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Abstract

Generating diverse questions for given images is an im-

portant task for computational education, entertainment

and AI assistants. Different from many conventional pre-

diction techniques is the need for algorithms to generate a

diverse set of plausible questions, which we refer to as “cre-

ativity”. In this paper we propose a creative algorithm for

visual question generation which combines the advantages

of variational autoencoders with long short-term memory

networks. We demonstrate that our framework is able to

generate a large set of varying questions given a single in-

put image.

1. Introduction

Creativity is a mindset that can be cultivated, and inge-

nuity is not a gift but a skill that can be trained. Pushing this

line of thought one step further, in this paper, we ask: why

are machines and in particular computers not creative? Is it

due to the fact that our environment is oftentimes perfectly

predictable at the large scale? Is it because the patterns of

our life provide convenient shortcuts, and creativity is not a

necessity to excel in such an environment?

Replicating human traits on machines is a long-standing

goal, and remarkable recent steps to effectively extract rep-

resentations from data [7, 41] have closed the gap between

human-level performance and ‘computer-level’ accuracy on

a large variety of tasks such as object classification [39],

speech-based translation [61], and language-modeling [28].

There seems no need for computers to be creative. How-

ever, creativity is crucial if existing knowledge structures

fail to yield the desired outcome. We cannot hope to encode

all logical rules into algorithms, or all observations into fea-

tures, or all data into representations. Hence, we need novel

frameworks to automatically mine and implicitly character-

ize knowledge databases, and we need algorithms which are

creative at combining those database entries.

Generative modeling tools can be used for those tasks

∗ indicates equal contributions.

Figure 1: Questions generated by our approach - literal

to inferential, i.e., questions following visual content and

questions requiring scene understanding and prior informa-

tion about objects.

since they aim at characterizing the distribution from which

datapoints are sampled. Classical generative models such as

restricted Boltzmann machines [27], probabilistic semantic

indexing [30] or latent Dirichlet allocation [8] sample from

complex distributions. Instead, in recent years, significant

progress in generative modeling suggests to sample from

simple distributions and to subsequently transform the sam-

ple via function approximators to yield the desired output.

Variational autoencoders [36, 35] and adversarial nets [25]

are among algorithms which follow this paradigm. Both,

variational autoencoders and adversarial nets have success-

fully been applied to a variety of tasks such as image gener-

ation, sentence generation etc.

In this work we will use those algorithms for the novel

task of visual question generation as opposed to visual ques-

tion answering. Visual question generation is useful in a

variety of areas where it is important to engage the user,

e.g., in computational education, for AI assistants, or for

entertainment. Retaining continued interest and curiosity

is crucial in all those domains, and can only be achieved

if the developed system is continuously exposing novel as-

pects rather than repeating a set of handcrafted traits. Visual

question generation closes the loop to question-answering

and diverse questions enable engaging conversation, help-

ing AI systems such as driving assistants, chatbots, etc., to

perform better on Turing tests. Concretely, consider a pro-

gram that aims at teaching kids to describe images. Even if
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Figure 2: Examples of questions generated by our VQG algorithm. Darker colored boxes contain questions which are

more inferential. Our questions include queries about numbers and scanty clouds showing its visual recognition strength.

Questions on events, type of sport and motion demonstrate an ability to understand scenes and actions. Unlike questions on

colors, counts and shapes, the questions in bold box are exemplars of how diverse our model is. It fuses visual information

with context to ask questions which cannot be answered simply by looking at the image. Its answer requires prior (human-

like) understanding of the objects or scene. The questions with bold ticks (✔) are generated by our VQG model which never

occurred during training (what we refer to as ‘unseen’ questions).

100 exciting questions are provided, the program will even-

tually exhaust all of them and we quickly put the program

aside mocking about repetitive ‘behavior.’ To alleviate this

issue, we argue that creative mechanisms are important, par-

ticularly in domains such as question generation.

In this paper we propose a technique for generating di-

verse questions that is based on generative models. More

concretely, we follow the variational autoencoder paradigm

rather than adversarial nets, because training seems often-

times more stable. We learn to embed a given question

and the features from a corresponding image into a low-

dimensional latent space. During inference, i.e., when we

are given a new image, we generate a question by sampling

from the latent space and subsequently decode the sample

together with the feature embedding of the image to obtain

a novel question. We illustrate some images and a subset of

the generated questions in Fig. 1 and Fig. 2. Note the di-

versity of the generated questions some of which are more

literal while others are more inferential.

