
Co-Occurrence Filter

Roy J. Jevnisek

Tel-Aviv University

jernisek@post.tau.ac.il

Shai Avidan

Tel-Aviv University

avidan@eng.tau.ac.il

Abstract

Co-occurrence Filter (CoF) is a boundary preserving fil-

ter. It is based on the Bilateral Filter (BF) but instead of

using a Gaussian on the range values to preserve edges

it relies on a co-occurrence matrix. Pixel values that co-

occur frequently in the image (i.e., inside textured regions)

will have a high weight in the co-occurrence matrix. This,

in turn, means that such pixel pairs will be averaged and

hence smoothed, regardless of their intensity differences.

On the other hand, pixel values that rarely co-occur (i.e.,

across texture boundaries) will have a low weight in the

co-occurrence matrix. As a result, they will not be averaged

and the boundary between them will be preserved. The CoF

therefore extends the BF to deal with boundaries, not just

edges. It learns co-occurrences directly from the image. We

can achieve various filtering results by directing it to learn

the co-occurrence matrix from a part of the image, or a dif-

ferent image. We give the definition of the filter, discuss how

to use it with color images and show several use cases.

1. Introduction

There is a long and rich history of edge-preserving filters.

These filters smooth the image while preserving its edges.

This begs the question: what is an edge? The overwhelming

answer in edge-preserving filter literature is that an edge is

a sharp discontinuity in intensity value.

Recent edge detectors give a different answer to this

question. Instead of focusing on edge detection, they focus

on boundary detection where the goal is to detect bound-

aries between textures. That is, edges within texture should

be ignored while edges that serve as boundaries between

textures should be marked.

Our goal is to design a boundary preserving filter that

will smooth edges within a textured region and not across

texture boundaries.

Co-occurrence Filter (CoF) is the happy marriage of

boundary detection and edge preserving filters. It combines

ideas from the edge detection literature directly into the fil-

tering process. As a result, there is no need for a two-stage

solution.

We start with the Bilateral Filter (BF), which is a well

known edge-preserving filter. The output of the BF at a ref-

erence pixel is a weighted average of pixels in its neighbor-

hood. The BF mixes pixel values based on two Gaussians.

The spatial Gaussian assigns weight based on proximity

in the image plane and the range Gaussian assigns weight

based on similarity in appearance. As a result, nearby pix-

els with small intensity differences will mix, while pixels

that are far away or with large intensity difference will not.

This gives the BF its edge-preserving power.

Because of the way it is defined, the BF can not distin-

guish between edges within a texture and edges between

textures. This is where Co-occurrence information steps

in. The Co-occurrence Filter (CoF), that we propose, re-

places the range Gaussian filter of the BF with a normalized

co-occurrence matrix. Pixel values that co-occur frequently

(i.e., in a textured region) will have a high weight and will

therefore mix together. This way texture will be smoothed.

On the other hand, pixel values that rarely co-occur (i.e., on

the boundary between textures) will have a low weight and

will therefore not mix. This way smoothing will not occur

across texture boundaries.

Figure 1 shows that CoF is about texture and not about

edge strength. The input image consists of two regions

(dark on the left side and light on the right side) corrupted

by white Gaussian noise. In addition, there are several

patches with checkerboard pattern spread across the image

plane. The intensity difference between the two regions

is lower than that of the checkerboard. The co-occurrence

matrix computed from that image gives high weight to the

Gaussian noise and the checkerboard texture because they

are prevalent in the image. It gives a low weight to the

boundary between the two regions of the image, because

it is quite a rare phenomenon. CoF filters out the noise and

smooths out the checkerboard patches while keeping sharp

boundaries between the different textures.

The proposed filter enjoys a couple of advantages. First,

there is no parameter tweaking, as it collects co-occurrence

information directly from the image. Second, the user

can specify from where the filter should collect the co-

13184

Figure 1. CoF is not about edge strength: (Left) input image with zoom-ins. (Center) Co-occurrence matrix with zoom-ins. The

two large Gaussian ”‘bumps”’ correspond to the two regions in the image. The size of the Gaussian correlates with the amount of noise

added to the image. There is a red dot (i.e., high weight) at the four corners of the co-occurrence matrix - this captures the checkerboard

black-white co-occurrences. (Right) CoF result with zoom-ins. The Gaussian noise is removed, the checkerboards are smoothed and the

sharp edge between the two regions is preserved.

occurrence data. For example, the filter can collect data

from the whole image, part of it or from a different image

altogether.

