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Abstract

We propose a technique that propagates information for-

ward through video data. The method is conceptually sim-

ple and can be applied to tasks that require the propagation

of structured information, such as semantic labels, based

on video content. We propose a Video Propagation Net-

work that processes video frames in an adaptive manner.

The model is applied online: it propagates information for-

ward without the need to access future frames. In par-

ticular we combine two components, a temporal bilateral

network for dense and video adaptive filtering, followed

by a spatial network to refine features and increased flex-

ibility. We present experiments on video object segmenta-

tion and semantic video segmentation and show increased

performance comparing to the best previous task-specific

methods, while having favorable runtime. Additionally we

demonstrate our approach on an example regression task of

color propagation in a grayscale video.

1. Introduction

In this work, we focus on the problem of propagat-

ing structured information across video frames. This prob-

lem appears in many forms (e.g., semantic segmentation or

depth estimation) and is a pre-requisite for many applica-

tions. An example instance is shown in Fig. 1. Given an ob-

ject mask for the first frame, the problem is to propagate this

mask forward through the entire video sequence. Propaga-

tion of semantic information through time and video color

propagation are other problem instances.

Videos pose both technical and representational chal-

lenges. The presence of scene and camera motion lead to

the difficult pixel association problem of optical flow. Video

data is computationally more demanding than static images.

A naive per-frame approach would scale at least linear with

frames. These challenges complicate the use of standard

convolutional neural networks (CNNs) for video process-

ing. As a result, many previous works for video propagation

use slow optimization based techniques.

We propose a generic neural network architecture that
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Figure 1. Video Propagation with VPNs. The end-to-end trained

VPN network is composed of a bilateral network followed by a

standard spatial network and can be used for propagating infor-

mation across frames. Shown here is an example propagation of

foreground mask from the 1st frame to other video frames.

propagates information across video frames. The main in-

novation is the use of image adaptive convolutional oper-

ations that automatically adapts to the video stream con-

tent. This yields networks that can be applied to several

types of information, e.g., labels, colors, etc. and runs on-

line, that is, only requiring current and previous frames.

Our architecture is composed of two components (see

Fig. 1). A temporal bilateral network that performs image-

adaptive spatio-temporal dense filtering. The bilateral net-

work allows to connect densely all pixels from current and

previous frames and to propagate associated pixel infor-

mation to the current frame. The bilateral network allows

the specification of a metric between video pixels and al-

lows a straight-forward integration of temporal information.

This is followed by a standard spatial CNN on the bilateral

network output to refine and predict for the present video

frame. We call this combination a Video Propagation Net-

work (VPN). In effect, we are combining video-adaptive fil-

tering with rather small spatial CNNs which leads to a fa-

vorable runtime compared to many previous approaches.

VPNs have the following suitable properties for video
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processing:

General applicability: VPNs can be used to propagate

any type of information content i.e., both discrete (e.g.,

semantic labels) and continuous (e.g., color) information

across video frames.

Online propagation: The method needs no future frames

and can be used for online video analysis.

Long-range and image adaptive: VPNs can efficiently

handle a large number of input frames and are adaptive to

the video with long-range pixel connections.

End-to-end trainable: VPNs can be trained end-to-end,

so they can be used in other deep network architectures.

Favorable runtime: VPNs have favorable runtime in

comparison to many current best methods, what makes

them amenable for learning with large datasets.

Empirically we show that VPNs, despite being generic,

perform better than published approaches on video object

segmentation and semantic label propagation while being

faster. VPNs can easily be integrated into sequential per-

frame approaches and require only a small fine-tuning step

that can be performed separately.

2. Related Work

General propagation techniques Techniques for propa-

gating content across image/video pixels are predominantly

optimization based or filtering techniques. Optimization

based techniques typically formulate the propagation as an

energy minimization problem on a graph constructed across

video pixels or frames. A classic example is the color prop-

agation technique from [46]. Although efficient closed-

form solutions [47] exists for some scenarios, optimiza-

tion tends to be slow due to either large graph structures

for videos and/or the use of complex connectivity. Fully-

connected conditional random fields (CRFs) [41] open a

way for incorporating dense and long-range pixel connec-

tions while retaining fast inference.

