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Abstract

Recently, convolutional neural networks (CNN) have

been successfully applied to view synthesis problems. How-

ever, such CNN-based methods can suffer from lack of tex-

ture details, shape distortions, or high computational com-

plexity. In this paper, we propose a novel CNN architec-

ture for view synthesis called “Deep View Morphing” that

does not suffer from these issues. To synthesize a middle

view of two input images, a rectification network first rec-

tifies the two input images. An encoder-decoder network

then generates dense correspondences between the rectified

images and blending masks to predict the visibility of pix-

els of the rectified images in the middle view. A view mor-

phing network finally synthesizes the middle view using the

dense correspondences and blending masks. We experimen-

tally show the proposed method significantly outperforms

the state-of-the-art CNN-based view synthesis method.

1. Introduction

View synthesis is to create unseen novel views based

on a set of available existing views. It has many ap-

pealing applications in computer vision and graphics such

as virtual 3D tour from 2D images and photo editing

with 3D object manipulation capabilities. Traditionally,

view synthesis has been solved by image-based rendering

[1, 19, 20, 28, 22, 9, 27, 30] and 3D model-based rendering

[15, 25, 33, 14, 7, 31, 12] .

Recently, convolutional neural networks (CNN) have

been successfully applied to various view synthesis prob-

lems, e.g., multi-view synthesis from a single view [32, 29],

view interpolation [6], or both [36]. While their results are

impressive and promising, they still have limitations. Direct

pixel generation methods such as [32] and [29] have a main

advantage that the overall geometric shapes are well pre-

dicted but their synthesis results usually lack detailed tex-

tures. On the other hand, the pixel sampling methods such
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Rectifi-

cation

Network

(Fig. 2)

C

M1

M2

	
"#$.&

REncoder-

Decoder

Network

(Fig. 3)

View

Morphing 

Network

(Fig. 6)

I1

I2

R1

R2

Figure 1. Overall pipeline of Deep View Morphing. A rectifica-

tion network (orange, Section 3.1) takes in I1 and I2 and outputs

a rectified pair R1 and R2. Then an encoder-decoder network

(blue, Section 3.2) takes in R1 and R2 and outputs the dense cor-

respondences C and blending masks M1 and M2. Finally, a view

morphing network(green, Section 3.3) synthesizes a middle view

Rα=0.5 from R1, R2, M1, M2, and C.

as [6] and [36] can synthesize novel views with detailed tex-

tures but they suffer from high computational complexity

[6] or geometric shape distortions [36].

In this paper, we propose a novel CNN architecture that

can efficiently synthesize novel views with detailed tex-

tures as well as well-preserved geometric shapes under the

view interpolation setting . We are mainly inspired by View

Morphing, the classic work by Seitz and Dyer [27], which

showed it is possible to synthesize shape-preserving novel

views by simple linear interpolation of the corresponding

pixels of a rectified image pair. Following the spirit of View

Morphing, our approach introduces a novel deep CNN ar-

chitecture to generalize the procedure in [27]—for that rea-

son, we named it Deep View Morphing (DVM).

Figure 1 shows the overall pipeline of DVM. A rectifica-

tion network (orange in Fig. 1) takes in a pair of input im-

ages and outputs a rectified pair. Then an encoder-decoder

network (blue in Fig. 1) takes in the rectified pair and out-

puts dense correspondences between them and blending

masks. A view morphing network (green in Fig. 1) finally

synthesizes a middle view using the dense correspondences

and blending masks. The novel aspects of DVM are:

• The idea of adding a rectification network before the

view synthesis phase—this is critical in that rectifi-

cation guarantees the correspondences should be 1D,

which makes the correspondence search by the encoder-
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decoder network significantly easier. As a result, we

can obtain highly accurate correspondences and conse-

quently high quality view synthesis results. The recti-

fication network is inspired by [16], which learns how

to transform input images to maximize the classification

accuracy. In DVM, the rectification network learns how

to transform an input image pair for rectification.

• DVM does not require additional information other than

the input image pair compared to [36] that needs view-

point transformation information and [6] that needs

camera parameters and higher-dimensional intermedi-

ate representation of input images.

• As all layers of DVM are differentiable, it can be effi-

ciently trained end-to-end with a single loss at the end.