Extending co-occurrence matrices to deal with color im-

ages is not trivial because the co-occurrence space becomes

prohibitively large. Simply quantizing RGB values intro-

duces strong aliasing artifacts and we develop an approxi-

mation scheme that lets us handle color images gracefully.

The resulting filter is fast in practice and can be used in dif-

ferent scenarios and for various artistic effects.

2. Related Work

The bilateral filter (BF) was rediscovered several times

by Aurich and Weule [2], Smith and Brady [20], who in-

troduced the SUSAN filter, and Tomasi and Manduchi [21]

who gave BF its name. It was later popularized by Durand

and Dorsey [21]. For a recent survey of BF see [15].

The BF is just one of a large number of edge-preserving

filters that include Anisotropic Diffusion [17], guided im-

age filter [9], or the domain transform filter [7] to name a

few. These filters smooth images by averaging neighboring

pixels. The weights are determined based on similarity in

appearance and proximity in location. Correctly determin-

ing these weights determines what parts of the image should

be smoothed and where smoothing should stop.

Joint/Cross BF [4,18] recovers weights on one image and

applies it to another image. This concept was taken one step

further with the guided image filter [9] where an image is

assumed to be a locally linear model of the guidance image.

The Rolling Guidance Filter [24] uses the guidance im-

age in a novel way leading to a scale-aware filter. That filter

can be tuned to smooth out image structure at a particular

scale by successively applying the BF with a properly se-

lected guidance image.

The WLS method [6] treats edge preserving filtering as a

weighted least square problem where the goal is to approxi-

mate the input image anywhere, except at sharp edges. The

Euclidean distance in WLS can be replaced by the diffu-

sion distance [5]. The diffusion distance between two points

equals the difference between the probabilities of random

walkers to start at both points and end up in the same point.

To approximate this, [5] uses the dominant eigenvectors of

the affinity matrix, dubbed diffusion maps. Diffusion maps

can be efficiently calculated using the Naystöm method.

Similarly to WLS, L0 smoothing [22] approximates the

input image with a piecewise constant image by controlling,

through L0 regularization, the number of edges allowed at

the output image.

In the field of edge detection there has been great

progress in recent years. This progress can be quantita-

tively measured on the Berkeley Segmentation Data Set

[14]. Some of the leading methods include Normalized Cuts

and its derivative work [1, 19] that treat the problem as a

spectral clustering problem where affinities between pixels

are trained offline. Structured Edge Detector [3] trains a

structured random forest on a large training set and then ap-

plies it to detect true edges in the query image.

Semantic filtering [23], uses the edges of [3] to modify

the distances in the transformed domain of [15]. It does

so by re-weighting the distance between neighboring pixels

according to its confidence in the edge between them. We,

in contrast, rely on pixel co-occurrences. This gives us the

freedom to determine from where to learn co-occurrences.

Co-occurrences were recently used for boundary detec-

tion [11]. They collect co-occurrence statistics (termed

Pointwise Mutual Information, or PMI, in their paper) to

learn the probability of boundaries in an image and use that

information to compute the affinities required by spectral

clustering. The method performs very well on the Berkeley

Segmentation Data Set [14].

Co-occurrence information was first introduced by Har-

3185

alick et al. [8]. They proposed 14 statistical measures that

can be extracted from the co-occurrence matrix and be used

to measure similarity between textures. Later, color cor-

relograms, that also rely on co-occurrence data, were used

by Huang et al. [10] as image descriptor within an image

retrieval system. Finally, co-occurrence statistics was also

used with graph cuts by Ladicky et al. [13] where the goal

was to solve a label assignment problem such that the labels

will satisfy some given co-occurrence matrix.

3. Co-occurrence Filter

Linear filters take the form:

Jp =

∑

q∈N(p) w(p, q) · Iq
∑

q∈N(p) w(p, q)
(1)

where Jp and Iq are output and input pixel values, p and q

are pixel indices, and w(p, q) is the weight of the contribu-

tion of pixel q to the output of pixel p. We consider gray

scale images for now. Color images will be discussed later.

