
IM2CAD

Hamid Izadinia

University of Washington

Qi Shan

Zillow Group

Steven M. Seitz

University of Washington

Figure 1: IM2CAD takes a single photo of a real scene (left), and automatically reconstructs its 3D CAD model (right).

Abstract

Given a single photo of a room and a large database

of furniture CAD models, our goal is to reconstruct a

scene that is as similar as possible to the scene depicted

in the photograph, and composed of objects drawn from the

database. We present a completely automatic system to ad-

dress this IM2CAD problem that produces high quality re-

sults on challenging imagery from interior home design and

remodeling websites. Our approach iteratively optimizes

the placement and scale of objects in the room to best match

scene renderings to the input photo, using image compari-

son metrics trained via deep convolutional neural nets. By

operating jointly on the full scene at once, we account for

inter-object occlusions. We also show the applicability of

our method in standard scene understanding benchmarks

where we obtain significant improvement.

1. Introduction

In his 1963 Ph.D. thesis, Lawrence Roberts [34] demon-

strated a system that infers a 3D scene from a single photo

(Figure 2). Leveraging a database of known 3D objects,

his system analyzed edges in the image to infer the loca-

tions and orientations of these objects in the scene. Unlike

the vast majority of modern 3D reconstruction techniques,

which capture only visible surfaces, Robert’s method was

capable of inferring back-facing and occluded surfaces, ob-

ject segments, and recognized which objects are present.

While Robert’s method was visionary, more than a half

(a) (b) (c)

Figure 2: Lawrence Roberts’s (a) 1963 system took an input

photo (b) and computed a 3D scene, rendered to a novel

viewpoint (c).

century of subsequent research in computer vision has still

not yet led to practical extensions of his approach that work

reliably on realistic images and scenes. One major limita-

tion is the need for an accurate, a priori 3D model of each

object in the scene. While a chair model, e.g., is not hard

to come by, obtaining exact 3D models of every chair in the

world is not presently feasible. A further challenge is the

need to reliably match between features in photographs and

CAD models, particularly when the model does not exactly

match the object photographed.

We therefore introduce a variant of Robert’s original

problem, that we call IM2CAD, in which the goal is to re-

construct a scene that is as similar as possible to the scene

depicted in a photograph, where the reconstruction is com-

posed of objects drawn from a database of available 3D ob-

ject models. For example, the bed in Fig. 1 resembles but

does not exactly match the one in the input photograph at
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Figure 3: System overview: an input image (left) is processed through a series of steps to produce a scene CAD model

(bottom right).

left, as we did not have that specific bed in the database.

While our results are not perfect, they represent a signifi-

cant step forward to achieving Robert’s vision on real-world

imagery. Producing CAD models of real scenes has ap-

plications for virtual reality (VR), augmented reality (AR),

robotics, games, and education.

Our work builds on a number of recent advances in the

computer vision and graphics research community. First,

we leverage ShapeNet [6], which contains millions of 3D

models of objects, including thousands of different chairs,

tables, and other household items. This dataset is a game-

changer for 3D scene understanding research, and was key

to enabling our work. Second, we use state-of-the-art ob-

ject recognition algorithms [32] to identify common objects

like chairs, tables, windows, etc.; these methods work im-

pressively well in practice. Third, we leverage deep fea-

tures trained by convolutional neural nets (CNNs) [21] to

reliably match between photographs and CAD renderings

[3, 20, 36, 18]. Finally, we build on recent research on room

reconstruction [15, 22, 27].

Our main contribution is a fully automatic system that

produces full-scene CAD models (room + furniture) from a

single photo. While many of the technical ingredients of our

system draw heavily from prior work (as detailed in the pre-

vious paragraph), we also contribute noteworthy technical

advances on room modeling and scene optimization. Our

room modeling approach produces significant improvement

on standard benchmarks. Our novel full-scene optimization

approach iteratively adjusts the placement and scale of ob-

jects to best align rendered photos with input images, op-

erating jointly on the full scene at once, and accounting for

inter-object occlusions. Our models include semantics (e.g.

“table”, “chair”) segmented into objects, and take only a

few bytes to represent, encoded as a collection of ShapeNet

object IDs and transformations that define position, orien-

tation and scale. We evaluate our performance on scene

understanding using the datasets of [15], LSUN [1], SUN

RGB-D [42] and 3DGP [8]. We show significant improve-

ments in the 2D and 3D room layout estimation as well as

3D object location using only single RGB images.