In this paper we evaluate our approach on the VQG -

COCO, Flickr and Bing datasets [50]. We demonstrate that

the proposed technique is able to ask a series of remarkably

diverse questions given only an image as input.

2. Related Work

When considering generation of text from images, cap-

tion and paragraph generation [32, 4, 11, 18, 19, 20, 13, 33,

37, 40, 48, 60, 64, 69], as well as visual question answer-

ing [2, 22, 47, 52, 57, 67, 68, 71, 21, 34, 74, 1, 15, 31, 72,

73, 66, 46, 45, 31] come to mind immediately. We first re-

view those tasks before discussing work related to visual

question generation and generative modeling in greater de-

tail.

Visual Question Answering and Captioning are two tasks

that have received a considerable amount of attention in re-

cent years. Both assume an input image to be available dur-

ing inference. For visual question answering we also as-

sume a question to be provided. For both tasks a variety of

different models have been proposed and attention mecha-

nisms have emerged as a valuable tool because they permit

to catch a glimpse on what the generally hardly interpretable

neural net model is concerned about.

Visual Question Generation is a task that has been pro-

posed very recently and is still very much an open-ended

topic. Ren et al. [52] proposed a rule-based algorithm to

convert a given sentence into a corresponding question that

has a single word answer. Mostafazadeh et al. [50] were

the first to learn a question generation model using human-

authored questions instead of machine-generated captions.

They focus on creating a ‘natural and engaging’ question.

Recently, Vijayakumar et al. [63] have shown preliminary

results for this task as well.

We think that visual question generation is an important

task for two reasons. First, the task is dual to visual ques-

tion answering and by addressing both tasks we can close

the loop. Second, we think the task is in spirit similar to

‘future prediction’ in that a reasonable amount of creativ-

ity has to be encoded in the model. Particularly the latter

is rarely addressed in the current literature. For example,

Mostafazadeh et al. [50] obtain best results by generating
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a single question per image using a forward pass of image

features through a layer of LSTMs or gated recurrent units

(GRUs). Vijayakumar et al. [63] show early results of ques-

tion generation by following the same image caption gen-

erative model [64] as COCO-QA, but by adding a diverse

beam search step to boost diversity.

Both techniques yield encouraging results. However

in [50] only a single question is generated per image, while

the approach discussed in [63] generates diverse questions

by sampling from a complicated energy landscape, which is

intractable in general [23, 5]. In contrast, in this paper, we

follow more recent generative modeling paradigms by sam-

pling form a distribution in an encoding space. The encod-

ings are subsequently mapped to a high-dimensional repre-

sentation using, in our case, LSTM nets, which we then use

to generate the question.

Generative Modeling of data is a longstanding goal. First

attempts such as k-means clustering [43] and the Gaussian

mixture models [16] restrict the class of considered distri-

butions severely, which leads to significant modeling errors

when considering complex distributions required to model

objects such as sentences. Hidden Markov models [6],

probabilistic latent semantic indexing [30], latent Dirichlet

allocation [9] and restricted Boltzmann machines [59, 27]

extend the classical techniques. Those extensions work well

when carefully tuned to specific tasks but struggle to model

the high ambiguity inherently tied to images.

More recently deep nets have been used as function ap-

proximators for generative modeling, and, similar to deep

net performance in many other areas, they produced ex-

tremely encouraging results [25, 17, 51]. Two very suc-

cessful approaches are referred to as generative adversar-

ial networks (GANs) [25] and variational auto-encoders

(VAEs) [36]. However their success relies on a variety of

tricks for successful training [53, 25, 51, 10].

Variational auto-encoders (VAEs) were first introduced

by Kingma and Welling [36] and they were quickly adopted

across different areas. They were further shown to be use-

ful in the semi-supervised setting [35]. Conditional VAEs

were recently considered by Yan et al. [70]. Moreover, it

was also shown by Krishnan et al. [38] and Archer et al. [3]

how to combine VAEs with continuous state-space models.