Filtering techniques [40, 15, 30] aim to propagate infor-

mation with the use of image/video filters resulting in fast

runtimes compared to optimization techniques. Bilateral fil-

tering [5, 73] is one of the popular filters for long-range in-

formation propagation. A popular application is joint bilat-

eral upsampling [40] that upsamples a low-resolution sig-

nal with the use of a high-resolution guidance image. The

works of [51, 22, 37, 34, 81, 66] showed that one can back-

propagate through the bilateral filtering operation for learn-

ing filter parameters [37, 34] or doing optimization in the

bilateral space [8, 7]. Recently, several works proposed

to do upsampling in images by learning CNNs that mimic

edge-aware filtering [78] or that directly learn to upsam-

ple [49, 32]. Most of these works are confined to images

and are either not extendable or computationally too expen-

sive for videos. We leverage some of these previous works

and propose a scalable yet robust neural network approach

for video propagation. We will discuss more about bilateral

filtering, that forms the core of our approach, in Section 3.

Video object segmentation Prior work on video object

segmentation can be broadly categorized into two types:

Semi-supervised methods that require manual annotation to

define what is foreground object and unsupervised methods

that does segmentation completely automatically. Unsuper-

vised techniques such as [25, 48, 45, 55, 77, 80, 72, 23] use

some prior information about the foreground objects such

as distinctive motion, saliency etc.

In this work, we focus on the semi-supervised task of

propagating the foreground mask from the first frame to

the entire video. Existing works predominantly use graph-

based optimization that perform graph-cuts [9, 10, 69] on

video. Several of these works [64, 50, 61, 76, 39, 33] aim

to reduce the complexity of graph structure with clustering

techniques such as spatio-temporal superpixels and optical

flow [75]. Another direction was to estimate correspon-

dence between different frame pixels [4, 6, 44] by using

nearest neighbor fields [26] or optical flow [18]. Closest

to our technique are the works of [60] and [53]. [60] pro-

posed to use fully-connected CRF over the object propos-

als across frames. [53] proposed a graph-cut in the bilateral

space. Instead of graph-cuts, we learn propagation filters

in the high-dimensional bilateral space. This results in a

more generic architecture and allows integration into other

deep networks. Two contemporary works [14, 36] proposed

CNN based approaches for object segmentation and rely on

fine-tuning a deep network using the first frame annotation

of a given test sequence. This could result in overfitting to

the test background. In contrast, the proposed approach re-

lies only on offline training and thus can be easily adapted

to different problem scenarios as demonstrated in this paper.

Semantic video segmentation Earlier methods such

as [12, 70] use structure from motion on video frames to

compute geometrical and/or motion features. More recent

works [24, 16, 19, 54, 74, 43] construct large graphical

models on videos and enforce temporal consistency across

frames. [16] used dynamic temporal links in their CRF en-

ergy formulation. [19] proposes to use Perturb-and-MAP

random field model with spatial-temporal energy terms and

[54] propagate predictions across time by learning a simi-

larity function between pixels of consecutive frames.

In the recent years, there is a big leap in the performance

of semantic segmentation [52, 17] with the use of CNNs but

mostly applied to images. Recently, [67] proposed to retain

the intermediate CNN representations while sliding a image

CNN across the frames. Another approach is to take unary

predictions from CNN and then propagate semantic infor-

mation across the frames. A recent prominent approach in

this direction is of [43] which proposes a technique for op-

timizing feature spaces for fully-connected CRF.
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3. Bilateral Filtering

We briefly review the bilateral filtering and its extensions

that we will need to build VPN. Bilateral filtering has its

roots in image denoising [5, 73] and has been developed as

an edge-preserving filter. It has found numerous applica-

tions [58] and recently found its way into neural network

architectures [81, 27]. We will use this filtering at the core

of VPN and make use of the image/video-adaptive connec-

tivity as a way to cope with scenes in motion.