2. Related Work

The last decade has seen renewed interest in single-

image 3D modeling, following the work of Hoiem et

al., [16] and Saxena et al., [2]. Single-image modeling of

indoor scenes has enjoyed significant recent progress, with

a series of papers on room-shape estimation (floor, walls,

ceiling), e.g., [15, 22, 27, 9, 33] that yield increasingly good

results. Our approach for room shape estimation obtains

competitive results. More recently, researchers have moved

beyond walls, and toward approximating furniture in the

room using cuboids [46, 49, 8, 14, 29, 38]. While the cuboid

based approach avoids the need for object databases, the re-

sulting models are primitive and do not accurately depict

scene appearance.

Another closely related line of research is 3D object and

pose recognition of chairs and other objects [3, 20, 36, 23,

18, 43, 4, 44]. These methods can produce very accurate

alignment of a single object to a photograph or depth im-

age. Our work leverages similar 3D object recognition tech-

niques, combined with room shape estimation, to jointly

solve for all of the objects in the room in a way that ac-

counts for inter-object occlusions. Our work also builds

upon recent advancements of research on object detection

from single images [12, 32].

Researchers have explored a variety of techniques to

automatically compute CAD scene models using non-

photographic means, e.g., using example based ap-

proaches [11], utilizing text descriptions [7], and optimizing

for furniture arrangements in a given space [47, 28]. These

approaches rely on analyzing location and pose correlations

between furniture types, based on analyzing databases of

scene models. Collecting such data is a challenge, and

therefore these approaches can greatly benefit from our so-

lution which generates more comprehensive and plausible

indoor models in a fully automatic fashion.

The closest works to ours are [37] and [25] which find
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Figure 4: Geometric feature and room layout estimation. Results

from (Row1) [22] and (Row2) [15]. Bottom row: our results.

the best matching 3D scene model to a given image. Our

system is a significant advance in a number of ways. In

particular, [37] requires a complete scene in the database

that matches each image. Hence, their approach can be

thought of as “3D scene retrieval,” whereas we recon-

struct each scene from scratch, using a database of furniture

(not scene) models. The latter allows for a much broader

range of reconstructable scenes. While [25] reconstructs

the scene by placing individual pieces of furniture, they

make a number of limiting assumptions (axis aligned furni-

ture, no walls, easy-to-segment objects), operate on a much

smaller database (180 models), and do not demonstrate as

broad a range of results. Both of [37] and [25] use hand-

crafted features, while our proposed method uses CNN fea-

ture which is learned end-to-end on just image data. Guo

et al. [13] render a synthesized model of the scene using

RGBD (depth) images while our method only uses RGB in-

formation. The synthesized rooms produced by [13] have

low fidelity in terms of object details while we retrieve the

detailed ShapeNet CAD model for each object.

In the context of 3D prediction, several previous ap-

proaches estimate the depth and surface normals of visible

surfaces from a single image [10, 48, 4]. In contrast, our ap-

proach does not require dense surface normal estimation but

is capable of estimating both visible and invisible surfaces

through joint estimation of room and object CAD models.

3. Algorithm

Our approach to reconstructing CAD models from an

image (see Figure 3) is based on recognizing objects in the

scene, inferring room geometry, and optimizing 3D object

poses and sizes in the room to best match synthetic render-

ings to the input photo.

The proposed approach involves several steps, as fol-

lows. We first fit room geometry, by classifying pixels as

being on walls, floor, or ceiling, and fitting a box shape to

the result. In parallel, we detect all of the chairs, tables, so-

fas, bookshelves, beds, night tables, chest, and windows in

the scene using state of the art object detection techniques.

Wherever an object, e.g., a bed, is detected with high con-

fidence, we estimate its 3D pose, by comparing its appear-

ance with renderings of hundreds of beds from many dif-

ferent angles, using a deep convolutional distance metric,

trained for this purpose. Finally, we optimize for the place-

ment of all objects in the reconstructed room by optimizing

the difference between the rendered room and the photo-

graph. Our optimization approach operates on all objects

jointly, and thus accounts for inter-object occlusions.

In the remainder of the section, we describe these techni-

cal components in detail: room geometry estimation, object

detection, object alignment, and scene optimization.

3.1. Room Geometry Estimation

Humans are adept at interpreting the shape of a room

(i.e., positions of walls, ceiling, and floor), even in the

presence of significant clutter. Computer vision algorithms

have also become increasingly good at this task in the last

few years by following a paradigm introduced by Hedau et

al. [15] and Lee et al. [22] in which a set of room shapes

are hypothesized (typically 3D boxes), and evaluated using

features in the image.

We improve upon previous approaches to room geome-

try estimation, by adopting an alternative approach for rank-

ing the room 3D box hypothesis using deep convolutional

features. Specifically, we train a network that estimates per-

pixel surface labels (ceiling, floor, left, middle, and right

walls). These features are analogous to the context geomet-

ric feature (“support”, “vertical”, and “sky”) of [17].