In addition, Gregor et al. [26] and Chung et al. [14] demon-

strated how to extend VAEs to sequential modeling, where

they focus on RNNs.

3. Approach

For the task of visual question generation, demonstrated

in Fig. 2, we rely on variational autoencoders (VAEs).

Therefore, in the following, we first provide background on

VAEs before presenting the proposed approach.

Figure 3: High level VAE overview of our approach.

3.1. Background on Variational Autoencoders

Following common techniques for latent variable mod-

els, VAEs assume that it is easier to optimize a parametric

distribution pθ(x, z) defined over both the variables x, in

our case the words of a sentence, as well as a latent rep-

resentation z. By introducing a data-conditional latent dis-

tribution qφ(z|x) the log-likelihood of a datapoint x, i.e.,

ln pθ(x), can be re-written as follows:

ln pθ(x) =
∑

z

qφ(z|x) ln pθ(x)

=
∑

z

[

qφ(z|x) ln
pθ(x, z)

qφ(z|x)
− qφ(z|x) ln

pθ(z|x)

qφ(z|x)

]

= L(qφ(z|x), pθ(x, z)) + KL(qφ(z|x), pθ(z|x)). (1)

Since the KL-divergence is non-negative, L is a lower

bound on the log-likelihood ln pθ(x). Note that compu-

tation of the KL-divergence is not possible because of the

unknown and generally intractable posterior pθ(z|x). How-

ever when choosing a parametric distribution qφ(z|x) with

capacity large enough to fit the posterior pθ(z|x), the log-

likelihood w.r.t. θ is optimized by instead maximizing the

lower bound w.r.t. both θ, and φ. Note that the maximiza-

tion of L w.r.t. φ reduces the difference between the lower

bound L and the log-likelihood ln pθ(x). Instead of directly

maximizing the lower bound L given in Eq. (1) w.r.t. θ, φ,

dealing with a joint distribution pθ(x, z) can be avoided via

L(qφ, pθ) =
∑

z

qφ(z|x) ln
pθ(x|z)pθ(z)

qφ(z|x)

=
∑

z

qφ(z|x) ln
pθ(z)

qφ(z|x)
+
∑

z

qφ(z|x) ln pθ(x|z)

=−KL(qφ(z|x), pθ(z)) + Eqφ(z|x) [ln pθ(x|z)] . (2)
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Figure 4: Q-distribution: The V -dimensional 1-hot encod-

ing of the vocabulary (blue) gets embedded linearly via

We ∈ R
E×V (purple). Embedding and F -dimensional im-

age feature (green) are the LSTM inputs, transformed to fit

the H dimensional hidden space. We transform the final

hidden representation via two linear mappings to estimate

mean and log-variance.

Note that pθ(z) is a prior distribution over the latent space

and qφ(z|x) is modeling the intractable and unknown pos-

terior pθ(z|x). Intuitively the model distribution is used to

guide the likelihood evaluation by focusing on highly prob-

able regions.

In a next step the expectation over the model distribution

qφ is approximated with N samples zi ∼ qφ, i.e., after ab-

breviating KL(qφ(z|x), pθ(z)) with KL(qφ, pθ) we obtain:

min
φ,θ

KL(qφ, pθ)−
1

N

N
∑

i=1

ln pθ(x|z
i), s.t. zi ∼ qφ. (3)

In order to solve this program in an end-to-end manner,

i.e., to optimize w.r.t. both the model parameters θ and the

parameters φ which characterize the distribution over the

latent space, it is required to differentiate through the sam-

pling process. To this end Kingma and Welling [36] pro-

pose to make use of the ‘reparameterization trick.’ For ex-

ample, if we restrict qφ(z|x) to be an independent Gaus-

sian with mean µj and variance σj for each component

zj in z = (z1, . . . , zM ), then we can sample easily via

zij = µj + σj · ǫ
i where ǫi ∼ N (0, 1). The means µj(x, φ)

and variances σj(x, φ) are parametric functions which are

provided by the encoder. A general overview of VAEs is

provided in Fig. 3.