Let a,a, A represent a scalar, vector and matrix respec-

tively. Bilateral filtering a vectorized image v ∈ R
n having

n image pixels can be viewed as a matrix-vector multiplica-

tion with a filter matrix W ∈ R
n×n:

v̂i =
∑

j∈n

W i,jvj , (1)

where the filter weights W i,j depend on features

F i, F j ∈ R
g at input pixel indices i, j and F ∈ R

g×n

for g-dimensional features. For example a Gaussian bilat-

eral filter amounts to a particular choice of W as W i,j =
1

η
exp (− 1

2
(F i − F j)⊤Σ−1(F i − F j)), where η is a nor-

malization constant and Σ is covariance matrix. The choice

of features F define the effect of the filter, the way it

adapts to image content. To use only positional features,

F i = (x, y)⊤, the bilateral filter operation reduces to a spa-

tial Gaussian filter, with width controlled by Σ. A common

choice for edge-preserving filtering is to choose color and

position features F i = (x, y, r, g, b)⊤. This results in im-

age smoothing without blurring across the edges.

The filter values W i,j change for every pixel pairs i, j
and depend on the image/video content. And since the num-

ber of image/video pixels is usually large, a naive imple-

mentation of Eq. 1 is prohibitive. Due to the importance of

this filtering operation, several fast algorithms [2, 3, 57, 28]

have been proposed, that directly computes Eq. 1 without

explicitly building W matrix. One natural view that in-

spired several implementations was offered by [57], who

viewed the bilateral filtering operation as a computation in

a higher dimensional space. Their observation was that bi-

lateral filtering can be implemented by 1. projecting v into

a high-dimensional grid (splatting) defined by features F ,

2. high-dimensional filtering (convolving) the projected sig-

nal and 3. projecting down the result at the points of interest

(slicing). The high-dimensional grid is also called bilateral

space/grid. All these operations are linear and written as:

v̂ = SsliceBSsplatv, (2)

where, Ssplat and Sslice denotes the mapping to-from

image pixels and bilateral grid, and B denotes convolution

(traditionally Gaussian) in the bilateral space. The bilat-

eral space has same dimensionality g as features F i. The

problem with this approach is that a standard g-dimensional

convolution on a regular grid requires handling of an expo-

nential number of grid points. This was circumvented by a

special data structure, the permutohedral lattice as proposed

in [2]. Effectively permutohedral filtering scales linearly

with dimension, resulting in fast execution time.

The recent work of [37, 34] then generalized the bilateral

filter in the permutohedral lattice and demonstrated how it

can be learned via back-propagation. This allowed the con-

struction of image-adaptive filtering operations into deep

learning architectures, which we will build upon. See Fig. 2

for a illustration of 2D permutohedral lattices. Refer to [2]

for more details on bilateral filtering using permutohedral

lattice and refer to [34] for details on learning general per-

mutohedral filters via back-propagation.

4. Video Propagation Networks

We aim to adapt the bilateral filtering operation to predict

information forward in time, across video frames. Formally,

we work on a sequence of h (color or grayscale) images

S = (s1, s2, . . . , sh) and denote with V = (v1,v2, . . . ,vh)
a sequence of outputs, one per frame. Consider as an exam-

ple a sequence v1, . . . ,vh of foreground masks for a mov-

ing object in the scene. Our goal is to develop an online

propagation method that can predict vt, having observed

the video up to frame t and possibly previous v1,...,t−1

F(vt−1,vt−2, . . . ; st, st−1, st−2, . . .) = vt. (3)

If training examples {(Si, Vi)|i = 1, . . . , l} with full or

partial knowledge of v are available, it is possible to learn F
and for a complex and unknown input-output relationship, a

deep CNN is a natural design choice. However, any learning

based method has to face the challenge: the scene/camera

motion and its effect on v. Since no motion in two dif-

ferent videos is the same, fixed-size static receptive fields

of CNN are insufficient. We propose to resolve this with

video-adaptive filtering component, an adaption of the bilat-

eral filtering to videos. Our Bilateral Network (Section 4.1)

has a connectivity that adapts to video sequences, its output

is then fed into a spatial Network (Section 4.2) that further

refines the desired output. The combined network layout of

this VPN is depicted in Fig. 3. It is a sequence of learnable

bilateral and spatial filters that is efficient, trainable end-to-

end and adaptive to the video input.

4.1. Bilateral Network (BNN)

Several properties of bilateral filtering make it a perfect

candidate for information propagation in videos. In particu-

lar, our method is inspired by two main ideas that we extend

in this work: joint bilateral upsampling [40] and learnable

bilateral filters [34]. Although, bilateral filtering has been

used for filtering video data before [56], its use has been

limited to fixed filter weights (say, Gaussian).