Unlike [17] that learns the geometry features from hand-

designed low level descriptors (e.g., color, texture, and other

perspective cues) over superpixels, our method uses an end-

to-end deep Fully Convolutional Network (FCN) [26], us-

ing VGG [41] and converting each fully connected layer

into a convolutional layer with a kernel covering the en-

tire input region. Finally, the weights are fine-tuned for the

pixel-level labeling task. In this work, we produce the out-

put dense score map of size 41 × 41 × 5 given an input

image of 321× 321. We then use upsampling to produce a

probability map with the same size of the input image. We

trained the FCN network on the annotated indoor scenes in

the LSUN dataset [1].

A key advantage of the FCN-based architecture is that

it integrates contextual information over the entire image.

Whereas most methods use a “distractors” class [15, 27] to

remove furniture from consideration, the FCN is able to use

furniture as additional context, e.g., using the presence of a

bookshelf or bed to infer the likely presence of an adjacent

wall. We note that [27] also used a convolutional network,

but rather than classifying surface orientations directly as

we do, they estimate informative edges in the scene, and

employ a second stage to iteratively re-label room surfaces

and rank room box estimates.
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Figure 5: Object detection result on sample images. Each object

category is shown with a different color. The numbers attached to

boxes show the probabilities assigned to each detection.

3.2. Object Detection

The first step in our furniture modeling pipeline is to de-

tect the presence of objects of interest in the image, and

their 2D bounding boxes. While any number of object de-

tectors can be trained, we focused specifically on the fol-

lowing: chair, table, sofa, bookshelf, bed, night table, chest,

and window.

Object detection is an area that has seen explosive

progress in the last several years, and existing methods work

impressively well. In particular, we use the state-of-the-art

Faster-RCNN [32] deep network for detection. This net-

work performs two steps to detect objects. First it produces

object region proposals, and then it computes the likelihood

of each category for the proposed objects using deep convo-

lutional layers. The region proposal layer produces bound-

ing boxes of different scales and aspect ratios. This net-

work is initialized with pre-trained models from large scale

object recognition tasks (ILSVRC2012) [19]. The network

weights are then fine-tuned for the object proposal and ob-

ject detection tasks by minimizing an objective function

for a multi-task loss on bounding box regression and ob-

ject misclassification. The trained network is then able to

produce bounding boxes with object categories for any im-

age. The network output also includes an object score which

shows the probability of that particular object in the bound-

ing box. Greedy non-maximum suppression (NMS) is used

to obtain a single peak detection for each object, remove

low scoring detections that overlap with higher scoring ob-

ject bounding boxes.

Our Faster-RCNN implementation uses VGG16 [41] ar-

chitecture. We further fine-tune the weights of this net-

work for the object detection task on our eight furniture

categories using three publicly available datasets, namely

SUN2012 detection dataset [45], ImageNet detection chal-

lenge dataset [35], and the window category of Rent3D

dataset [24]. We show detection results on a sample of our

images in Figure 5.

3.3. CAD Model Alignment

The object detection results from Section 3.2 identify the

presence of a “chair” (e.g.,) in a certain region of the image

with high probability. Now we wish to determine what kind

of chair it is, its shape, and approximate 3D pose.

Inspired by [3], we solve this retrieval problem by

searching for 3D models that are most similar in appear-

ance to the detected objects in the image. Specifically, we

consider all 3D models in the ShapeNet repository [6] asso-

ciated with our object categories of interest, i.e., chair, table,

sofa, bookshelf, bed, night table, chest, yielding 9193 mod-

els in total. Each 3D model is rendered to 32 viewpoints,

consisting of 16 uniformly sampled azimuth angles and two

elevation angles (15 and 30 degrees above horizontal).

Robust comparison of photos with CAD model render-

ings is not straightforward; simple norms like L2 do not

work well in practice, due to differences in shape, appear-

ance, shading, and the presence of occluders. We achieve

good results, once again, by using convolutional nets (see

Figure 6); we compute deep features for each of the ren-

dered images and the detected image bounding boxes and

use cosine similarity as our distance metric. More specif-

ically, we use the convolution filter response in the ROI-

pooling layer of the fine-tuned Faster-RCNN network [32]

described in Section 3.2. A benefit of using the ROI-pooling

layer is that the length of its feature vector does not depend

on the size and the aspect ratio of the bounding box, thus

avoiding the need for non-uniform rescaling (a source of ar-

tifacts in general). Choosing the rendering that best matches

each image object detection yields an estimate both for the

best-matching CAD model and its approximate 3DOF ori-

entation.

