This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Improving training of deep neural networks via Singular Value Bounding

Kui Jia', Dacheng Tao?, Shenghua Gao®, and Xiangmin Xu'

!School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
2UBTech Sydney Al Institute, SIT, FEIT, The University of Sydney, Australia
3School of Information Science and Technology, ShanghaiTech University, Shanghai, China

{kuijia,xmxu}@scut.edu.cn, dacheng.tao@sydney.edu.au, gaoshh@shanghaitech.edu.cn

Abstract

Deep learning methods achieve great success recently on
many computer vision problems. In spite of these practical
successes, optimization of deep networks remains an active
topic in deep learning research. In this work, we focus on
investigation of the network solution properties that can po-
tentially lead to good performance. Our research is inspired
by theoretical and empirical results that use orthogonal ma-
trices to initialize networks, but we are interested in investi-
gating how orthogonal weight matrices perform when net-
work training converges. To this end, we propose to con-
strain the solutions of weight matrices in the orthogonal
feasible set during the whole process of network training,
and achieve this by a simple yet effective method called Sin-
gular Value Bounding (SVB). In SVB, all singular values
of each weight matrix are simply bounded in a narrow band
around the value of 1. Based on the same motivation, we al-
so propose Bounded Batch Normalization (BBN), which im-
proves Batch Normalization by removing its potential risk of
ill-conditioned layer transform. We present both theoretical
and empirical results to justify our proposed methods. Ex-
periments on benchmark image classification datasets show
the efficacy of our proposed SVB and BBN. In particular, we
achieve the state-of-the-art results of 3.06% error rate on
CIFARI0 and 16.90% on CIFAR100, using off-the-shelf net-
work architectures (Wide ResNets). Our preliminary results
on ImageNet also show the promise in large-scale learn-
ing. We release the implementation code of our methods at
www.aperture-lab.net/research/svb.

1. Introduction

Deep learning methods keep setting the new state-of-the-
art for many computer vision problems, with image classi-
fication [20] and object detection [16] as the prominent ex-
amples. These practical successes are largely achieved by

newly proposed deep architectures that have huge model ca-
pacities, such as Inception [25] and ResNet [7]. Training of
these ultra-deep/ultra-wide networks are enabled by mod-
ern techniques such as Batch Normalization (BN) [11] and
residual learning [7].

In spite of these practical successes, however, optimiza-
tion of deep networks remains an active topic in deep learn-
ing research. Until recently, deep networks are considered
to be difficult to train. Researchers argue for different rea-
sons causing such difficulties, such as the problem of van-
ishing/exploding gradients [6, 18], internal shift of feature
statistics [11], and also the proliferation of saddle points
[5, 12]. To address these issues, different schemes of pa-
rameter initialization [0, 21], shortcut connections [7, &],
normalization of internal activations [1 1], and second-order
optimization methods [5] are respectively proposed.

In this work, we focus on another important issue to ad-
dress the difficulty of training deep neural networks. In par-
ticular, given the high-dimensional solution space of deep
networks, it is unclear on the properties of the (arguably)
optimal solutions that can give good performance at infer-
ence. Without knowing this, training by a specified objec-
tive function easily goes to unexpected results, partially due
to the proliferation of local optima/critical points [5, 12].
For example, it is empirically observed in [7] that adding
extra layers to a standard convolutional network (ConvNet)
does not necessarily give better image classification results.
This unclear issue is further compounded by other (afore-
mentioned) optimization difficulties.

Existing deep learning research has some favors on the
solutions of network parameters [4, 21], and also on net-
work architectures that can give desirable solutions [25, 3,
7]. In this paper, we are inspired by the analysis of orthogo-
nal initialization in [21], and propose to constrain the solu-
tions of weight matrices in the orthogonal feasible set dur-
ing the whole process of network training. To this end, we
propose a simple yet effective method called Singular Val-

4344

www.aperture-lab.net/research/svb

ue Bounding (SVB). In SVB, all singular values of each
weight matrix are simply bounded in a narrow band around
the value of 1 (Section 3). When using stochastic gradi-
ent descent (SGD) or its variants for network training, this
amounts to turning SVB on by every a specified number of
iterations. We present theoretical analysis, using deep lin-
ear networks, to show how such learned networks are better
on forward-propagation to achieve training objectives, and
backward-propagation of training errors (Section 4). Batch
normalization [11] is a very effective method to improve
and accelerate network training. We prove that in the frame-
work of our theoretical analysis, trainable parameters in BN
may cause ill-conditioned layer transform. We thus propose
Bounded Batch Normalization (BBN), a technique that im-
proves BN by removing this risk without sacrificing all its
other benefits (Section 5). BBN achieves this by simply
bounding the values of BN parameters during training.