In Gaussian filter, w(p, q) takes the form of:

w(p, q) = exp(−
d(p, q)2

2 · σs
2
) , Gσs

(p, q) (2)

where d(p, q) is the Euclidean distance, in the image plane,

between pixels p and q, and σs is a user specified parameter.

Since w(p, q) does not depend on image content, the filter

is shift invariant.

In the Bilateral filter, w(p, q) takes the form of:

w(p, q) = Gσs
(p, q) · exp(−

|Ip − Iq|
2

2 · σr
2

) (3)

where σr is a user specified parameter and in this case

w(p, q) depends on image content and the filter is shift-

variant.

3.1. Definition

We define the Co-occurrence filter to be:

Jp =

∑

q∈N(p) Gσs
(p, q) ·M(p, q) · Iq

∑

q∈N(p) Gσs
(p, q) ·M(p, q)

(4)

Which means that w(p, q) takes the form of:

w(p, q) = Gσs
(p, q) ·M(Ip, Iq) (5)

where M is a 256×256 matrix (in the case of the usual gray

scale images) that is given by:

M(a, b) =
C(a, b)

h(a)h(b)
. (6)

In words, M(a, b) is based on the co-occurrence matrix

C(a, b) that counts the co-occurrence of values a and b di-

vided by their frequencies (i.e., the histogram of pixel val-

ues), h(a) and h(b), in the image. By construction, M is

(a) (b) (c) (d)

Figure 2. Role of context in CoF: (a) input image, (b) BF, (c)

CoF, (d) Zoom ins. The BF filters the top and bottom images the

same way. The CoF, on the other hand, filters them differently. The

zoom ins shows the weight assigned to pixels when filtering the

center pixel. Observe how the weights of CoF change depending

on the content of the image.

symmetric. To prevent division by zero we add a small con-

stant to the denominator. Formally:

C(a, b) =
∑

p,q

exp(−
d(p, q)2

2 · σ2
)[Ip = a][Iq = b] (7)

and

h(a) =
∑

p

[Ip = a] (8)

where σ is a user specified parameter and [·] equals 1 if the

expression inside the brackets is true and 0 otherwise.

The co-occurrence matrix integrates all co-occurrences

across all distances, weighted by their distance, in the image

plane. This weight captures our belief that co-occurrences

that occur far away carry a lower weight. In theory, we

should sample all pixel pairs in the image plane. In practice,

we consider only pixel pairs within a window. This differs

from the usual gray-level co-occurrence matrix (e.g., [8])

that is defined for a particular distance between pairs of pix-

els.

3.2. Properties

Analyzing equation 7, we observe that when σ goes to 0,

C(a, b) converges to a diagonal matrix. This is because the

weight for every pair of pixels p and q goes to zero, except

for the case p = q. Plugging this back into equation 6 we

have that M is also a diagonal matrix, with elements on the

diagonal taking the form:

M(a, a) =
C(a, a)

h(a)h(a)
=

h(a)

h(a)2
=

1

h(a)
(9)

As a result, CoF becomes a delta function that does not

change the input image at all. This is because each pixel

is only affected by pixels with the same intensity value.

At the other extreme, when σ goes to ∞, then C(a, b) =
h(a)h(b). This is because the weight is equal for all pairs

of pixels p and q, and C(a, b) is simply the product of the

3186

(a) (b) (c) (d) (e)

Figure 3. Collecting co-occurrence statistics: Co-occurrence

statistics can be collected from different parts of the image. (a)

input image contaminated with white Gaussian noise. Bottom part

of the image shows difference between input image and clean im-

age (not shown). (b) result of CoF when collecting statistics from

all of the image (red dashed rectangle in (a)). (c) result of CoF

when collecting statistics from one region (yellow dashed rectan-

gle in (a)). That particular region is smoothed out, the rest of the

image is not. (d) result of CoF when collecting statistics along the

edge between two regions (green dashed rectangle in (a)). That

particular edge between regions is smoothed out, as well as the

two neighboring regions, the rest of the image is not. (e) The co-

occurrence matrices corresponding to (b-d), from top to bottom,

respectively.

frequencies of values a and b. Plugging this back into equa-

tion 6 we have that:

M(a, b) =
C(a, b)

h(a)h(b)
=

h(a)h(b)

h(a)h(b)
= 1. (10)

That is, the matrix M converges to the all one matrix, and

the CoF becomes the Gaussian filter. The bilateral filter can

be constructed manually as a band-diagonal matrix M .