In Section 4, we experimentally show that: (i) DVM can

produce high quality view synthesis results not only for syn-

thesized images rendered with ShapeNet 3D models [2] but

also for real images of Multi-PIE data [10]; (ii) DVM sub-

stantially outperforms [36], the state-of-the-art CNN-based

view synthesis method under the view interpolation setting,

via extensive qualitative and quantitative comparisons; (iii)

DVM generalizes well to categories not used in training;

and (iv) all intermediate views beyond the middle view can

be synthesized utilizing the predicted correspondences.

1.1. Related works

View synthesis by traditional methods. Earlier view syn-

thesis works based on image-based rendering include the

well-known Beier and Neely’s feature-based morphing [1]

and learning-based methods to produce novel views of hu-

man faces [30] and human stick figures [19]. For shape-

preserving view synthesis, geometric constraints have been

added such as known depth values at each pixel [3], epipo-

lar constraints between a pair of images [27], and trilinear

tensors that link correspondences between triplets of images

[28]. In this paper, DVM generalizes the procedure in [27]

using a single CNN architecture.

Structure-from-motion can be used for view synthesis

by rendering reconstructed 3D models onto virtual views.

This typically involves the steps of camera pose estimation

[12, 31, 35] and image based 3D reconstruction [7, 34].

However, as these methods reply on pixel correspondences

across views, their results can be problematic for texture-

less regions. The intervention of users is often required

to obtain accurate 3D geometries of objects or scenes

[15, 25, 33, 14]. Compared to these 3D model-based

methods, DVM can predict highly accurate correspon-

dences even for textureless regions and does not need the

intervention of users or domain experts.

View synthesis by CNN. Hinton et al. [13] proposed auto-

encoder architectures to learn a group of auto-encoders that

learn how to geometrically transform input images. Doso-

vitiskiy et al. [5] proposed a generative CNN architecture

to synthesize images given the object identity and pose.

Yang et al. [32] proposed recurrent convolutional encoder-

decoder networks to learn how to synthesize images of ro-

tated objects from a single input image by decoupling pose

and identity latent factors while Tatarchenko et al. [29] pro-

posed a similar CNN architecture without explicit decou-

pling of such factors. A key limitation of [5, 32, 29] is out-

put images are often blurry and lack detailed textures as they

generate pixel values from scratch. In order to solve this is-

sue, Zhou et al. [36] proposed to sample from input images

by predicting the appearance flow between the input and

output for both multi-view synthesis from a single view and

view interpolation. To resolve disocclusion and geometric

distortion, Park et al. [26] further proposed disocclusion

aware flow prediction followed by image completion and

refinement stage. Flynn et al. [6] also proposed to opti-

mally sample and blend from plane sweep volumes created

from input images for view interpolation. Recently, Liu et

al. [23] adopted tri-linear interpolation to obtain better ac-

curacy in synthesizing new views with two input images.

Among these CNN-based view synthesis methods, [6]

and [36] are closely related to DVM as they can solve the

view interpolation problem. Both demonstrated impressive

view interpolation results, but they still have limitations.

Those related to [6] include: (i) the need of creating plane

sweep volumes, (ii) higher computational complexity, and

(iii) assumption that camera parameters are known in test-

ing. Although [36] is computationally more efficient than

[6] and does not require known camera parameters in test-

ing, it still has some limitations. For instance, [36] assumes

that viewpoint transformation is given in testing. Moreover,

lack of geometric constraints on the appearance flow can

lead to shape or texture distortions. Contrarily, DVM can

synthesize novel views efficiently without the need of any

additional information other than two input images. More-

over, the rectification of two input images in DVM plays a

key role in that it imposes geometric constraints that lead to

shape-preserving view synthesis results.

2. View Morphing

We start with briefly summarizing View Morphing [27]

for the case of unknown camera parameters.

2.1. Rectification

Given two input images I1 and I2, the first step of View

Morphing is to rectify them by applying homographies to

each of them to make the corresponding points appear on

the same rows. Such homographies can be computed from

the fundamental matrix [11]. The rectified image pair can

be considered as captured from two parallel view cameras.

In [27], it is shown that the linear interpolation of parallel

views yields shape-preserving view synthesis results.
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2.2. View synthesis by interpolation

Let R1 and R2 denote the rectified versions of I1 and

I2. Novel view images can be synthesized by linearly in-

terpolating positions and colors of corresponding pixels of

R1 and R2. As the image pair is already rectified, such

synthesis can be done on a row by row basis .