3.4. Object Placement in the Scene

Equipped with a set of CAD models and their approxi-

mate orientations, we now wish to place them in the recon-

structed room. This placement need not be exact, as we will

further optimize it in a subsequent step, but should be a rea-

sonable initial estimate. To this end, we first estimate the

intrinsic camera parameters (K) and camera rotation (R)
with respect to the room space using three orthogonal van-

ishing points [15], and choose one of the visible room cor-

ners as the origin of the world coordinate system. If none

of the corners are visible, we choose the origin to be the

intersection of the visible wall edge with the floor.

The ShapeNet 3D models are normalized with a bound-

ing box corresponding to a unit cube. Based on the align-

ment procedure from Section 3.3, we can determine the in-

put photo pixel locations corresponding to each of the eight

corners of this cube. We can find the object location and

scale in the x and y (parallel to ground plane) directions by

intersecting the ground plane with the ray casted from the

camera center through the input image pixels corresponding

to the bottom four corners of the aligned CAD model cube.
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Figure 6: Results of the top five aligned CAD models retrieved for the given object detection bounding box. The retrieved models have

similar style and pose with the given object. Last two rows on the right column show failure cases: (Row1) visual feature confusion

between different poses of the chair, and (Row2) heavy occlusion of sofa by table has made it visually similar to an L-shaped sofa.

To compute the object scale along the z axis, we compute

the ratio between the length of the four vertical edges of

the projected cube and the length of those edges from the

ground plane to the intersection of those lines with the hor-

izontal vanishing line. Note that the height of the vanishing

line is equal to the camera height.

We treat windows as a special case, as they are attached

to walls instead of floor. To place windows, we find the

intersection of the window bounding box from object de-

tection with each of the walls and assign the window to the

wall with which it has the largest overlap. The window’s de-

tected bounding box in the image back-projects to a quadri-

lateral on the assigned wall. The pose and location of win-

dow is determined by the largest axis-aligned rectangle on

the wall plane contained within that quadrilateral.

3.5. Scene Optimization via Render and Match

The placement procedure in Section 3.4 is sensitive to

several sources of error including the quantization of object

orientations, ground plane misregistration, occlusions, and

other factors, which can lead to erroneous estimates of ob-

ject pose and scale. We therefore introduce an optimization

in which the configurations of all objects in the scene are

jointly aligned. A benefit of this procedure is that it prop-

erly accounts for inter-object occlusions, and yields more

accurate estimates for object location, scale, and orienta-

tion.

After estimating the 3D room geometry and the initial

placement of the objects in the scene, we refine our ob-

ject placements by optimizing the visual similarity of the

rendered scene with that of the input image. To this end,

we solve an optimization problem where the variables are

the 3D object configurations in the scene and the objective

function is the minimization of the cosine distance between

the convolutional features obtained from the camera view

rendered scene and the input image.

More formally, suppose we detect objects {O1, ..., Ok}
in the scene. The placement of each object Oi is represented

by its (x, y, z) location, scale along the x, y and z axis as

well as the rotation. The variables for all N objects are con-

catenated into a 7N parameter vector. Given a parameter

vector, we can generate the rendered image of the scene,

denoted I∗. The cost function used in our optimization tries

to minimize the cosine distance between I∗ and the original

input image I:

minΦ(I∗, I) =
1

|C|

∑

Ci∈C

1−
Ci(I

∗) · Ci(I)

‖ Ci(I∗) ‖‖ Ci(I) ‖
(1)

We model the feature vector of an image by using the

outputs of all convolutional layers 1. In the above equation,

C refers to the set of conv layers in the network and Ci is

the feature vector obtained from the ith layer. The total cost

function is the average similarity of all layers. The convolu-

tion filters in higher layers of the network provide abstract

shape features while the details of the images such as edges

and corners appear in the features obtained from the lower

layers of the network. The features in higher levels have

larger receptive fields, and can therefore cope with larger

displacements, and help the optimization to converge in the

first iterations when the initial estimates are far off. Sim-

ilarly, the lower convolutional layers play a greater role in

later iterations, to help the objects converge with more pre-

cision. In this way, the network provides a natural coarse-

to-fine structure to the optimization.

Since our objective function is not differentiable we use

COBYLA [30], a derivative free numerical optimization

method, deployed in a Python optimization package. We

found this procedure to work very well in practice. Figure 7

shows the convergence of the method for example scenes.

4. Coloring CAD models

We use a medoid color of each object in the input image

for scene optimization (Section 3.5) and visualization. The

process is as follows. First, we project the best aligned CAD

model of an object onto its bounding box in the image. We

then find the median value of each color channel separately,

and take the closest color which appears within the mask.