Figure 2 demonstrates the importance of context in CoF.

The top row shows an image of a lone white star against a

dark background. In this case, CoF and BF behave simi-

larly. They preserve the sharp intensity difference between

the white pixels of the star and the black pixels of the back-

ground. The bottom row show a galaxy of stars. The BF

is completely agnostic to the presence of multiple stars in

the image. CoF, on the other hand, behaves quite differ-

ently. Because there are multiple stars, the co-occurrence

matrix picks up the co-occurrences of black and white pix-

els and the filtered image shows a milky result where black

and white pixels are mixed. We emphasize that we did not

change any of the parameters of CoF at all. Everything is

dictated by the data. The figure also shows a limitation of

CoF. In this case, the lone star on the right side of the image

is treated as part of the texture and smoothed out as well.

Figure 3 shows what happens when we pick different

parts of the image from which to collect co-occurrence data.

The input image consists of a sequence of step edges cor-

rupted with some white Gaussian noise. Collecting co-

occurrence data from all the image will lead CoF to filter out

the noise with minimal smoothing of the step edges. Col-

lecting co-occurrence statistics from part of one flat region

will smooth all that region but will keep noise and sharp

edges in other parts of the image intact. Finally, collecting

(a) (b) (c) (d)

Figure 4. Effects of quantization: (a) CoF on image with 256

gray values. (b) CoF on image with 32 gray values with hard clus-

ter assignment. (c) CoF on image with 32 gray values with soft

cluster assignment. (d) 1D profile of a particular row. The bottom

half of each image shows the difference between the filtered image

and the clean input image. The non-quantized result of (a) gives

the exact solution. Soft quantization (c) gives better results than

(b). See text for more details.

co-occurrence statistics from the vicinity of a step edge will

cause CoF to smooth out that particular step edge and the

two neighboring regions.

3.3. Guided CoF

So far we have assumed the input image is a gray scale

image. We now extend CoF to work on color images.

One can use equation (7) to calculate co-occurrence in

color space. This means constructing a 2563 × 2563 co-

occurrence matrix. This matrix is too large for practical

purposes. Moreover, the number of pixels in a typical image

is too small to properly sample that space. We therefore

quantize, using k-means, the pixel values of I to produce a

guidance image T . This solves both problems. The size of

the co-occurrence matrix of T is only k × k, where k is the

number of quantized values, and the number of pixels in T

is enough to properly sample this space.

Let MT denote the co-occurrence matrix of T . Then the

guided CoF filter, CoF(I,MT), is given by:

Jp =

∑

q∈N(p) G(p, q)MT (Tp, Tq) · Ip
∑

q∈N(p) G(p, q)MT (Tp, Tq)
(11)

The introduction of clustering changed equation (4) into

equation (11). We collect co-occurrence statistics from T

and use it to guide the filtering, hence we denote it the guid-

ance image. This resembles the guided version of the bilat-

eral filter, where the filtered image differs from the image

that is used to compute color distances. The next subsec-

tion discusses how to collect MT .

3.3.1 Quantized Co-occurrences

Let {τl}
k
l=1 denote k clusters after clustering pixel values.

Then a straightforward way to extend equation 7 is to let:

Chard(τa, τb) =
∑

p,q

exp(−
d(p, q)2

2 · σ2
)[Tp = a][Tq = b]

(12)

3187

where τa and τb denote two clusters, and Tp = a means

that pixel p belongs to cluster τa. We term this approach

hard clustering, because each pixel is assigned to its closest

cluster center.

The time complexity of computing co-occurrences using

hard clustering is O(n · r), where n is the number of pix-

els in the image and r is number of pixels in the window.

This is because at each pixel location we must compute co-

occurrence statistics for r pixel pairs. In theory r = n, in

practice we use a small window (r = 15× 15).

However, such an approach introduces severe artifacts.

These artifacts are created because pixel values that are

nearby in the original space might be mapped to two dif-

ferent clusters in the quantization step.