3.2. Visual Question Generation

In the following we describe our technique for learning

a high-dimensional embedding and for inference in greater

Figure 5: P-distribution: Input to the LSTM units are the F -

dimensional image feature f(I), the M -dimensional sam-

ple z (transformed during training), and the E-dimensional

word embeddings. To obtain a prediction we transform the

H-dimensional latent space into the V -dimensional logits

pi.

detail. We start with the learning setting before diving into

the details regarding inference.

Learning: As mentioned before, when using a variational

autoencoder, choosing appropriate q and p distributions is

of crucial importance. We show a high-level overview of

our method in Fig. 3 and choose LSTM models for the en-

coder (q-distribution) and decoder (p-distribution). Learn-

ing amounts to finding the parameters φ and θ of both mod-

ules. We detail our choice for both distributions in the fol-

lowing and provide more information regarding the train-

able parameters of the model.

Q-distribution: The q-distribution encodes a given sen-

tence and a given image signal into a latent representation.

Since this embedding is only used during training we can

assume images and questions to be available in the follow-

ing. Our technique to encode images and questions is based

on long short-term memory (LSTM) networks [29]. We vi-

sualize the computations in Fig. 4.

Formally, we compute an F -dimensional feature f(I) ∈
R

F of the provided image I using a neural net, e.g., the

VGG net discussed by Simonyan and Zisserman [58]. The

LSTM unit first maps the image feature linearly into its H

dimensional latent space using a matrix WI ∈ R
H×F . For

simplicity we neglect bias terms here and in the following.

Moreover, each V -dimensional 1-hot encoding xi ∈ x =
(x1, . . . , xT ) selects an E-dimensional word embedding

vector from the matrix We ∈ R
E×V , which is learned. The

LSTM unit employs another linear transformation using the

matrix We,2 ∈ R
H×E to project the word embedding into

the H dimensional space used inside the LSTM cells. We

leave usage of more complex embeddings such as [65, 24]

to future work.

Given the F -dimensional image feature f(I) and the E-

dimensional word embeddings, the LSTM internally main-
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BLEU METEOR
Sampling

Average Oracle Average Oracle

N1, 100 0.356 0.393 0.199 0.219

N1, 500 0.352 0.401 0.198 0.222

U10, 100 0.328 0.488 0.190 0.275

U10, 500 0.326 0.511 0.186 0.291

U20, 100 0.316 0.544 0.183 0.312

U20, 500 0.311 0.579 0.177 0.342
Table 1: Accuracy metrics: Maximum (over the epochs) of

average and oracle values of BLEU and METEOR metrics.

Sampling the latent space by uniform distribution leads to

better oracle scores. Sampling the latent space by a normal

distribution leads to better average metrics. Interpretation in

Sec. 4.3. Table for VQG-Flickr and VQG-Bing are similar

and are included in the supplementary material.

tains an H-dimensional representation. We found that pro-

viding the image embedding in the first step and each word

embedding in subsequent steps to perform best. After hav-

ing parsed the image embedding and the word embeddings,

we extract the final hidden representation hT ∈ R
H from

the last LSTM step. We subsequently apply two linear

transformations to the final hidden representation in or-

der to obtain the mean µ = WµhT and the log variance

log(σ2) = WσhT of an M -variate Gaussian distribution,

i.e., Wµ ∈ R
M×H and Wσ ∈ R

M×H . During training a

zero mean and unit variance is encouraged, i.e., we use the

prior pθ(z) = N (0, 1) in Eq. (3).

P-distribution: The p-distribution is used to reconstruct

a question x̂ given, in our case, the image representation

f(I) ∈ R
F , and an M -variate random sample z. Dur-

ing inference the sample is drawn from a standard nor-

mal N (0, 1). During training, this sample is shifted and

scaled by the mean µ and the variance σ2 obtained as out-

put from the encoder (the reparameterization trick). For the

p-distribution and the q-distribution, we use the same image

features f(I), but learn a different word embedding matrix,

i.e., for the decoder Wd ∈ R
E×V . We observe different em-

bedding matrices for the encoder and decoder to yield better

empirical results. Again we omit the bias terms.

