure 3. Typical reconstruction results for sequence fountain-P11.
(a) w/o RS. (b) w/ RS. (c) w/ RS* (φ1

1 fixed). Grey dots and lines
with crosses are true scene points and true camera positions, re-
spectively.

Figure 4. Typical reconstruction results for sequence Herz-Jesu-
P8. (a) w/o RS. (b) w/ RS. (c) w/ RS* (φ1

1 fixed).

Figure 5. Typical reconstruction results for sequence castle-P19.
(a) w/o RS. (b) w/ RS. (c) w/ RS* (φ1

1 fixed).
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Figure 6. Typical reconstruction results for sequence Temple. (a)
w/o RS. (b) w/ RS. (c) w/ RS* (φ1

1 fixed).

5.3. Real image experiments

We conducted experiments using images captured by the
camera of a smartphone (iPhone 5s). We acquired still-
images of a scene from a number of different viewpoints
by hand-holding the smartphone. We took two images at
each viewpoint, one by firmly holding the smartphone with
both hands, and the other by deliberately swinging the cam-
era a little during frame capture. As the smartphone was
hand-held, its orientation cannot be precisely controlled,
whereas its position should not change much between the
two acquisitions; the change will be less than 20cm at each
viewpoint. Each scene contains a building with the length
20-30m, and thus possible position changes will be negli-
gibly small as compared with the building size. Thus, we
use differences in the camera positions that are estimated
by VisualSFM from these two image sequences as error
measure. To be specific, regarding the camera positions
recovered from the distortion-free sequence as the ground
truth, we measure errors of those recovered from the other
sequence with RS distortion. We did not prune any poten-
tially incorrect matches. We applied two methods, one with
the proposed RS model (with φ1

1 fixed assuming the first im-
age to be distortion-free) and the other without the proposed
model, and compared their accuracy. Figure 7 shows results
for two different scenes Shrine1 and Shrine2. (The original
images of the two scenes are shown in the supplementary
material.) These results demonstrate the validity of our sim-
plified RS model in spite of the employed approximations
to derive it.

6. Summary and conclusions

We have discussed degeneracy of rolling shutter SfM.
Assuming rotation-only camera motion with linearized ro-
tation, we have shown that, employing the affine camera
approximation (i.e., the first-order approximation of the per-
spective effect on the RS distortion), the RS distortion can
be represented by a composition of the following two trans-
formations: i) two-dimensional projective transformation
with two parameters that can be interpreted as skew and
aspect ratio of an imaginary camera, and ii) one-parameter
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Figure 7. Two results of reconstruction from real images. The
camera positions obtained from distortion-free images (assumed
to be ground truths) are shown as black x marks. Those obtained
by the proposed approach are in blue and those by BA without a
RS model are in red. Distances from the estimated camera posi-
tions to those computed from distortion-free images.

nonlinear transformation that can be interpreted as a type of
lens distortion of the camera. Assuming this approximate
RS camera model, we have shown that the problem can
be recasted as self-calibration of the imaginary camera, in
which skew and aspect ratio are unknown and varying in the
image sequence. For this self-calibration problem, we have
derived a general representation of CMSs, and also shown
a practically important CMS that was previously reported
in the literature. As ambiguity with the latter CMS can be
resolved by specifying only one of the two RS distortion pa-
rameters of a single viewpoint, we have proposed to iden-
tify an image in the sequence that undergoes no distortion
and set these parameters to zero. The experimental results
demonstrate the effectiveness of the proposed approach to
CMSs of RS SfM.
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