We also compute the medoid color for each wall of the room

using a similar approach. We compute the mask of each

wall through the room geometry, and exclude the bounding

boxes from detected objects. This approach works well in

1We use conv1-1, conv1-2, conv2-1, conv2-2, conv3-1, conv3-2,

conv3-3, conv4-1, conv4-2, conv4-3, conv5-1, conv5-2 and conv5-3 lay-

ers in the VGG network
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Figure 7: Results of the joint scene optimization step. (Column 1) The initial object placement in the scene. (Columns 2-5) Rendering

of the scene in sample iterations during optimization. (Column 5) The last iteration of optimization. (Last column) The objective function

error and the optimization convergence. The objective function minimizes dis-similarity between the real and the rendered image. Red

dots show the sample iterations that are shown above.

Method Pixel Error(%)

Lee et al. [22] 24.70

Hedau et al. [15] 21.20

Del Pero et al. [29] 16.30

Gupta et al. [14] 16.20

Zhao et al. [50] 14.50

Schwing et al. [39] 13.59

Ramalingam et al. [31] 13.34

Mallya et al. [27] 12.83

Dasgupta et al. [9] 9.73

Ren et al. [33] 8.67

IM2CAD 10.15

Table 1: Room layout pixel misclassification error on Hedau [15].

practice for scene optimization and creates visually pleasant

renderings without falling into the uncanny valley [40] (see

results in Figure 8).

5. Experimental Results

We evaluate our IM2CAD system both qualitatively and

quantitatively on scene understanding benchmarks.

5.1. Qualitative Evaluation

We evaluated the proposed IM2CAD system with 100
real world indoor images collected from “Zillow Digs” [51].

These images are living room and bedroom shots as our

training object categories are chair, table, sofa, bookshelf,

bed, night table, chest, and window, i.e., typical bedroom

and living room furniture. We cover a variety of room styles

from traditional to modern with various furniture arrange-

ment, complexity, and clutter that are representative of real

world scenes. We also show example results on the SUN

RGB-D dataset.

Our IM2CAD approach consistently produces reason-

able results on most of the test images. Figure 8 is repre-

sentative of the top 30% of our results, where most pieces

of furniture are detected, represented using well-matched

CAD models, and properly posed. Typical failure results

are shown in Figure 9. Our failures are rarely catastrophic,

Method Pixel Error(%)

Hedau et al. [15] 24.23

Mallya et al. [27] 16.71

Dasgupta et al. [9] 10.63

Ren et al. [33] 9.31

IM2CAD 10.04

Table 2: Room layout pixel misclassification error on LSUN [1].

and generally fall into the category of some furniture items

being omitted or misplaced.

Object pose estimation can sometimes get stuck in local

optimal. Notice that the foreground chair in Figure 9(a) is in

an incorrect pose while the chair legs are aligned almost per-

fectly to the image. The last two rows of Figure 6 demon-

strate cases where the visual similarity fails to retrieve ap-

propriate CAD models. Heavily occluded objects impose

additional challenges. Notice the missing chair and coffee

table in Figure 9(a) and (b). If the room shape is not per-

fectly cubic (Figure 9(c)), room layout estimation can fail to

recover the true room shape. The windows can be confused

with paintings as they have very similar visual features (see

Figure 8). Both windows and paintings typically appear as

glassy and shiny rectangular shapes on a wall.

We use Caffe [19] to implement and train our deep net-

works. We learn the weights of our FCN network for the

room geometry estimation using stochastic gradient descent

with initial learning rate of 0.001 and weight decay of 5e-4.

We train our network in 45 epochs where the learning rate

decreases every 15 epochs. For the object detection we use

same threshold for all object categories and only keep the

detection boxes with scores higher that 0.5.

Object detection and geometric feature extraction are

processed on a Titan X GPU, while room layout sampling

and object pose estimation are computed on CPU. For a typ-

ical input image of size 300 × 500, the computational time

is approximately 0.15 seconds for object detection, 0.3 sec-

onds for geometric feature extraction, 8 seconds for room

layout sampling and ranking, and 10 seconds for object

placement. Scene optimization is an iterative process where

each iteration takes about 1 second. We set the maximum
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Figure 8: The reconstruction results. In each example the left image is the real input image and the right image is the rendered

3D CAD model produced by IM2CAD. Last row shows example results on the SUN RGB-D dataset.

Method SUN RGB-D 3DGP

Hedau et al. [15] 49.4 47.3

IM2CAD 62.6 63.2

Table 3: 3D room estimation results using voxel IoU on

SUN RGB-D [42] and 3DGP [8] datasets (higher is better).

number of iterations to be 250. The overall CAD model

creation process finishes within 5 minutes.