Analogously to the encoder we use an LSTM network

for decoding, which is visualized in Fig. 5. Again we pro-

vide the F -dimensional image representation f(I) as the

first input signal. Different from the encoder we then pro-

vide as the input to the second LSTM unit a randomly

drawn M -variate sample z ∼ N (0, 1), which is shifted

and scaled by the mean µ and the variance σ2 during train-

ing. Input to the third and all subsequent LSTM units is

an E-dimensional embedding of the start symbol and sub-

sequently the word embeddings Wdxi. As for the encoder,

those inputs are transformed by the LSTM units into its H-

dimensional operating space.

To compute the output we use the H-dimensional hidden

representation hi which we linearly transform via a V ×H-
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Figure 6: Accuracy metrics: BLEU and METEOR scores

for VQG-COCO. Experiments with various sampling pro-

cedures and results compared to the performance of the

baseline model [50] (line in black color). VQG-Flickr and

VQG-Bing results are similar and have been included in the

supplementary material.

dimensional matrix into the V -dimensional vocabulary vec-

tor of logits, on top of which a softmax function is applied.

This results in a probability distribution p0 over the vocabu-

lary at the third LSTM unit. During training, we maximize

the predicted log-probability of the next word in the sen-

tence, i.e., x1. Similarly for all subsequent LSTM units.

In our framework, we jointly learn the word-embedding

We ∈ R
E×V together with the V × H-dimensional out-

put embedding, the M ×H-dimensional encoding, and the

LSTM projections to the H-dimensional operating space.

The number of parameters (including the bias terms) in our

case are 2V E from the word embeddings matrix, one for

the encoder and another for the decoder; HV + V as well

as 2(HM +M) from the output embedding of the decoder

and the encoder respectively; (FH +H) + 2(EH +H) +
(MH +H) + (HH +H) internal LSTM unit variables.
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Sampling
Generative Strength

(%)

Inventiveness

(%)

N1, 100 1.98 10.76

N1, 500 2.32 12.19

U10, 100 9.82 18.78

U10, 500 16.14 24.32

U20, 100 22.01 19.75

U20, 500 46.10 27.88

Table 2: Diversity metrics: Maximum (over the epochs)

value of generative strength and inventiveness on the VQG-

COCO test set. Sampling the latent space by a uniform dis-

tribution leads to more unique questions as well as more

unseen questions. Table for VQG-Flickr and VQG-Bing are

similar and are included in the supplementary material.

Inference: After having learned the parameters of our

model on a dataset consisting of pairs of images and ques-

tions we obtain a decoder that is able to generate questions

given an embedding f(I) ∈ R
F of an image I and a ran-

domly drawn M -dimensional sample z either from a stan-

dard normal or a uniform distribution. Importantly for every

different choice of input vector z we generate a new ques-

tion x = (x1, . . . , xT ).
Since no groundtruth V -dimensional embedding is avail-

able, during inference, we use the prediction from the previ-

ous timestep as the input to predict the word for the current

timestep.

3.3. Implementation details

Throughout, we used the 4096-dimensional fc6 layer of

the 16-layer VGG model [58] as our image feature f(I),
i.e., F = 4096. We also fixed the 1-hot encoding of the

vocabulary, i.e., V = 10849, to be the number of words

we collect from our datasets (VQA+VQG, detailed in the

next section). We investigated different dimensions for the

word embedding (E), the hidden representation (H), and

the encoding space (M ). We found M = 20, H = 512,

and E = 512 to provide enough representational power

for training on roughly 400, 000 questions obtained from

roughly 126, 000 images.

We found an initial learning rate of 0.01 for the first 5
epochs to reduce the loss quickly and to give good results.

We reduce this learning rate by half every 5 epochs.

4. Experiments

In the following we evaluate our proposed technique on

the VQG dataset [50] and present a variety of different met-

rics to demonstrate the performance. We first describe the

datasets and metrics, before providing our results.

4.1. Datasets:

VQA dataset: The images of the VQA dataset [2] are

obtained from the MS COCO dataset [42], and divided

into 82, 783 training images, 40, 504 validation images and
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Total unique questions for that image

Figure 7: Diversity metrics: Generative strength and In-

ventiveness, averaged over all the images in the VQG-

COCO test set. VQG-Flickr and VQG-Bing results are sim-

ilar and are included in the supplementary material.

40, 775 testing images. Each image in the training and vali-

dation sets is annotated with 3 questions. The answers pro-

vided in the VQA dataset are not important for the problem

we address.