Fast Bilateral Upsampling across Frames The idea of

joint bilateral upsampling [40] is to view upsampling as a
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Figure 2. Schematic of Fast Bilateral Filtering for Video Processing. Mask probabilities from previous frames v1,...,t−1 are splatted

on to the lattice positions defined by the image features F1, F2, . . . , Ft−1. The splatted result is convolved with a 1 × 1 filter B, and the

filtered result is sliced back to the original image space to get vt for the present frame. Input and output need not be vt, but can also be

any intermediate neural network representation. B is learned via back-propagation through these operations.

filtering operation. A high resolution guidance image is

used to upsample a low-resolution result. In short, a smaller

number of input points are given {vi
in, F

i
in|i = 1, . . . , nin},

for example a segmentation result vin at a lower resolution

with the corresponding guidance image features Fin. This

is then scaled to a larger number of output points vout with

features {F j
out|j = 1, . . . , nout} using the bilateral filter-

ing operation, that is to compute Eq. 1, where the sum runs

over all nin points and the output is computed for all nout

positions (W ∈ R
nin×nout ).

We will use this idea to propagate content from previous

frames (vin = v1,...,t−1) to the current frame (vout = vt).

The summation in Eq. 1 now runs over all previous frames

and pixels. This is illustrated in Fig. 2. We take all previous

frame results v1,...,t−1 and splat them into a lattice using

the features F1,...,t−1 computed on video frames s1,...,t−1.

A filtering (described below) is then applied to every lattice

point and the result is then sliced back using the features Ft

of the current frame st. This result need not be the final vt,

in fact we compute a filter bank of responses and continue

with further processing as will be discussed.

Standard bilateral features F i = (x, y, r, g, b)⊤ used for

images need not be optimal for videos. A recent work

of [43] propose to optimize bilateral feature spaces for

videos. Instead, we choose to simply add frame index t as

an additional time feature yielding a 6 dimensional feature

vector F i = (x, y, r, g, b, t)⊤ for every video pixel. Imag-

ine a video where an object moves to reveal some back-

ground. Pixels of the object and background will be close

spatially (x, y)⊤ and temporally (t) but likely be of differ-

ent color (r, g, b)⊤. Therefore they will have no strong in-

fluence on each other (being splatted to distant positions in

the six-dimensional bilateral space). One can understand

the filter to be adaptive to color changes across frames, only

pixels that are static and have similar color have a strong in-

fluence on each other (end up nearby in the bilateral space).

In all our experiments, we used time t as additional feature

for information propagation across frames.

In addition to adding time t as additional feature, we also

experimented with using optical flow. We make use of opti-

cal flow estimates (of the previous frames with respect to the

current frame) by warping pixel position features (x, y)⊤ of

previous frames by their optical flow displacement vectors

(ux, uy)
⊤ to (x + ux, y + uy)

⊤. If the perfect flow was

available, the video frames could be warped into a common

frame of reference. This would resolve the corresponding

problem and make information propagation much easier.

We refer to the VPN model that uses modified positional

features (x+ ux, y + uy)
⊤ as VPN-Flow.

Another property of permutohedral filtering that we ex-

ploit is that the input points need not lie on a regular grid

since the filtering is done in the high-dimensional lattice.

Instead of splatting millions of pixels on to the lattice, we

randomly sample or use superpixels and perform filtering

using these sampled points as input to the filter. In practice,

we observe that this results in big computational gains with

minor drop in performance (more in Section 5.1).

Learnable Bilateral Filters Bilateral filters help in

video-adaptive information propagation across frames. But

the standard Gaussian filter may be insufficient and further,

we would like to increase the capacity by using a filter bank

instead of a single fixed filter. We propose to use the tech-

nique of [34] to learn a filter bank in the permutohedral lat-

tice using back-propagation.