To produce final room renderings with global illumina-

tion, we use Blender Cycle Render Engine [5], with fixed

lighting consisting of distant sunlight from the top right

point and five area lights on the ceiling. The final rendering

process takes about 15 minutes with global illumination.

5.2. 2D Room Layout Estimation

To evaluate the accuracy of room layout estimation, we

compute the pixelwise difference between the predicted lay-

out and the ground truth layout labels, averaged across all

images as the evaluation metric. We evaluated on the test

split of [15] dataset (we do not use their training split).

Our FCN features (without 3D box estimation) achieve

a 12.4% pixel misclassification error compared to 28.9%
of [17] on the leading benchmark dataset [15] (see Fig-

ure 4). When combined with a box-fitting step of [15, 22],

we achieve competitive result of 10.15% error compared

with [9] and [33] as shown in Table 1. More specifically,

we improve the reported result of [27] by 2.7%, [9] by

3.1%, and [33] by 4.2%. As an ablation study to evalu-

SUN RGB-D 3DGP

Method voxel IoU mAP voxel IoU mAP

3DGP [8] 38.7 42.1 38.4 59.7

IM2CAD (w/o optim.) 46.1 74.7 53.5 86.6

IM2CAD (w/ optim.) 49.0 75.6 53.8 86.6

Table 4: 3D scene free space prediction (voxel IoU) and

object localization (mAP) results on SUN RGB-D [42] and

3DGP [8] datasets (higher is better).

ate the effect of different room hypothesis estimation ap-

proaches, we tested our approach while being combined

with either of [15] or [22] and we obtain an error of 11.02%
and 11.13%, respectively.

We also evaluated performance on the task of room lay-

out pixel misclassification using the LSUN dataset [1]. As

summarized in Table 2, IM2CAD outperforms previous ap-

proaches [15, 27] significantly as well as [9] and obtains

competitive results with recent approach of [33].

5.3. 3D Room Estimation and Scene Understanding

Our IM2CAD system is also applicable for 2D and 3D

scene understanding as well as room layout estimation. For

evaluating our performance in scene understanding tasks,

we use the SUN RGB-D dataset [42]. This dataset contains

images captured from different view points, some of the im-

ages have low field of view and a considerable number of

them are captured from highly cluttered scenes. Note that,

although the SUN RGB-D dataset contains the depth data
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(a) (b) (c)

Figure 9: Failure cases: inaccurate chair pose (a); mis-detection of a chair (a) and table (b); non-cubic room shape (c).

for all the images, we do not use the depth information at

either train or test time, but estimate the 3D room geom-

etry as well as object layout using only single 2D images.

We use the test split for the bedroom and living room scene

categories with a total of 484 images.

3D Room Layout Estimation 3D room layout estimation

enables precise reasoning about free space versus spaces oc-

cupied by objects. In the absence of depth data, this task is

challenging as it requires reasoning about room geometry

from 2D images. Our 3D room layout estimation is eval-

uated by computing the intersection over union (IoU) be-

tween the predicted and the ground truth free spaces. Fol-

lowing [42], we assume empty rooms without objects and

define a voxel grid of 0.1 × 0.1 × 0.1 meter. The effective

voxels are the ones that are located within 0.5 and 5.5 me-

ters from the camera and are inside the field of view. We

check whether each voxel is inside the 3D room polygon

and compute the intersection and union computed by count-

ing the 3D voxels. Table 3 summarizes our obtained results.

Our method outperforms [15] by 13.2%.

Scene Understanding The task of scene understanding

integrates recognition and localization of all the objects as

well as estimating the room structure. Compared to the task

of 3D room estimation, this is a more challenging task as it

requires detecting non-free spaces occupied by the objects.

We compute the distance between the projection of the box

centroid on the ground plane for all pairs of predicted and

ground truth objects with the same label. We sort the dis-

tances in ascending order for each available pair and choose

the pair with the shortest distance while the two boxes are

marked as unavailable. We compute the precision and recall

by varying the distance threshold and use the mean average

precision as object localization metric.

Free space prediction is evaluated in a similar manner to

the 3D room layout. The visible 3D voxels for the free space

inside the room polygon but outside any object bounding

box is computed and then the IoU between the free space

prediction and the ground truth is computed. Table 4 shows

the results of free space prediction and object localization

on SUN RGB-D dataset. We compare the performance of

our approach for scene understanding with [8]. IM2CAD

obtains superior results compared with [8] in both metrics

i.e., 33.5% boost in the mean AP and 11.7% in scene free

space prediction. We compare our results before and after

applying scene optimization (Section 3.5). Our scene opti-

mization approach results in improved accuracy for the task

of scene understanding.