VQG datasets: The Visual Question Generation [50]

dataset consist of images from MS COCO, Flickr and Bing.

Each of these sets consists of roughly 5, 000 images and 5
questions per image (with some exceptions). Each set is

split into 50% training, 25% validation and 25% test. VQG

is a dataset of natural and engaging questions, which goes

beyond simple literal description based questions.

The VQG dataset targets the ambitious problem of ‘natu-

ral question generation.’ However, due to its very small size,

training of larger scale generative models that fit the high-

dimensional nature of the problem is a challenge. Through-

out our endeavor we found a question dataset size similar to
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Figure 8: Sunburst plots for diversity: Visualizing the diversity of questions generated for each of VQG datasets. The ith

ring captures the frequency distribution over words for the ith word of the generated question. The angle subtended at the

center is proportional to the frequency of the word. While some words have high frequency, the outer rings illustrate a fine

blend of words similar to the released dataset [50]. We restrict the plot to 5 rings for easy readability.

the size of the VQA dataset to be extremely beneficial.

VQA+VQG dataset To address this issue, we combined

the VQA and VQG datasets. VQA’s sheer size provides

enough data to learn the parameters of our LSTM based

VAE model. Moreover, VQG adds additional diversity

due to the fact that questions are more engaging and nat-

ural. The combined training set has 125, 697 images (VQA

training + VQA validation + VQG-COCO training - VQG-

COCO validation - VQG-COCO test + VQG-Flickr training

+ VQG-Bing training) and a total of 399, 418 questions. We

ensured that there is absolutely no overlap between the im-

ages we train on and the images we evaluate. Since different

images may have the same question, the number of unique

questions out of all training question is 238, 699.

4.2. Metrics

BLEU: BLEU, originally designed for evaluating the task

of machine translation, was one of the first metrics that

achieved good correlation with human judgment. It cal-

culates ‘modified’ n-gram precision and combines them to

output a score between 0 to 1. BLEU-4 considers up to

4-grams and has been used widely for evaluation of exist-

ing works on machine translation, generating captions and

questions.

METEOR: The METEOR score is another machine trans-

lation metric which correlates well with human judgment.

An F-measure is computed based on word matches. The

best among the scores obtained by comparing the candidate

question to each reference question is returned. In our case

there are five reference questions for each image in VQG

test sets. Despite BLEU and METEOR having considerable

shortcomings (details in [62]), both are popular metrics of

comparison.

Oracle-metrics: There is a major issue in directly using

machine translation metrics such as BLEU and METEOR

for evaluating generative approaches for caption and ques-

tion generation. Unlike other approaches which aim to cre-

ate a caption or question which is similar to the ‘reference,’

generative methods like [64, 63] and ours produce multiple

diverse and creative results which might not be present in

the dataset. Generating a dataset which contains all pos-

sible questions is desirable but illusive. Importantly, our

algorithm may not necessarily generate questions which are

only simple variations of a groundtruth question as sam-

pling of the latent space provides the ability to produce a

wide variety of questions. [64, 63] highlight this very issue,

and combat it by stating their results using what [63] calls

oracle-metrics. Oracle-BLEU, for example, is the maxi-

mum value of the BLEU score over a list of k potential

candidate questions. Using these metrics we compare our

results to approaches such as [50] which infer one question

per image aimed to be similar to the reference question.

Diversity score: Popular machine translation metrics such

as BLEU and METEOR provide an insight into the accu-

racy of the generated questions. In addition to showing that

we perform well on these metrics, we felt a void for a met-

ric which captures the diversity. This metric is particularly

important when being interested in an engaging system. To

demonstrate diversity, we evaluate our model on two intu-

itive metrics which could serve as relevant scores for fu-

ture work attempting to generate diverse questions. The two

metrics we use are average number of unique questions gen-

erated per image, and the percentage among these questions

which have never been seen at training time. The first metric

assesses what we call the generative strength and the latter

represents the inventiveness of models such as ours.

4.3. Evaluation

In the following we first evaluate our proposed approach

quantitatively using the aforementioned metrics, i.e., BLEU

score, METEOR score and the proposed diversity score.

Subsequently, we provide additional qualitative results il-
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lustrating the diversity of our approach. We show results

for two sampling techniques, i.e., sampling z uniformly and

sampling z using a normal distribution.