We present benchmark image classification experiments
using both ConvNets [22] and modern network architec-
tures [8, 27, 25] (Section 6). Our results show that SVB
indeed improves over SGD based methods for training
various architectures of deep networks, and in many cas-
es with a large margin. Our proposed BBN further im-
proves over BN. In particular, we achieve the state-of-the-
art results of 3.06% error rate on CIFAR10 and 16.90%
on CIFAR100 [13], using off-the-shelf network architec-
tures (Wide ResNets [27]). Our preliminary results on the
large-scale ImageNet dataset are consistent with those on
moderate-scale ones.

2. Related works

In this section, we briefly review the closely related deep
learning methods that also pay attention to the properties of
network solutions.

Saxe et al. [21] theoretically study the gradient descent
learning dynamics of deep linear networks, and give similar
empirical insights for deep nonlinear networks. They fur-
ther suggest that using orthogonal initialization of weight
matrices can achieve learning efficiency similar to that of
unsupervised pre-training. Mishkin and Matas [17] present
promising results on image classification, using the orthog-
onal initialization idea in [21]. Our theoretical analysis in
Section 4 follows [21], but are different in the following
aspects. We focus on studying the conditions when net-
work training converges, while [21] focuses on the condi-
tions right after network initialization. Our analysis center-
s around our proposed SVB method, and we discuss how
SVB can resolve the issues that appear as the network train-
ing proceeds. We also extend our theoretical analysis to BN
[11], and propose a new BBN method that improves over
BN for training modern deep networks.

Arpit et al. [4] also study the properties of network pa-
rameters that can have good performance, but from a sig-

nal recovery point of view. In particular, they study the
reverse data-generating properties of auto-encoders where
input samples are generated from the true signals of hid-
den representations. They prove that for sparse true signals,
e.g., those out of ReLU activations, strong recovery can be
achieved if the weight matrix is highly incoherent. Different
from [4], our main concern is on the properties of network
parameters that can give good image classification perfor-
mance by feed-forward computations.

In [18], a soft constraint technique is proposed to deal
with the vanishing gradient in training recurrent neural net-
works (RNNs). The soft constraint regularizes the learning
of weight matrices so that those better to achieve norm p-
reservation of error signals across layers are favored. In
contrast, our proposed SVB method directly controls the
singular values of weight matrices, and norm preservation
of error signals is only part of our benefits.

A recent work from Wisdom and Powers et al. [26]
shows full-capacity unitary recurrence matrices can be used
in RNNs, and can be optimized over the differentiable man-
ifold of unitary matrices, which improves over [2]. In con-
trast, we focus on convolutional networks in this work,
where weight matrices are not square. We only enforce
column or row vectors of weight matrices of ConvNets to
be near orthogonal, while giving them more flexibility to
better learn to the training tasks. This relaxation from strict
orthogonality enables us to use very simple algorithms com-
patible with standard SGD based training. Practicably, we
observe our SVB algorithm is just as efficient as SGD based
training, while achieving the property of near orthogonality.

3. The proposed Singular Value Bounding al-
gorithm

Suppose we have K pairs of training samples
{z;,y,}5,, where &; € R+ is a training input and y;
is its corresponding output. y, € RYv could be a vec-
tor with continuous entries for regression problems, or a
binary one-hot vector for classification problems. A deep
neural network of L layers performs cascaded computa-
tions of @' = f(z}) = f(W'z!=! + b)) € RV for
Il =1,...,L, where /=t € RN~ is the input feature
of the ' layer, f(-) is an element-wise activation func-
tion, and Wl ¢ RNXNi-1 and b8 € RM are respec-
tively the layer-wise weight matrix and bias vector. We
have ° = x. With appropriate training criteria, network
optimization aims to find solutions of network parameter-
s© = {W' b'}E |, so that the trained network is able to
produce good estimation of y for any test sample . Train-
ing is usually based on SGD or its variants [24]. Given the
training loss function £ ({z;,y,},;©), SGD updates ©
based on a simple rule of ©;11 + O; — ng—é, where 7

is the learning rate. The gradient g—é is usually comput-
ed from a mini-batch of training samples. Network training

4345

proceeds by sampling for each iteration ¢ a mini-batch from
{z;,y,} X, until a specified number T of iterations or the
training loss plateaus.