Let P1 = {p1
1
, . . . , pN

1
} and P2 = {p1

2
, . . . , pN

2
} denote

the point correspondence sets between R1 and R2 where

pi
1
, pj

2
∈ ℜ2 are corresponding points when i = j. With α

between 0 and 1, a novel view Rα can be synthesized as

Rα

(

(1− α)pi
1
+ αpi

2

)

= (1−α)R1(p
i
1
)+αR2(p

i
2
), (1)

where i = 1, . . . , N . As point correspondences found by

feature matching are usually sparse, more correspondences

need to be determined by interpolating the existing ones.

Extra steps are usually further applied to deal with folds or

holes caused by the visibility changes between R1 and R2.

2.3. Postwarping

As Rα is synthesized on the image plane determined by

the image planes of the rectified pair R1 and R2, it might

not represent desired views. Therefore, post-warping with

homographies can be optionally applied to Rα to obtain de-

sired views. Such homographies can be determined by user-

specified control points.

3. Deep View Morphing

DVM is an end-to-end generalization of View Morphing

by a single CNN architecture shown in Fig. 1. The rectifica-

tion network (orange in Fig. 1) first rectifies two input im-

ages I1 and I2 without the need of having point correspon-

dences across views. The encoder-decoder network (blue in

Fig. 1) then outputs the dense correspondences C between

the rectified pair R1 and R2 and blending masks M1 and

M2. Finally, the view morphing network (green in Fig. 1)

synthesizes a novel view Rα=0.5 from R1, R2, M1, M2,

and C. All layers of DVM are differentiable and it allows

efficient end-to-end training. Although DVM is specifically

configured to synthesize the middle view of R1 and R2, we

can still synthesize all intermediate views utilizing the pre-

dicted dense correspondences as shown in Appendix C of

the arXiv version of the paper [17].

What is common between the rectification network and

encoder-decoder network is they require a mechanism to en-

code correlations between two images as a form of CNN

features. Similarly to [4], we can consider two possible

ways of such mechanisms: (i) early fusion by channel-wise

concatenation of raw input images and (ii) late fusion by

channel-wise concatenation of CNN features of input im-

ages. We chose to use the early fusion for the rectification

network and late fusion for the encoder-decoder network

(see Appendix A of the arXiv version of the paper [17] for
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Figure 2. Rectification network of Deep View Morphing. I1 and

I2 are stacked to be 6-channel input SI . The last convolution layer

outputs two homographies H1 and H2 to be applied to I1 and

I2, respectively, via geometric transformation layers. The final

output of the rectification network is a rectified pair R1 and R2.

Red horizontal lines are shown to highlight several corresponding

points between R1 and R2 that lie over horizontal epipolar lines.

Encoder
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Figure 3. Encoder-decoder network of Deep View Morphing. Each

of two encoders sharing weights processes each of the rectified

pair. The correspondence decoder and visibility decoder take in

the concatenated encoder features and output the dense correspon-

dences C and blending masks M1 and M2, respectively.

in-depth analysis). We now present the details of each sub-

network.

3.1. Rectification network

Figure 2 shows the CNN architecture of the rectification

network. We first stack two input images I1 and I2 to obtain

6-channel input SI . Then convolution layers together with

ReLU and max pooling layers process the stacked input SI

to generate two homographies H1 and H2 in the form of 9D

vectors. Finally, geometric transformation layers generate

a rectified pair R1 and R2 by applying H1 and H2 to I1
and I2, respectively. The differentiation of the geometric

transformation by homographies is straightforward and can

be found in Appendix B of the arXiv version of the paper

[17].

3.2. Encoderdecoder network

Encoders. The main role of encoders shown in Fig. 3 is

to encode correlations between two input images R1 and

R2 into CNN features. There are two encoders sharing
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R1

R2

Figure 4. Example of dense correspondences between R1 and R2

predicted by the correspondence decoder. For better visualization,

R2 is placed lower than R1 and only 50 correspondences that are

randomly chosen on the foreground are shown.

weights, each of which processes each of the rectified

pair with convolution layers followed by ReLU and max

pooling. The CNN features from the two encoders are

concatenated channel-wise by the late fusion and fed into

the correspondence decoder and visibility decoder.