The process works as follows. A input video is used to

determine the positions in the bilateral space to splat the

input points vi ∈ v1,...,t−1 of the previous frames. In a

general case, vi need not be a scalar and let us assume

vi ∈ R
d. The features F1,...,t (e.g. (x, y, r, g, b, t)⊤) define

the splatting matrix Ssplat. This leads to a number of vectors

vsplatted = Ssplatv, that lie on the permutohedral lattice,

with dimensionality vi
splatted ∈ R

d. In effect, the splatting

operation groups points that are close together, that is, they

have similar F i, F j . All lattice points are now filtered using
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Figure 3. Computation Flow of Video Propagation Network. Bilateral networks (BNN) consist of a series of bilateral filterings inter-

leaved with ReLU non-linearities. The filtered information from BNN is then passed into a spatial network (CNN) which refines the

features with convolution layers interleaved with ReLU non-linearities, resulting in the prediction for the current frame.

a filter bank B ∈ R
k×d which results in k dimensional vec-

tors on the lattice points. These are sliced back to the nout

points of interest (present video frame). The values of B
are learned by back-propagation. General parametrization

of B from [34, 37] allows to have any neighborhood size

for the filters. Since constructing the neighborhood struc-

ture in high-dimensions is time consuming, we choose to

use 1×1 filters for speed reasons. These three steps of splat-

ting, convolving and slicing makes up one Bilateral Convo-

lution Layer (BCL) which we will stack and concatenate to

form a Bilateral Network. See Fig. 2 for a BCL illustration.

BNN Architecture The Bilateral Network (BNN) is il-

lustrated in the green box of Fig. 3. The input is a video se-

quence S and the corresponding predictions V up to frame

t. Those are filtered using two BCLs (BCLa, BCLb) with

32 filters each. For both BCLs, we use the same fea-

tures F i but scale them with different diagonal matrices:

ΛaF
i,ΛbF

i. The feature scales (Λa,Λb) are found by val-

idation. The two 32 dimensional outputs are concatenated,

passed through a ReLU non-linearity and passed to a sec-

ond layer of two separate BCL filters that uses same feature

spaces ΛaF
i,ΛbF

i. The output of the second filter bank is

then reduced using a 1×1 spatial filter to map to the original

dimension d of v. We investigated scaling frame inputs with

an exponential time decay and found that, when processing

frame t, a re-weighting with (αvt−1, α
2vt−2, α

3vt−3 . . .)
with 0 ≤ α ≤ 1 improved the performance a little bit.

In the experiments, we also included a simple BNN vari-

ant, where no filters are applied inside the permutohedral

space, just splatting and slicing with the two layers BCLa

and BCLb and adding the results. We will refer to this

model as BNN-Identity as this is equivalent to using filter

B that is identity matrix. It corresponds to an image adap-

tive smoothing of the inputs V . We found this filtering to

already have a positive effect in our experiments.

4.2. Spatial Network

The BNN was designed to propagate information from

the previous frames to the present one, respecting the scene

and object motion. We then add a small spatial CNN with

3 layers, each with 32 filters of size 3× 3, interleaved with

ReLU non-linearities. The final result is then mapped to the

desired output of vt using a 1 × 1 convolution. The main

role of this spatial CNN is to refine the information in frame

t. Depending on the problem and the size of the available

training data, other network designs are conceivable. We

use the same network architecture shown in Fig. 3 for all

the experiments to demonstrate the generality of VPNs.

5. Experiments

We evaluated VPN on three different propagation tasks:

propagation of foreground masks, semantic labels and color

in videos. Our implementation runs in Caffe [35] using

standard settings. We used Adam [38] stochastic optimiza-

tion for training VPNs, multinomial-logistic loss for la-

bel propagation networks and Euclidean loss for training

color propagation networks. We use a fixed learning rate

of 0.001 and choose the trained models with minimum vali-

dation loss. Runtime computations were performed using

a Nvidia TitanX GPU and a 6 core Intel i7-5820K CPU

clocked at 3.30GHz machine. The code is available online

at http://varunjampani.github.io/vpn/.

5.1. Video Object Segmentation

We focus on the semi-supervised task of propagating a

given first frame foreground mask to all the video frames.

Object segmentation in videos is useful for several high

level tasks such as video editing, rotoscoping etc.

Dataset We use the recently published DAVIS

dataset [59] for experiments on this task. It consists

of 50 high-quality videos. All the frames come with high-

quality per-pixel annotation of the foreground object. For

robust evaluation and to get results on all the dataset videos,

we evaluate our technique using 5-fold cross-validation.