Figure 4 illustrates the problem on a gray scale image.

The left image shows a simple ramp image with gray scale

values ranging from 0 to 255. Running CoF on it will

leave the image unchanged because each intensity value co-

occurs with the same number of intensity values above and

below it. Collecting co-occurrence statistics using equa-

tion 12 introduces noticeable artifacts (see Figure 4(b)).

To fix that, we relax the assignment of a pixel value to a

single cluster. Instead, we use soft assignment. We assign

a probability for the pixel value to belong to each of the

clusters, using the following:

Csoft(τa, τb) =
∑

p,q

exp(−
d(p, q)2

2 · σ2
)Pr(p ∈ τa)Pr(q ∈ τb)

(13)

Unfortunately, moving from hard to soft assignment

comes at a high computational cost. The cost of collect-

ing co-occurrence statistics using soft assignment is O(n ·
r2 · k2) operations, as opposed to the O(n · r2) of hard as-

signment.

To overcome this, let Pr(p ∈ τ) = K(Ip, τ), where K

is a kernel function (i.e., a Gaussian):

K(a, b) =
1

Z
exp(−

||a− b||2

2σ2
r

) (14)

for some user specified parameter σr and normalization

constant Z.

In words, K measures the probability of assigning pixel

p to cluster τ based on the distance, in appearance space,

between pixel value Ip and cluster center τ . We now make

the approximation that Pr(p ∈ τ) ≈ K(τp, τ). That is, the

distance between Ip and τ is approximated by the distance

between τp and τ , where τp is the cluster center closest to

Ip. In [12] we derive the following relation:

Csoft(τa, τb) ≈
∑

k1,k2

K(τa, τk1
)·K(τb, τk2

)Chard(τk1
, τk2

)

(15)

The difference between Equation 13 and Equation 15

is that instead of working with all pixel values we only

work with cluster centers. Using this approximation, the

time complexity of collecting co-occurrence statistics using

soft assignment drops from O(n · r · k2) to O(n · r + k4).
For a typical image of size 512 × 512 we have (n = 218,

r = 24 × 24, and k = 28), which leads to a speed up of

about 210 = 1024, (i.e., three orders of magnitude). Fig-

ure 4(c) shows the result of the soft assignment approach

with our approximation. Observe how the staircase effect is

greatly reduced.

Algorithm 1 provides an outline of our method. In

words, given a color image we first cluster its pixel values

and use the quantized image, T , to calculate the hard quan-

tization co-occurrence matrix, Chard. This takes O(n · r2).
Once we have Chard, we use cluster distances to approxi-

mate soft co-occurrence matrix, Csoft, that takes an addi-

tional O(k4). We divide Csoft by the cluster probabilities

and get the normalized co-occurrence matrix, MT . Finally,

we use this MT to filter the original image, I .

Algorithm 1 Guided Co-occurrence Filtering

Input image: I

Filtered image: J

1: [T, cc]← Quantize(I) % using k-means

2: Chard← Compute Co-occurrence(T) % using equation(12)

3: Csoft← Hard2Soft(Chard, cc) % using equation(15)

4: MT ← Cooc2PMI(Csoft, cc) % using equation(6)

5: J ← CoF(I,MT) % using equation (11)

4. Results

In this section we discuss some implementation details

and demonstrate the performance of CoF. We conclude with

two applications: background bluring and image recoloring.

Throughout this section we have used the guided version

of the CoF filter, as described in section 3.3. For quantiza-

tion, we use K-means, over lab colors, with k = 32. To

speed up the clustering we sample the image on a regular

grid with a spacing of 10 pixels in both rows and columns.

For all the images, we collected co-occurrence over a win-

dow of 15× 15, with σ2
s = 2 ·

√

(15)+1. Unless explicitly

mentioned, we used the same kernel for smoothing. Col-

lecting co-occurrences takes about 2 seconds for 1 MP im-

age. Filtering the image takes about 1.2 seconds. All timing

is for CPU implementation.

The first example, shown in Figure 5 shows the effects

of the window size on the filter. As expected, the larger the

window the larger are the objects that are smoothed by the

filter. In all cases, though, the boundaries between textures

remain sharp.

Figure 6 shows the importance of proper quantization.