Correspondence decoder. The correspondence decoder

shown in Fig. 3 processes the concatenated encoder fea-

tures by successive deconvolution layers as done in [4, 5,

32, 29, 36]. The last layer of the correspondence decoder is

a convolution layer and outputs the dense correspondences

C between R1 and R2. As R1 and R2 are already rectified

by the rectification network, the predicted correspondences

are only 1D, i.e., correspondences along the same rows.

Assume that C is defined with respect to the pixel coor-

dinates p of R1. We can then represent the point correspon-

dence sets P1 = {p1
1
, . . . , pM

1
} and P2 = {p1

2
, . . . , pM

2
} as

pi
1
= pi, pi

2
= pi + C(pi), i = 1, . . . ,M, (2)

where M is the number of pixels in R1. With these P1 and

P2, we can now synthesize a middle view Rα=0.5 by (1).

In (1), obtaining R2(p
i
2
) needs interpolation because

pi
2
= pi + C(pi) are generally non-integer valued. Such

interpolation can be done very efficiently as it is sampling

from regular grids. We also need to sample Rα=0.5(q) on

regular grid coordinates q from Rα=0.5(0.5p
i
1
+ 0.5pi

2
) as

0.5pi
1
+0.5pi

2
are non-integer valued. Unlike R2(p

i
2
), sam-

pling Rα=0.5(q) from Rα=0.5(0.5p
i
1
+0.5pi

2
) can be tricky

because it is sampling from irregularly placed samples.

To overcome this issue of sampling from irregularly

placed samples, we can define C differently: C is defined

with respect to the pixel coordinates q of Rα=0.5. That is,

the point correspondence sets P1 and P2 are obtained as

pi
1
= qi + C(qi), pi

2
= qi − C(qi), i = 1, . . . ,M. (3)

Then the middle view Rα=0.5 can be easily synthesized as

Rα=0.5(q) = 0.5R1(P1) + 0.5R2(P2), (4)

where both R1(P1) and R2(P2) can be efficiently sampled.

(b)

(c)

R1

R2
(a)

R1("#) R2("%)

	0.5 ⋅ 																			+0.5 ⋅																						=					

	-./.0
R

+ =

R1("#) M1 R2("%) M2

⊙ ⊙

	-./.0
R

1.0

0.5

0.0

Figure 5. (a) The correspondences for commonly visible regions

are predicted accurately (green), but those for regions only visible

in R1 or R2 are ill-defined and cannot be predicted correctly (red

and blue). (b) The middle view synthesized by (4) using all of the

correspondences suffers from severe ghosting artifacts. (c) The

blending masks M1 and M2 generated by the visibility decoder

correctly predict the visibility of pixels of R1(P1) and R2(P2) in

the middle view, and thus we can obtain the ghosting-free middle

view by (5). For example, the left side of the car in R1(P1) has

very low value in M1 close to 0 (dark blue) as it should not appear

in the middle view while the corresponding region in R2(P2) is

the background that should appear in the middle view and hence

very high value in M2 close to 1 (dark red).

Figure 4 shows an example of the dense correspondences

between R1 and R2 predicted by the correspondence de-

coder. It is notable that the predicted correspondences are

highly accurate even for textureless regions.

Visibility decoder. It is not unusual for R1 and R2 to have

different visibility patterns as shown in Fig. 5(a). In such

cases, the correspondences of pixels only visible in either

one of views are ill-defined and thus cannot be predicted

correctly. The undesirable consequence of using (4) with

all of the correspondences for such cases is severe ghosting

artifacts as shown in Fig. 5(b).

In order to solve this issue, we adopt the idea to use

blending masks proposed in [36]. We use the visibility de-

coder shown in Fig. 3 to predict visibility of each pixel of

R1(P1) and R2(P2) in the synthesized view Rα=0.5. The

visibility decoder processes the concatenated encoder fea-

tures by successive deconvolution layers. At the end of

the visibility decoder, a convolution layer outputs 1-channel

feature map M that is converted to a blending mask M1

for R1(P1) by a sigmoid function. A blending mask M2

for R2(P2) is determined by M2 = 1 − M1. M1 and

M2 represent the probability of each pixel of R1(P1) and

R2(P2) to appear in the synthesized view Rα=0.5.