Existing deep learning research suggests that in order to
get good performance, initializations of © matter. In par-
ticular, scaled random Gaussian matrices are proposed in
[6] as the initializations of weight matrices {W'}~ |, and
random orthogonal ones are advocated in [21, 17]. Given
different initializations, these methods train deep networks
using SGD or its variants. Theoretical analysis in [21] and
empirical results in [17] demonstrate some advantages of
orthogonal initializations over Gaussian ones. In this work,
we are interested in pushing a step further to know what so-
lutions of ® matter when network training converges, rather
than just at the initialization. For the orthogonal case, our
empirical results (cf. Figure 1) show that as the training
proceeds, singular value spectra of weight matrices diverge
from their initial condition. We are thus motivated to in-
vestigate along this line, from the empirical observations of
Figure | and also the theoretical analysis in [21].

More specifically, we propose a simple yet very effec-
tive network training method, which preserves the orthogo-
nality of weight matrices during the procedure of network
training. This amounts to solving the following constrained
optimization problem

o_pin (ERAHEHC)

st. Wheovie{l,..., L}, (1)

where O stands for the set of matrices whose row or col-
umn vectors are orthonormal. Compared with standard S-
GDs, the feasible set of problem (1) for {W'}%_, is much
reduced. For W' of any [*" layer, problem (1) in fac-
t constrains its solution set as a Riemannian manifold called
Stiefel manifold [1]. In this work, we consider near or-
thonormality of {Wl}lel, and propose to approximately
solve this problem based on projected SGD (or its variants):
we simply bound, after every T, iterations of SGD train-
ing, the singular values of each Wl, forl =1,...,L,ina
narrow band [1/(1+e€), (1+e€)] around the value of 1, where
e is a specified small constant. Algorithm | presents details
of our proposed Singular Value Bounding (SVB) method.
In Section 4, we present theoretical analysis on deep lin-
ear networks to justify the advantages of our proposed SVB
on forward propagation to achieve training objectives, and
backward propagation of training errors.

Empirical computation cost Applying SVB to network
training amounts to solving singular value decompositions
(SVD) for weight matrices of all the network layers. We
note that this cost can be amortized by doing SVB every
Tsyp number of iterations. We usually apply SVB once ev-
ery epoch of SGD training. When the set of training sam-
ples is huge (e.g., the ImageNet dataset), the wall-clock

Normalized histograms.

0 0.5 1 15 2
Singular values of network weight matrices.

Figure 1. Normalized singular value histograms for weight matri-
ces of a 38-layer ConvNet trained for CIFAR10 image classifica-
tion (cf. Section 6.1 for details of the network architecture). Red s-
tairs are from SGD based training, and blue ones are from our pro-
posed SVB method. For both methods, three histograms respec-
tively for lower, middle, and higher network layers are counted
when network training converges from orthogonal initializations.
Given the sharp difference of singular value spectra between the
two methods, it is interesting to observe that both methods give
reasonably good performance, and our method even outperforms
SGD based training.

Algorithm 1: Singular Value Bounding

input : A network of L layers with trainable parameters
© = {W!,b'}}_ |, training loss £, learning rate 7, the
maximal number 7" of training iterations, a specified number
Tsp of iteration steps, a small constant e
1 Initialize © such that W'T W' = I or W!W!T =T for
l=1,...,L
2 fort=0,...,7 —1do

3 Update ©¢41 < O — 1 g(_)ﬁt using SGD based methods
4 while training proceeds for every Ty, iterations do

5 forl=1,...,Ldo

6 Perform [U!, 8!, V1] = svd(W')

7 Let {si}fvzll be the diagonal entries of S

8 fori=1,...,N;do

9 sé:1+eifsé>1+e

10 st=1/(1+¢€) if st <1/(1+¢)

11 end

12 end

13 if network contains BN layers then

14 \ Use BBN of Algorithm 2 to update BN parameters
15 end

16 end

17 end

output: Trained network with parameters © for inference

time caused by SVB computation is practically negligible;
in fact, we often observe even faster training when using
SVB, possibly due to the better conditioning of weight ma-
trices resulting from SVB.