Working with hard clustering introduces strong quantiza-

3188

Input ws = 3 ws = 5 ws = 15

Figure 5. The effect of window size: We show the effect of

window size (ws), used when collecting co-occurrence statistics,

on the behavior of CoF. The larger the window, the stronger the

smoothing. The remaining edges stay sharp.

Input Zoom in Hard CoF Soft CoF

Figure 6. The effect of soft quantization: The red rectangle

zooms in on Barbara’s hand. The yellow rectangle zooms in

on an image filtered with the hard clustering variant of the Co-

occurrence filtered. The green rectangle zooms in on the soft clus-

tering variant. Results are shown after 5 iterations of CoF. Notice

how the quantization artifact on the hand disappear once we move

to the soft version.

Input Iterative Rolling

Figure 7. Comparison of iterative vs. rolling CoF: iterative

(using the same M), rolling (updating M after each iteration).

tion artifacts. Working with soft cluster assignment leads to

a much smoother result.

In Figure 6 we applied CoF multiple times. This raises

the question: how to apply CoF iteratively? There are two

ways to do that. Either by learning the co-occurrence statis-

tics once, at the beginning, which we term Iterative CoF (I-

CoF), or by learning the co-occurrence statistics after each

round, which we term Rolling CoF (R-CoF). In Figure 6 we

have used I-CoF.

Figure 7 shows the difference between I-CoF and R-CoF

after 10 iterations. As can be seen, I-CoF does a better job

of smoothing texture while preserving sharp boundaries be-

tween textures. For the rest of this paper we use I-CoF when

running CoF multiple times.

Figure 8 shows the result of the algorithm after 1, 3 and

10 iterations. It also shows the mean of per-pixel squared

differences between two iterations of the algorithm. As can

be seen, the algorithm quickly converges.

Figure 9 compares CoF with a number of edge preserv-

Input 1, 3, and 10 iterations

Figure 8. Applying CoF Iteratively: First row: shows the results

of applying CoF for 1, 3 and 10 itterations. Bottom figure shows

convergence rate (i.e., Mean-Squared-Difference, in intensity val-

ues, between successive iterations of the algorithm) on a semi-

logarithmic scale.

ing filters. Evaluating different filters is challenging be-

cause there is no agreed upon, objective error measure to

optimize for. We therefore, resort to subjective evaluation,

to illustrate the differences between CoF and each of them.

On the first row we compare against Domain Transform [7]

and Guided Image Filter [9]. Both methods provide plausi-

ble results on the hut’s roof. In addition, they enhance the

leaves’ colors, meaning red /green and yellow leaves will

become a smoother red, green or yellow. This is due to the

fact that both methods are edge preserving. CoF, on the

other hand, learns that red, yellow and green are part of a

texture and smooths them together. This doesn’t come at

the cost of smoothing across boundaries, see for example

how nicely it preserves the sharp boundary between the hut

and the leaves.

The second row compares CoF to L0 smoothing [22]

and the rolling guidance filter [24]. L0 performs a global

smoothing operation that respects the strongest edges. One

of its greatest applications is in image simplification. It

works best for images with textures of modest gradients.

If the image includes a texture with abrupt changes, take for

example the pile of black olives in the center of the image,

L0 might wrongly respect some of the edges , and the tex-

ture will not be smoothed. Rolling Guidance Filter (RGF)

smooths texture up to a particular size. In this example we

choose the window size to match the largest olive. Indeed

it smoothed nicely all of the olives. However, that came at

the price of rounding the price signs. In addition, as the

edges of the leaves that are located between the piles are

smaller than the largest olive, RGF smoothed them out and

damaged their structure.

The third row compares CoF with Semantic filter [23].

3189

Input Domain Transform [7] Guided Image Filter [9] CoF

Input L0 Smoothing [22] Rolling Guided Filter [24] CoF

Input Edge Map [3] Semantic Filter [23] CoF

Input EV1, EV0.65&EV0.18 WLS+DM [5] CoF

Figure 9. Comparison to other Methods: The first row compares CoF against Domain Transform [7] and Guided Image Filter [9]. The

second row against L0 smoothing [22] and Rolling Guided Filter [24]. The third row against the Semantic Filter [23]. The last row against

WLS with diffusion distances [5].