Now we can synthesize the middle view Rα=0.5 using

all of the correspondences and M1 and M2 as

Rα=0.5(q) = R1(P1)⊙M1 +R2(P2)⊙M2, (5)

where ⊙ represents element-wise multiplication. As shown

in Fig 5(c), regions that should not appear in the middle

view have very low values close to 0 (dark blue) in M1
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Figure 6. View morphing network of Deep View Morphing. Sam-

pling layers output R1(P1) and R2(P2) by sampling from R1

and R2 based on the dense correspondences C. Then the blending

layer synthesizes a middle view Rα=0.5 via (5).

and M2 while commonly visible regions have similar val-

ues around 0.5 (green and yellow). As a result, we can ob-

tain ghosting-free Rα=0.5 by (5) as shown in Fig. 5(c).

3.3. View morphing network

Figure 6 shows the view morphing network. Sampling

layers take in the dense correspondences C and the rectified

pair R1 and R2, and output R1(P1) and R2(P2) in (5) by

sampling pixel values of R1 and R2 at P1 and P2 deter-

mined by (3). Here, we can use 1D interpolation for the

sampling because C represents 1D correspondences on the

same rows. Then the blending layer synthesizes the mid-

dle view Rα=0.5 from R1(P1) and R2(P2) and their cor-

responding blending masks M1 and M2 by (5). The view

morphing network does not have learnable weights as both

sampling and blending are fixed operations.

3.4. Network training

All layers of DVM are differentiable and thus end-to-

end-training with a single loss at the end comparing the

synthesized middle view and ground truth middle view is

possible. For training, we use the Euclidean loss defined as

L =

M
∑

i=1

1

2
||Rα=0.5(q

i)−RGT(q
i)||2

2
, (6)

where RGT is the desired ground truth middle view image

and M is the number of pixels. Note that we do not need the

post-warping step as in [27] (Section 2.3) because the rec-

tification network is trained to rectify I1 and I2 so that the

middle view of R1 and R2 can be directly matched against

the desired ground truth middle view RGT.

3.5. Implementation details

The CNN architecture details of DVM such as number

of layers and kernel sizes and other implementation details

are shown in Appendix A of the arXiv version of the paper

[17]. With Intel Xeon E5-2630 and a single Nvidia Titan X,

DVM processes a batch of 20 input pairs of 224 × 224 in

0.269 secs using the modified version of Caffe [18].

4. Experiments

We now demonstrate the view synthesis performance of

DVM via experiments using two datasets: (i) ShapeNet [2]

and (ii) Multi-PIE [10]. We mainly compare the perfor-

mance of DVM with that of “View Synthesis by Appearance

Flow” (VSAF) [36]. We evaluated VSAF using the codes

kindly provided by the authors. For training of both meth-

ods, we initialized all weights by the Xavier method [8] and

all biases by constants of 0.01, and used the Adam solver

[21] with β1 = 0.9 and β2 = 0.999 with the mini-batch

sizes of 160 and initial learning rates of 0.0001.

4.1. Experiment 1: ShapeNet

Training data. We used “Car”, “Chair”, “Airplane”, and

“Vessel” of ShapeNet to create training data. We randomly

split all 3D models of each category into 80% training and

20% test instances. We rendered each model using Blender

(https://www.blender.org) using cameras at azimuths of 0◦

to 355◦ with 5◦ steps and elevations of 0◦ to 30◦ with 10◦

steps with the fixed distance to objects. We finally cropped

object regions using the same central squares for all view-

points and resized them to 224× 224.

We created training triplets {I1,RGT, I2} where I1,

RGT, and I2 have the same elevations. Let φ1, φ2, and

φGT denote azimuths of I1, I2, and RGT. We first sampled

I1 with φ1 multiples of 10◦, and sampled I2 to satisfy

∆φ = φ2−φ1 = {20◦, 30◦, 40◦, 50◦}. RGT is then selected

to satisfy φGT − φ1 = φ2 − φGT = {10◦, 15◦, 20◦, 25◦}.

We provided VSAF with 8D one-hot vectors [36] to

represent viewpoint transformations from I1 to RGT

and from I2 to RGT equivalent to azimuth differences

of {±10◦,±15◦,±20◦,±25◦}. The number of training

triplets for “Car”, “Chair”, “Airplane”, and “Vessel” are

about 3.4M, 3.1M, 1.9M, and 0.9M, respectively. More

details of the ShapeNet training data are shown in Appendix

C of the arXiv version of the paper [17].