We also report IM2CAD performance on the dataset pre-

sented in [8] which we call 3DGP. We use 372 images from

the test split of living room, bedroom and dining room cat-

egories. However, we do not train our model on the 3DGP

training set. To estimate the ground truth camera parame-

ters, we compute the pseudo ground truth vanishing points

by using the annotated ground truth edges corresponding to

the three vanishing points following the experimental set-

ting of [8] for 3D scene evaluation. We evaluate on the three

tasks of 3D room layout, whole scene free space prediction,

and object localization. These results are summarized in Ta-

bles 3 and 4. For the task of 3D room estimation, IM2CAD

significantly outperforms [8] by 15.9%. In the free space

prediction task, IM2CAD obtains significantly better results

than 3DGP in both voxel IoU and mean AP criteria.

6. Conclusion

This paper presents a fully automatic system that recon-

structs a 3D CAD model of an indoor scene from a single

photograph, by utilizing a large database of 3D furniture

models. It estimates room geometry, and detects and aligns

objects in the image with accurate 3D poses. We introduce

novel approaches for room modeling and scene optimiza-

tion, that are keys to the success of our system. We evaluate

on a wide range of living room and bedroom photographs

with a variety of home styles. The results demonstrate the

effectiveness of our approach in creating 3D CAD models

that faithfully resemble the real scenes. With the abundance

of indoor photos available online, our system is applicable

to produce a large database of indoor scene models. Our

approach obtains significant improvement on the 2D room

layout estimation and 3D scene understanding benchmarks.

Our system does have limitations suggesting a number of

areas for future work. We assume the room geometry in the

image can be modeled with a cube. Working with compli-

cated room geometry is an area of future improvement. Un-

derstandably, heavily occluded objects impose challenges.

We assume objects are always on the ground plane (e.g.,

chairs and beds) or attached to walls (windows), posing a

lamp on a table would require extension of our work. In-

corporating more object types would lead to more general

scenes and room types (e.g. kitchens and bathrooms).

Acknowledgements

This work was supported by funding from National Sci-

ence Foundation grant IIS-1250793, Google, and the UW

Animation Research Labs.

5141



References

[1] Lsun room layout estimation dataset. http://lsun.cs.

princeton.edu/, 2015. 2, 3, 6, 7

[2] A. Y. N. Ashutosh Saxena, Sung H. Chung. Learning depth

from single monocular images. In NIPS, 2005. 2

[3] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic.

Seeing 3D chairs: exemplar part-based 2D-3D alignment us-

ing a large dataset of cad models. In CVPR, 2014. 2, 4

[4] A. Bansal, B. Russell, and A. Gupta. Marr revisited: 2d-3d

alignment via surface normal prediction. In CVPR, 2016. 2,

3

[5] Blender. Blender cycles render engine. https:

//www.blender.org/manual/en/render/

cycles/index.html. 7

[6] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich

3D Model Repository. Technical Report arXiv:1512.03012

[cs.GR], 2015. 2, 4

[7] A. X. Chang, M. Savva, and C. D. Manning. Learning spatial

knowledge for text to 3d scene generation. In EMNLP, 2014.

2

[8] W. Choi, Y.-W. Chao, C. Pantofaru, and S. Savarese. Indoor

scene understanding with geometric and semantic contexts.

IJCV, 2015. 2, 7, 8

[9] S. Dasgupta, K. Fang, K. Chen, and S. Savarese. Delay:

Robust spatial layout estimation for cluttered indoor scenes.

In CVPR, 2016. 2, 6, 7

[10] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In ICCV, 2015. 3

[11] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Han-

rahan. Example-based synthesis of 3d object arrangements.

TOG, 31(6):135, 2012. 2

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 2

[13] R. Guo, C. Zou, and D. Hoiem. Predicting complete 3d mod-

els of indoor scenes. arXiv preprint arXiv:1504.02437, 2015.

3

[14] A. Gupta, M. Hebert, T. Kanade, and D. M. Blei. Estimat-

ing spatial layout of rooms using volumetric reasoning about

objects and surfaces. In NIPS, 2010. 2, 6

[15] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial

layout of cluttered rooms. In ICCV, 2009. 2, 3, 4, 6, 7, 8

[16] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo

pop-up. In SIGGRAPH, 2005. 2

[17] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface

layout from an image. IJCV, 2007. 3, 7

[18] Q. Huang, H. Wang, and V. Koltun. Single-view reconstruc-

tion via joint analysis of image and shape collections. In

SIGGRAPH, 2015. 2

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of

the ACM International Conference on Multimedia, 2014. 4,

6

[20] N. Kholgade, T. Simon, A. Efros, and Y. Sheikh. 3D object

manipulation in a single photograph using stock 3d models.