BLEU: BLEU score approximates human judgment at a

corpus level and does not necessarily correlate well if used

to evaluate sentences individually. Hence we state our re-

sults for the corpus-BLEU score (similar to [50]). The best

performing models presented in [50] have corpus-BLEU of

0.192, 0.117 and 0.123 for VQG-COCO, VQG-Flickr and

VQG-Bing datasets respectively. To illustrate this baseline,

we highlight these numbers using black lines on our plots

in Fig. 6 (a).

METEOR: In Fig. 6 (b) we illustrate the METEOR score

for our model on the VQG-COCO dataset. Similar to

BLEU, we compute corpus-level scores as they have much

higher correlation with human judgment. The best per-

forming models presented in [50] have corpus-METEOR of

0.197, 0.149 and 0.162 for VQG-COCO, VQG-Flickr and

VQG-Bing datasets respectively. To illustrate this baseline,

we highlight these numbers using black lines on our plots

in Fig. 6 (b). In Tab. 1 we compile the corpus and oracle

metrics for six different sampling schemes. The sampling

for results listed towards the bottom of the table is less con-

fined. The closer the sampling scheme is to the N (0, 1),
the closer is our generated corpus of questions to the refer-

ence question of the dataset. On the other hand, the more

exploratory the sampling scheme, the better is the best can-

didate (hence, increasing oracle metrics).

Diversity: Fig. 7 illustrates the generative strength and in-

ventiveness of our model with different sampling schemes

for z. For the best z sampling mechanism of U(−20, 20) us-

ing 500 points, we obtained on average 46.10 unique ques-

tions per image (of which 26.99% unseen in the training set)

for COCO after epoch 19; For Flickr, 59.57 unique ques-

tions on average (32.80% unseen) after epoch 19; For Bing,

63.83 unique questions on average (36.92% unseen) after

epoch 15. In Tab. 2, even though the training prior over the

latent space is a N (0, 1) distribution, sampling from the ex-

ploratory U (-20,20) distribution leads to better diversity of

the generated questions.

To further illustrate the diversity of the generated ques-

tions we use the sunburst plots shown in Fig. 8 for the

COCO, Flickr and Bing datasets. Despite the fact that a

large number of questions start with “what” and “is,” we

still observe a quite reasonable amount of diversity.

Qualitative results: In Fig. 2 we show success cases of our

model. A range of literal to inferential questions are gener-

ated by our model, some requiring strong prior (human-like)

understanding of objects and their interaction. In previous

subsections we showed that our model does well on metrics

of accuracy and diversity. In Fig. 9 we illustrate two cate-

gories of failure cases. Recognition failures, where the pre-

learned visual features are incapable of capturing correctly

Figure 9: Recognition and co-occurrence based failure

cases: Left: A special aircraft is recognized as multiple

‘airplanes’ (two sets of wings instead of one may cause the

confusion), therefore, erroneous questions (marked in blue)

arise. Right: Due to very frequent co-occurrence of green

vegetable/food/fruit in food images, our VQG model gen-

erates questions (marked in green) about green vegetables

even when they are missing. The five small images are few

examples of how training set food images almost always

contain greens.

the information required to formulate diverse questions. As

illustrated by the image of a complex aircraft which appears

similar to two airplanes. Hence, our system generates ques-

tions coherent to such a perception.

Second are co-occurrence based failures. This is illus-

trated using the image of fries and a hot dog. In addi-

tion to some correct questions, some questions on green

food/fruit/vegetables inevitably pop up in food images

(even for images without any greens). Similarly, questions

about birds are generated in some non-bird images of trees.

This could be accounted to very frequent co-occurrence of

reference questions on greens or birds whenever an image

contains food or trees, respectively.

5. Conclusion

In this paper we propose to combine the advantages

of variational autoencoders with long-short-term-memory

(LSTM) cells to obtain a “creative” framework that is able

to generate a diverse set of questions given a single input

image. We demonstrated the applicability of our framework

on a diverse set of images and envision it being applicable

in domains such as computational education, entertainment

and for driving assistants & chatbots. In the future we plan

to use more structured reasoning [12, 56, 44, 49, 55, 54].
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