Category-specific training. We first show view synthesis

results of DVM and VSAF trained on each category sepa-

rately. Both DVM and VSAF were trained using exactly

the same training data. For evaluating the view synthe-

sis results, we randomly sampled 200,000 test triplets for

each category created with the same configuration as that of

the training triplets. As an error metric, we use the mean

squared error (MSE) between the synthesized output and

ground truth summed over all pixels.

Figure 7 shows qualitative comparisons of view synthe-

sis results by DVM and VSAF. It is clear that view synthe-

sis results by DVM are visually more pleasing with much

less ghosting artifacts and much closer to the ground truth

views than those by VSAF. Table 1 shows the mean of

MSE by DVM and VSAF for each category. The mean

of MSE by DVM are considerably smaller than those by
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Table 1. Mean of MSE by DVM and VSAF trained for “Car”,

“Chair”, “Airplane”, and “Vessel” in a category-specific way.

Car Chair Airplane Vessel

DVM 44.70 61.00 22.30 42.74

VSAF 70.11 140.35 46.80 95.99

DVM VSAF DVM VSAF

(c)                                                                   (d)

DVM VSAF DVM VSAF

(a)                                                                   (b)

I1                          GT I2 I1                          GT I2

I1                          GT I2 I1                          GT I2

Figure 7. Comparisons of view synthesis results by DVM and

VSAF on test samples of (a) “Car”, (b) “Chair”, (c) “Airplane”,

and (d) “Vessel” of ShapeNet. Two input images are shown on

the left and right sides of the ground truth image (“GT”). More

comparisons are shown in Appendix C of the arXiv version of the

paper [17].

(a)                                                      (b)                                  

(c)                                                        (d)                                  

Figure 8. Examples of rectification results and dense correspon-

dences obtained by DVM on the test input images shown in Fig. 7.

More examples are shown in Appendix C of the arXiv version of

the paper [17].

VSAF for all four categories, which matches well the qual-

itative comparisons in Fig. 7 . The mean of MSE by DVM

for “Car”, “Chair”, “Airplane”, and “Vessel” are 63.8%,

43.5%, 47.6%, and 44.5% of that by VSAF, respectively.

Figure 8 shows the rectification results and dense cor-

respondences obtained by DVM for the test input images

shown in Fig. 7. Note that DVM yields highly accurate rec-

tification results and dense correspondence results. In fact,

it is not possible to synthesize the middle view accurately

if one of them is incorrect. The quantitative analysis of the

rectification accuracy by DVM is shown in Appendix C of
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Figure 9. Plots of mean of MSE by DVM (solid) and VSAF

(dashed) as a function of φ1 (azimuth of I1) for all test triplets

of “Car”, “Chair”, “Airplane”, and “Vessel”. Different line colors

represent different azimuth differences ∆φ between I1 and I2.
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Figure 10. Plots of mean of MSE by DVM (red) and VSAF (blue)

as a function of azimuth difference ∆φ between I1 and I2 for

“Car”. Here, the azimuth differences are 15◦ ≤ ∆φ < 60◦ with

2.5◦ steps.

the arXiv version of the paper [17].

Figure 9 shows plots of mean of MSE by DVM and

VSAF as a function of φ1 (azimuth of I1) where different

line colors represent different azimuth differences ∆φ be-

tween I1 and I2. As expected, the mean of MSE increases

as ∆φ increases. Note that the mean of MSE by DVM for

∆φ = 50◦ is similar to that by VSAF for ∆φ = 30◦. Also

note that the mean of MSE by DVM for each ∆φ has peaks

near φ1 = 90◦ · i−∆φ/2, i = 0, 1, 2, 3, where there is con-

siderable visibility changes between I1 and I2, e.g., from a

right-front view I1 to a left-front view I2.

We also compare the performance of DVM and VSAF

trained for the larger azimuth differences up to 90◦. Due to

the limited space, the results are shown in Appendix C of

the arXiv version of the paper [17].