We randomly divided the data into 5 folds, where in each

fold, we used 35 videos for training, 5 for validation and

the remaining 10 for the testing. For the evaluation, we

used the 3 metrics that are proposed in [59]: Intersection

over Union (IoU) score, Contour accuracy (F) score and

temporal instability (T ) score. The widely used IoU score

is defined as TP/(TP + FN + FP ), where TP: True
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F-1 F-2 F-3 F-4 F-5 All

BNN-Identity 56.4 74.0 66.1 72.2 66.5 67.0

VPN-Stage1 58.2 77.7 70.4 76.0 68.1 70.1

VPN-Stage2 60.9 78.7 71.4 76.8 69.0 71.3

Table 1. 5-Fold Validation on DAVIS Video Segmentation

Dataset. Average IoU scores for different models on the 5 folds.

IoU↑ F ↑ T ↓ Runtime(s)

BNN-Identity 67.0 67.1 36.3 0.21

VPN-Stage1 70.1 68.4 30.1 0.48

VPN-Stage2 71.3 68.9 30.2 0.75

With pre-trained models

DeepLab 57.0 49.9 47.8 0.15

VPN-DeepLab 75.0 72.4 29.5 0.63

OFL [75] 71.1 67.9 22.1 >60

BVS [53] 66.5 65.6 31.6 0.37

NLC [25] 64.1 59.3 35.6 20

FCP [60] 63.1 54.6 28.5 12

JMP [26] 60.7 58.6 13.2 12

HVS [29] 59.6 57.6 29.7 5

SEA [62] 55.6 53.3 13.7 6

Table 2. Results of Video Object Segmentation on DAVIS

dataset. Average IoU score, contour accuracy (F ), temporal in-

stability (T ) scores, and average runtimes (in seconds) per frame

for different VPN models along with recent published techniques

for this task. VPN runtimes also include superpixel computation

(10ms). Runtimes of other methods are taken from [53, 60, 75]

which are indicative and are not directly comparable to our run-

times. Runtime of VPN-Stage2 includes the runtime of VPN-

Stage1 which in turn includes the runtime of BNN-Identity. Run-

time of VPN-DeepLab model includes the runtime of DeepLab.

Positives; FN: False Negatives and FP: False Positives.

Refer to [59] for the definition of the other two metrics.

VPN and Results In this task, we only have access to

foreground mask for the first frame v1. For the ease of

training VPN, we obtain initial set of predictions with BNN-

Identity. We sequentially apply BNN-Identity at each frame

and obtain an initial set of foreground masks for the entire

video. These BNN-Identity propagated masks are then used

as inputs to train a VPN to predict the refined masks at each

frame. We refer to this VPN model as VPN-Stage1. Once

VPN-Stage1 is trained, its refined mask predictions are in-

turn used as inputs to train another VPN model which we

refer to as VPN-Stage2. This resulted in further refinement

of foreground masks. Training further stages did not result

in any improvements. Instead, one could consider VPN as

a RNN unit processing one frame after another. But, due to

GPU memory constraints, we opted for stage-wise training.

Following the recent work of [53] on video object seg-

mentation, we used F i = (x, y, Y, Cb, Cr, t)⊤ features

with YCbCr color features for bilateral filtering. To be

comparable with one of the fastest state-of-the-art tech-

nique [53], we do not use any optical flow information.

First, we analyze the performance of BNN-Identity by

changing the number of randomly sampled input points.
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Figure 4. Random Sampling of Input Points vs. IoU. The effect

of randomly sampling points from input video frames on object

segmentation IoU of BNN-Identity on DAVIS dataset. The points

sampled are out of ≈2 million points from the previous 5 frames.

Figure 4 shows how the segmentation IoU changes with the

number of sampled points (out of 2 million points) from the

previous frames. The IoU levels out after sampling 25% of

the points. For further computational efficiency, we used su-

perpixel sampling instead of random sampling. Compared

to random sampling, usage of superpixels reduced the IoU

slightly (0.5), while reducing the number of input points by

a factor of 10. We used 12000 SLIC [1] superpixels from

each frame computed using the fast GPU implementation

from [63]. As an input to VPN, we use the mask probabil-

ities of previous 9 frames as we observe no improvements

with more frames. We set α = 0.5 and the feature scales

(Λa,Λb) are presented in the supplementary.