Semantic filtering uses the edge map produced by SED [3]

to down-weight pixels that are not detected as edges. This

produces great results inside textures with small gradients,

see for example how nicely the trees are smoothed. How-

ever, in cases where the edge detector provide false edges,

the semantic filter fails, see for example the artifacts in the

middle of the sunflower field.

The forth row compares CoF to WLS enhanced with Dif-

fusion distance [5]. We present the first three eignvectors.

As can be seen, none of them cluster the black and white

strips of the Zebra together. CoF, on the other hand, man-

ages to fade the zebra into gray.

Figure 10 shows a number of potential applications of

CoF. See supplemental for more examples, details and com-

parisons.

Figure 10(a) shows the input image taken from a short

video clip [16]. On top of it, we show user supplied scrib-

bles. Figure 10(e) shows the result of running CoF on the

image where the co-occurrence matrix was collected over

the entire image, without using the scribbles.

We next show how to use CoF for selective smooth-

ing. To do that, we first need to convert the scribbles into

a mask, so that we can collect sufficient statistics for the

foreground co-occurrence matrix MF and the background

co-occurrence matrix MB .

One way to do that is to use interactive segmentation. In-

stead, we show a different approach that is based solely on

CoF. Let S denote the sparse scribble image and compute

the mask L = CoF(S,MT). Figure 10(b) shows the fil-

tered result, which we threshold to get the foreground mask.

This works because the scribble pixels belong to the fore-

ground and the co-occurrence matrix, computed from T ,

makes CoF mix them. Note that the mask L is not a perfect

segmentation of the image. It might have mislabeled pix-

3190

(a) Input + Scribble (b) Mask (c) B&W CoF (d) FB CoF 20 frames

(e) CoF (f) FB CoF (g) Foreground (h) Background

Figure 10. Applications: A list of potential use cases for CoF. See text for details.

els, but the goal of this step is simply to extend the support

of the scribbles. We found that it is better to miss a few

foreground pixels than include background pixels that will

distort the co-occurrence statistics. Once we have the mask

L we collect MF and MB . Figures 10(g) and 10(h) show

the result of running CoF on I with either MF or MB .

A better control of the result can be achieved by properly

combining MF and MB . This is shown in Figure 10(f). It

was generated using the following filter:

Jp =

∑

q∈N(p)(MF (p, q) · Ip +MB(p, q) · Iq)
∑

q∈N(p)(MF (p, q) +MB(p, q))
(16)

In words, if p is a foreground pixel, then MF (p, q) >>

MB(p, q), for most of its neighbors, q. In this case, most

neighbors contribute Ip, hence the resulting value, Jp, will

remain close to Ip. This will keep the image sharp at fore-

ground pixels. On the other hand, if p is a background pixel,

then MF (p, q) << MB(p, q) for most of neighbors. This

time, each neighbor contributes Iq , and the resulting value

would be a weighted average of these values (i.e., smooth-

ing). It is important to emphasize that the proposed algo-

rithm might smooth foreground pixels slightly but back-

ground pixels will be smoothed much more.

Figure 10(c) shows how to turn the background into

grayscale, while keeping the object in full color. To do that,

we use the following filter:

Jp =
αIcolorp + βIgrayp

α+ β
(17)

where

α =
∑

q∈N(p)

MF (p, q), β =
∑

q∈N(p)

MB(p, q). (18)

and Igray is a grayscale version of the image. Intuitively,

α measures how well the neighboring pixels of pixel p co-

occur with it, under the foreground co-occurrence matrix

MF . Similarly, β measures how well the neighboring pixels

of p co-occur with it, under the background co-occurrence

matrix MB . As a result, foreground pixels will prefer the

Icolor while background pixels will prefer Igray .

The last example, shown in Figure 10(d), shows how to

use CoF in video. In this case the co-occurrence matrices

collected on image 10(a) can be applied to an image that

is 20 frames apart in the video. Evidently, the learned co-

occurrence matrices produce reasonable results.

Taken together, Figure 10 shows the many ways CoF can

be used to achieve various artistic results.