Robustness test. We now test the robustness of DVM and

VSAF to inputs that have different azimuths and elevations

from those of the training data. We newly created 200,000

test triplets of “Car” with azimuths and elevations that are

5◦ shifted from those of the training triplets but still with

∆φ = {20◦, 30◦, 40◦, 50◦}. The mean of MSE for the

5◦ shifted test triplets by DVM and VSAF are 71.75 and

107.64, respectively. Compared to the mean of MSE by

DVM and VSAF on the original test triplets of “Car” in

Tab. 1, both DVM and VSAF performed worse similarly:

61% MSE increase by DVM and 54% MSE increase by

VSAF. However, note that the mean of MSE by DVM on

the 5◦ shifted test triplets (71.75) is similar to that by VSAF

on the original test triplets (70.11).
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Figure 11. Comparisons of view synthesis results by DVM and

VSAF on test samples of unseen (a) “Motorcycle”, (b) “Laptop”,

(c) “Clock”, and (d) “Bookshelf” of ShapeNet. More comparisons

are shown in Appendix C of the arXiv version of the paper [17].

We also test the robustness of DVM and VSAF to inputs

with azimuth differences ∆φ that are different from those

of the training data. We newly created 500,000 test triplets

of “Car” with I1 that are the same as the training triplets

and I2 and RGT corresponding to 15◦ ≤ ∆φ < 60◦ with

2.5◦ steps. We provided VSAF with 8D one-hot vectors

by finding the elements from {±10◦,±15◦,±20◦,±25◦}
closest to φ1 − φGT and φ2 − φGT.

Figure 10 shows plots of mean of MSE by DVM and

VSAF for the new 500,000 test triplets of “Car”. It is clear

that DVM is much more robust to the unseen ∆φ than

VSAF. VSAF yielded much higher MSE for the unseen

∆φ compared to that for ∆φ multiples of 10. Contrarily,

the MSE increase by DVM for such unseen ∆φ is minimal

except for ∆φ > 50◦. This result suggests that DVM which

directly considers two input images together for synthesis

without relying on the viewpoint transformation inputs has

more generalizability than VSAF.

Category-agnostic training. We now show view synthesis

results of DVM and VSAF trained in a category-agnostic

way, i.e., we trained DVM and VSAF using all training

triplets of all four categories altogether. For this category-

agnostic training, we limited the maximum number of train-

ing triplets of each category to 1M. For testing, we addition-

ally selected four unseen categories from ShapeNet: “Mo-

torcycle”, “Laptop”, “Clock”, and “Bookshelf”. The test

triplets of the unseen categories were created with the same

configuration as that of the training triplets.

Figure 11 shows qualitative comparisons of view synthe-

sis results by DVM and VSAF on the unseen categories. We

Table 2. Mean of MSE by DVM and VSAF trained for “Car”,

“Chair”, “Airplane”, and “Vessel” in a category-agnostic way.

Car Chair Airplane Vessel

DVM 52.56 73.01 24.73 38.42

VSAF 83.36 161.59 51.95 88.47

Motorcycle Laptop Clock Bookshelf

DVM 154.45 102.27 214.02 171.81

VSAF 469.01 262.33 491.82 520.22

can see the view synthesis results by DVM are still highly

accurate even for the unseen categories. Especially, DVM

even can predict the blending masks correctly as shown in

Fig. 11(d). Contrarily, VSAF yielded view synthesis results

with lots of ghosting artifacts and severe shape distortions.

Table 2 shows the mean of MSE by DVM and VSAF

trained in a category-agnostic way. Compared to Tab. 1,

we can see the mean of MSE by both DVM and VSAF

for “Car”, “Chair”, and “Airplane” slightly increased due

to less training samples of the corresponding categories.

Contrarily, the mean of MSE by both DVM and VSAF for

“Vessel” decreased mainly due to the training samples of

the other categories. The performance difference between

DVM and VSAF for the unseen categories is much greater

than that for the seen categories. The mean of MSE by

DVM for “Motorcycle”, “Laptop”, “Clock”, and “Book-

shelf” are 32.9%, 39.0%, 43.5%, and 33.0% of that by

VSAF, respectively. These promising results by DVM on

the unseen categories suggest that DVM can learn general

features necessary for rectifying image pairs and establish-

ing correspondences between them. The quantitative anal-

ysis of the rectification accuracy by DVM for the unseen

categories is shown in Appendix C of the arXiv version of

the paper [17].