Table 1 shows the IoU scores for each of the 5 folds

and Tab. 2 shows the overall scores and runtimes of dif-

ferent VPN models along with the best performing tech-

niques. The performance improved consistently across all 5

folds with the addition of new VPN stages. BNN-Identity

already performed reasonably well. VPN outperformed

the present fastest BVS method [53] by a significant mar-

gin on all the performance measures while being compara-

ble in runtime. VPN perform marginally better than OFL

method [75] while being at least 80× faster and OFL re-

lies on optical flow whereas we obtain similar performance

without using any optical flow. Further, VPN has the ad-

vantage of doing online processing as it looks only at previ-

ous frames whereas BVS processes entire video at once.

Augmentation of Pre-trained Models One of the main

advantages of VPN is that it is end-to-end trainable and can

be easily integrated into other deep networks. To demon-

strate this, we augmented VPN architecture with standard

DeepLab segmentation network [17]. We replaced the last

classification layer of DeepLab-LargeFOV model to output

2 classes (foreground and background) in our case and bi-

linearly upsampled the resulting low-resolution probability

map to the original image dimension. 5-fold fine-tuning of

the DeepLab model on DAVIS dataset resulted in the aver-

age IoU of 57.0 and other scores are shown in Tab. 2. To

construct a joint model, the outputs from the DeepLab and

the bilateral network (in VPN) are concatenated and then
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Figure 5. Video Object Segmentation. Shown are the different

frames in example videos with the corresponding ground truth

(GT) masks, predictions from BVS [53], OFL [75], VPN (VPN-

Stage2) and VPN-DLab (VPN-DeepLab) models.

passed on to the spatial CNN. In other words, the bilateral

network propagates label information from previous frames

to the present frame, whereas the DeepLab network does the

prediction for the present frame. The results of both are then

combined and refined by the spatial network in the VPN.

We call this ‘VPN-DeepLab’ model. We trained this model

end-to-end and observed big improvements in performance.

As shown in Tab. 2, the VPN-DeepLab model has the IoU

score of 75.0 which is a significant improvement over the

published results. The total runtime of VPN-DeepLab is

only 0.63s which makes this also one of the fastest tech-

niques. Figure 5 shows some qualitative results with more

in supplementary. One can obtain better VPN performance

IoU Runtime(s)

CNN-1 from [79] 65.3 0.38

+ FSO-CRF [43] 66.1 >10

+ BNN-Identity 65.3 0.31

+ BNN-Identity-Flow 65.5 0.33

+ VPN (Ours) 66.5 0.35

+ VPN-Flow (Ours) 66.7 0.37

CNN-2 from [65] 68.9 0.30

+ VPN-Flow (Ours) 69.5 0.38

Table 3. Results of Semantic Segmentation on the CamVid

Dataset. Average IoU and runtimes (in seconds) per frame of dif-

ferent models on test split. Runtimes exclude CNN computations

which are shown separately. VPN and BNN-Identity runtimes in-

clude superpixel computation of 0.23s (large portion of runtime).

with using better superpixels and also incorporating optical

flow, but this increases runtime as well. Visual results in-

dicate that learned VPN is able to retain foreground masks

even with large variations in viewpoint and object size.

5.2. Semantic Video Segmentation

This is the task of assigning semantic label to every

video pixel. Since the semantics between adjacent frames

does not change radically, intuitively, propagating seman-

tics across frames should improve the segmentation quality

of each frame. Unlike video object segmentation, where

the mask for the first frame is given, we approach semantic

video segmentation in a fully automatic fashion. Specifi-

cally, we start with the unary predictions of standard CNNs

and use VPN for propagating semantics across the frames.

Dataset We use the CamVid dataset [11] that contains 4

high quality videos captured at 30Hz while the semantically

labeled 11-class ground truth is provided at 1Hz. While the

original dataset comes at a resolution of 960×720, we op-

erate on a resolution of 640×480 as in [79, 43]. We use the

same splits as in [70] resulting in 367, 100 and 233 frames

with ground truth for training, validation and testing.

VPN and Results Since we already have CNN predic-

tions for every frame, we train a VPN that takes the CNN

predictions of previous and present frames as input and pre-

dicts the refined semantics for the present frame. We com-

pare with a state-of-the-art CRF approach [43] which we re-

fer to as FSO-CRF. We also experimented with optical flow

in VPN and refer that model as VPN-Flow. We used the fast

DIS optical flow [42] and modify the positional features of

previous frames. We used superpixels computed with Dol-

lar et al. [20] as gSLICr [63] has introduced artifacts.