5. Conclusions

We proposed Co-occurrence Filter (CoF), a boundary

preserving filter. CoF collects co-occurrence statistics from

the image before applying the filter. A high co-occurrence

weight causes pixel values to mix, leading to smooth-

ing within textured region. On the other hand, low co-

occurrence weight prevents pixels from mixing, leading to

sharp boundaries between textured regions. We defined the

filter, demonstrated its features and showed how it should

be applied to color images. We show results on various im-

ages and suggested several use cases that include learning

co-occurrence statistics on parts of the image, or learning

them on one image and applying it to another. Finally, we

presented several use cases to demonstrate its power and

potential.

Acknowledgement

This research was partially supported by ISF grant

1917/2015 and Samsung.

3191

References

[1] P. Arbelaez, M. Maire, C. C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell., 33(5):898–916, 2011. 2

[2] V. Aurich and J. Weule. Non-linear gaussian filters perform-

ing edge preserving diffusion. In Mustererkennung 1995, 17.

DAGM-Symposium, 1995. 2

[3] P. Dollár and C. L. Zitnick. Fast edge detection using

structured forests. IEEE Trans. Pattern Anal. Mach. Intell.,

37(8):1558–1570, 2015. 2, 7

[4] E. Eisemann and F. Durand. Flash photography enhancement

via intrinsic relighting. ACM Trans. Graph. 2

[5] Z. Farbman, R. Fattal, and D. Lischinski. Diffusion maps for

edge-aware image editing. ACM Trans. Graph. 2, 7

[6] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-

preserving decompositions for multi-scale tone and detail

manipulation. ACM Trans. Graph., 27(3), 2008. 2

[7] E. S. L. Gastal and M. M. Oliveira. Domain transform

for edge-aware image and video processing. ACM Trans.

Graph., 30(4):69:1–69:12, July 2011. 2, 6, 7

[8] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural

features for image classification. IEEE Transactions on Sys-

tems, Man, and Cybernetics, 1973. 3

[9] K. He, J. Sun, and X. Tang. Guided image filtering. In Pro-

ceedings of the 11th European Conference on Computer Vi-

sion: Part I, ECCV’10, 2010. 2, 6, 7

[10] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih.

Image indexing using color correlograms. In Computer

Vision and Pattern Recognition, 1997. Proceedings., 1997

IEEE Computer Society Conference on, 1997. 3

[11] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. Crisp

boundary detection using pointwise mutual information. In

Computer Vision – ECCV 2014: 13th European Conference,

Zurich, Switzerland, pages 799–814, Cham, 2014. Springer

International Publishing. 2

[12] R. J. Jevnisek and S. Avidan. Co-occurrence filter. arXiv

preprint arXiv:1703.04111, 2017. 5

[13] L. Ladický, C. Russell, P. Kohli, and P. H. Torr. Inference

methods for crfs with co-occurrence statistics. Int. J. Com-

put. Vision, 103(2):213–225, June 2013. 3

[14] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to de-

tect natural image boundaries using local brightness, color,

and texture cues. IEEE Trans. Pattern Anal. Mach. Intell.,

26(5):530–549, 2004. 2

[15] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. Bilateral

filtering: Theory and applications. Foundations and Trends

in Computer Graphics and Vision, 4(1):1–73, 2008. 2

[16] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool,

M. Gross, , and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In CVPR, 2016. 7

[17] P. Perona and J. Malik. Scale-space and edge detection us-

ing anisotropic diffusion. IEEE Trans. Pattern Anal. Mach.

Intell. 2

[18] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen,

H. Hoppe, and K. Toyama. Digital photography with flash

and no-flash image pairs. ACM Trans. Graph. 2

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–

905, 2000. 2

[20] S. M. Smith and J. M. Brady. ”‘susan; a new approach to low

level image processing”’. Int. J. Comput. Vision. 2

[21] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In Computer Vision, 1998. Sixth International

Conference on, 1998. 2

[22] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l0 gra-

dient minimization. ACM Transactions on Graphics (SIG-

GRAPH Asia), 2011. 2, 6, 7

[23] Q. Yang. Semantic filtering. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2016. 2, 6, 7

[24] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guidance fil-

ter. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, edi-

tors, Computer Vision – ECCV 2014: 13th European Confer-

ence, Zurich, Switzerland, September 6-12, 2014, Proceed-

ings, Part III, 2014. 2, 6, 7

3192