4.2. Experiment 2: MultiPIE

Training data. Multi-PIE dataset [10] contains face im-

ages of 337 subjects captured at 13 viewpoints from 0◦

to 180◦ azimuth angles. We split 337 subjects into 270

training and 67 test subjects. We used 11 viewpoints from

15◦ to 165◦ because images at 0◦ and 180◦ have drasti-

cally different color characteristics. We sampled I1 and

I2 to have ∆φ = {30◦, 60◦}, and picked RGT to satisfy

φGT − φ1 = φ2 − φGT = {15◦, 30◦}. The number of train-

ing triplets constructed in this way is 643,760. We provided

VSAF with 4D one-hot vectors accordingly.

Multi-PIE provides detailed facial landmarks annota-

tions but only for subsets of whole images. Using those

annotations, we created two sets of training data with

(i) loose and (ii) tight facial region crops. For the loose

crops, we used a single bounding box for all images of

the same viewpoint that encloses all facial landmarks of

those images. For the tight crops, we first performed face
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Figure 12. Comparisons of view synthesis results by DVM and

VSAF on Multi-PIE test samples with (a) loose and (b) tight crops.

More comparisons are shown in Appendix C of the arXiv version

of the paper [17].

Table 3. Mean of MSE by DVM and VSAF for Multi-PIE test

triplets with the loose and tight facial region crops.

Loose facial region crops Tight facial region crops

DVM 162.62 164.77

VSAF 267.83 194.30

segmentation using FCN [24] trained with convex hull

masks of facial landmarks. We then used a bounding box

of the segmented region for each image. For both cases,

we extended bounding boxes to be square and include all

facial regions and finally resized them to 224× 224.

Results. We trained DVM and VSAF using each of the two

training sets separately. For testing, we created two sets

of 157,120 test triplets from 67 test subjects, one with the

loose crops and the other with the tight crops, with the same

configuration as that of the training sets.

Figure 12(a) shows qualitative comparisons of view syn-

thesis results by DVM and VSAF on the test triplets with

the loose facial region crops. The view synthesis results

by VSAF suffer lots of ghosting artifacts and severe shape

distortions mainly because (i) faces are not aligned well

and (ii) their scales can be different. Contrarily, DVM

yielded very satisfactory view synthesis results by success-

fully dealing with the unaligned faces and scale differences

thanks to the presence of the rectification network. These

successful view synthesis results by DVM have significance

in that DVM can synthesize novel views quite well even

with the the camera setup not as precise as that of the

ShapeNet rendering and objects with different scales.

Figure 12(b) shows qualitative comparisons of view syn-

thesis results by DVM and VSAF on the test triplets with

the tight facial region crops. The view synthesis results by

VSAF are much improved compared to the case of the loose

facial region crops because the facial regions are aligned

fairly well and their scale differences are negligible. How-

ever, the view synthesis results by DVM are still better than

those by VSAF with less ghosting artifacts and less shape

distortions. Table 3 shows the mean of MSE by DVM and

VSAF for the Multi-PIE test triplets that match well the

qualitative comparisons in Fig. 12.

4.3. Experiment 3: Intermediate view synthesis

We can synthesize all intermediate views by linearly in-

terpolating the blending masks M1 and M2 as well as R1

and R2. As the dense correspondences predicted by DVM

are highly accurate, we can synthesize highly realistic in-

termediate views. The detailed procedure to synthesize the

intermediate views and results are shown in Appendix C of

the arXiv version of the paper [17].

5. Conclusion and discussion

In this paper, we proposed DVM, a CNN-based view

synthesis method inspired by View Morphing [27]. Two

input images are first automatically rectified by the rectifi-

cation network. The encoder-decoder network then outputs

the dense correspondences between the rectified images and

blending masks to predict the visibility of pixels of the rec-

tified images in the middle view. Finally, the view morph-

ing network synthesizes the middle view using the dense

correspondences and blending masks. We experimentally

showed that DVM can synthesize novel views with detailed

textures and well-preserved geometric shapes clearly better

than those by the CNN-based state-of-the-art.

Deep View Morphing still can be improved in some as-

pects. For example, it is generally difficult for Deep View

Morphing to deal with very complex thin structures. Plus,

the current blending masks cannot properly deal with the

different illumination and color characteristics between in-

put images, and thus blending seams can be visible in some

cases. Examples of these challenging cases for DVM are

shown in Appendix C. Future work will be focused on im-

proving the performance for such cases.
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