We experimented with predictions from two different

CNNs: One is with dilated convolutions [79] (CNN-1) and

another one [65] (CNN-2) is trained with the additional

video game data, which is the present state-of-the-art on

this dataset. For CNN-1 and CNN-2, using 2 and 3 pre-

vious frames respectively as input to VPN is found to be

optimal. Other parameters of VPN are presented in supple-
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mentary. Table 3 shows quantitative results. Using BNN-

Identity only slightly improved the performance whereas

training the entire VPN significantly improved the CNN-1

performance by over 1.2 IoU, with both VPN and VPN-

Flow. Moreover, VPN is at least 25× faster, and simpler

to use compared to the optimization based FSO-CRF which

relies on LDOF optical flow [13], long-term tacks [71] and

edges [21]. Replacing bilateral filters with spatial filters in

VPN improved the CNN-1 performance by only 0.3 IoU

showing the importance of video-adaptive filtering. We fur-

ther improved the performance of the state-of-the-art CNN-

2 [65] with VPN-Flow model. Using better optical flow

estimation might give even better results. Figure 6 shows

some qualitative results with more in supplementary.

Input GT CNN +VPN(Ours)

Figure 6. Semantic Video Segmentation. Input video frames and

the corresponding ground truth (GT) segmentation together with

the predictions of CNN [79] and with VPN-Flow.

5.3. Video Color Propagation

We also evaluate VPNs on a regression task of propagat-

ing color information in a grayscale video. Given the color

image for the first video frame, the task is to propagate the

color to the entire video. For experiments on this task, we

again used the DAVIS segmentation dataset [59] with the

first 25 frames from each video. We randomly divided the

dataset into 30 train, 5 validation and 15 test videos.

We work with YCbCr representation of images and prop-

agate CbCr values from previous frames with pixel inten-

sity, position and time features as guidance for VPN. The

same strategy as in object segmentation is used, where an

initial set of color propagated results is obtained with BNN-

Identity and then used to trained a VPN-Stage1 model.

Training further VPN stages did not improve the perfor-

mance. We use 300K randomly sampled points from pre-

vious 3 frames as input to the VPN network. Table 4 shows

the PSNR results. We also show a baseline result of [46]

that does graph based optimization using optical flow. We

used fast DIS optical flow [42] in the baseline method [46]

and we did not observe significant differences with using

LDOF optical flow [13]. Figure 7 shows a visual result with

more in supplementary. VPN works reliably better than [46]

PSNR Runtime(s)

BNN-Identity 27.89 0.29

VPN-Stage1 28.15 0.90

Levin et al. [46] 27.11 19

Table 4. Results of Video Color Propagation. Average Peak

Signal-to-Noise Ratio (PSNR) and runtimes of different methods

for video color propagation on images from DAVIS dataset.

while being 20× faster. The method of [46] relies heav-

ily on optical flow and so the color drifts away with incor-

rect flow. We observe that our method also bleeds color

in some regions especially when there are large viewpoint

changes. We could not compare against recent color prop-

agation techniques [31, 68] as their codes are not avail-

able online. This application shows general applicability of

VPNs in propagating different kinds of information.
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Figure 7. Video Color Propagation. Input grayscale video frames

and corresponding ground-truth (GT) color images together with

color predictions of Levin et al. [46] and VPN-Stage1 models.

6. Conclusion

We proposed a fast, scalable and generic neural net-

work approach for propagating information across video

frames. The VPN uses bilateral network for long-range

video-adaptive propagation of information from previous

frames to the present frame which is then refined by a spatial

network. Experiments on diverse tasks show that VPNs, de-

spite being generic, outperformed the current state-of-the-

art task-specific methods. At the core of our technique is

the exploitation and modification of learnable bilateral fil-

tering for the use in video processing. We used a simple

VPN architecture to showcase the generality. Depending on

the problem and the availability of data, using more filters

or deeper layers would result in better performance. In this

work, we manually tuned the feature scales which could be

amendable to learning. Finding optimal yet fast-to-compute

bilateral features for videos together with the learning of

their scales is an important future research direction.
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