In SIGGRAPH, 2014. 2

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS. 2012. 2

[22] D. C. Lee, M. Hebert, and T. Kanade. Geometric reasoning

for single image structure recovery. In CVPR, 2009. 2, 3, 6,

7

[23] J. J. Lim, A. Khosla, and A. Torralba. Fpm: Fine pose parts-

based model with 3d cad models. In ECCV, 2014. 2

[24] C. Liu, A. G. Schwing, K. Kundu, R. Urtasun, and S. Fidler.

Rent3d: Floor-plan priors for monocular layout estimation.

In CVPR, 2015. 4

[25] Z. Liu, Y. Zhang, W. Wu, K. Liu, and Z. Sun. Model-driven

indoor scenes modeling from a single image. In Proceedings

of the 41st Graphics Interface Conference, 2015. 2, 3

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 3

[27] A. Mallya and S. Lazebnik. Learning informative edge maps

for indoor scene layout prediction. In ICCV, 2015. 2, 3, 6, 7

[28] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun.

Interactive furniture layout using interior design guidelines.

In SIGGRAPH, 2011. 2

[29] L. D. Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley,

and K. Barnard. Bayesian geometric modeling of indoor

scenes. In CVPR, 2012. 2, 6

[30] M. J. Powell. A direct search optimization method that mod-

els the objective and constraint functions by linear interpo-

lation. In Advances in optimization and numerical analysis.

1994. 5

[31] S. Ramalingam, J. Pillai, A. Jain, and Y. Taguchi. Manhattan

junction catalogue for spatial reasoning of indoor scenes. In

CVPR, 2013. 6

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NIPS, 2015. 2, 4

[33] Y. Ren, C. Chen, S. Li, and C.-C. J. Kuo. A coarse-to-

fine indoor layout estimation (cfile) method. arXiv preprint

arXiv:1607.00598, 2016. 2, 6, 7

[34] L. G. Roberts. Machine perception of three-dimensional

solids. PhD thesis, Massachusetts Institute of Technology,

1963. 1

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 2015. 4

[36] R. Salas-Moreno, R. Newcombe, H. Strasdat, P. Kelly, and

A. Davison. Slam++: Simultaneous localisation and map-

ping at the level of objects. In CVPR, 2013. 2

[37] S. Satkin, M. Rashid, J. Lin, and M. Hebert. 3dnn: 3d nearest

neighbor. IJCV, 2015. 2, 3

[38] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box

in the box: Joint 3d layout and object reasoning from single

images. In ICCV, 2013. 2

[39] A. G. Schwing and R. Urtasun. Efficient exact inference for

3d indoor scene understanding. In ECCV. 2012. 6

5142

http://lsun.cs.princeton.edu/
http://lsun.cs.princeton.edu/
https://www.blender.org/manual/en/render/cycles/index.html
https://www.blender.org/manual/en/render/cycles/index.html
https://www.blender.org/manual/en/render/cycles/index.html


[40] J. Seyama and R. S. Nagayama. The uncanny valley: Ef-

fect of realism on the impression of artificial human faces.

Presence, 16(4):337–351, 2007. 6

[41] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3, 4

[42] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d

scene understanding benchmark suite. In CVPR, 2015. 2, 7,

8

[43] S. Tulsiani and J. Malik. Viewpoints and keypoints. In

CVPR, 2015. 2

[44] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Tor-

ralba, and W. T. Freeman. Single image 3d interpreter net-

work. In ECCV, 2016. 2

[45] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.

Sun database: Large-scale scene recognition from abbey to

zoo. In CVPR, 2010. 4

[46] J. Xiao, B. Russell, and A. Torralba. Localizing 3D cuboids

in single-view images. In NIPS, 2012. 2

[47] L.-F. Yu, S.-K. Yeung, C.-K. Tang, D. Terzopoulos, T. F.

Chan, and S. J. Osher. Make it home: automatic optimization

of furniture arrangement. In SIGGRAPH, 2011. 2

[48] B. Zeisl, M. Pollefeys, et al. Discriminatively trained dense

surface normal estimation. In ECCV, 2014. 3

[49] Y. Zhang, S. Song, P. Tan, and J. Xiao. PanoContext: A

whole-room 3d context model for panoramic scene under-

standing. In ECCV, 2014. 2

[50] Y. Zhao and S.-C. Zhu. Scene parsing by integrating func-

tion, geometry and appearance models. In CVPR, 2013. 6

[51] Zillow. Zillow Digs. http://www.zillow.com/

digs/. 6

5143

http://www.zillow.com/digs/
http://www.zillow.com/digs/