4. Propagations of all directions of variations
with Singular Value Bounding

In this section, we present theoretical analysis on deep
linear networks to discuss the importance of forward-

4346

propagating all the directions of training objectives and
backward-propagating those of training errors, in order to
better train deep neural networks. Our analyses resemble,
but are different from, those in [21] (cf. Section 2 for de-
tails of the difference). These analyses justify our proposed
SVB algorithm, and are supported by the experimental re-
sults reported in Section 6.

4.1. The forward propagation

We start our analysis of optimal network solutions with
a simple two-layer linear network that computes W2W'e,
where we have used a linear activation f(z) = z and ig-
nored the bias for simplicity. Using squared Euclidean dis-
tance as the training criterion gives the following loss func-
tion £ = 5= 3K |y, — W2W'x,[[3. To minimize £
with respect to (w.r.t.) W' and W2, we note that the opti-
mal solutions are characterized by the gradients

8({‘9461 — W2T (C’uw _ W?wlcwm)
oL YT 2 1 vzx 1T
8WQ:(C -w*wlc)ywt', 2)

where C¥* = LS yal and C™ = 2 S8 z].
When training deep networks, the input samples {x;}X
are usually pre-processed by whitening, i.e., each x; has
zero mean and C*® = I. With input data whitening,
CY" is in fact the cross-covariance matrix between input
and output training samples, which models how the input
variations relate to those of the outputs. Thus CY* con-
tains all the information that determines the learning re-
sults of (2) w.r.t. Wy and W,. Applying SVD to C¥*
gives C¥* = UYSY*V*", where the orthogonal matrix
UY € RNv*Ny contains columns of singular vectors in the
output space that represent independent directions of out-
put variations, the orthogonal matrix V¥ € RN=*N= con-
tains columns of singular vectors in the input space that
represent independent directions of input variations, and
SY* € RNv*Ne i5 a diagonal matrix with ordered singu-
lar values 01 > 02 > -+ > Opin(N,,N,)-

As suggested in [21], when we initialize W' and W2 as
wl=RSs'v*T wW?2=UYS’R", (3)

where R € RV1*M ig an arbitrary orthogonal matrix and
S' and S? are diagonal matrices with nonnegative entries,
and keep R fixed during optimization, the gradients (2) at
optimal solutions can be derived as

a?/“il _ RSQT (Syr o SQsl) VCET
oL Y yx 2 gl 1T pT

Since R is fixed, the above conditions ensure that wt
and W? are optimized along their respective indepen-
dent directions of variations. Denote s,, and t,,, m =
1,...,min(Ny, N1, N,), are the m'* diagonal entries of
S' and S? respectively. By change of optimization vari-
ables, (2) can be further simplified as the following equa-
tions for each m*" direction of variations

oL oL

@ = (Um - Smtm) tma % = (om - Smtm) Sm- (5)
In fact, the gradients (5) w.r.t. s, and t,, arise from the
following energy function

1
E(Smatm) =35 (Um - Smtm)2) (6)

2
showing that the product of optimal pairs s,, and t,, ap-
proaches o, .

We subsequently extend the analysis from (2) to (6) for a
deep linear network of L layers. With the same loss function
L of squared Euclidean distance, the optimal weight matrix
W' of the 1" layer is characterized by the gradient

e (fe) (o) (i)

i=l+1 i=1

where [[_, W' = W'W"'...W' with the special
case that Hi/:l W' = I when | > I’, and we have assumed
in (7) that C** = I. Similar to (3), when we initialize
weight matrices of the deep network as W' = R'T!S'R!T
forany ! € {1,..., L}, where each R' is an orthogonal ma-
trix with the special cases that R* = V* and R =pv,
and each S' is an diagonal matrix with nonnegative entries,
and keep {Rl}lel1 fixed during optimization !, the gradient
(7) at optimal solutions can be derived as

oL _ Rl+1 < rL[Si>T (S'qw - ﬁs'L) (ﬁ SZ)
an =1 =1

i=l+1

T

By change of optimization variables, (8) can be fur-
ther simplified as the following independent gradient for
the m!" direction of variations with m < M =

min(Ny, ..., Ny, ..., Nyg)
L L 1-1
oL , ; -
| L 1) | CRT
Sm i=l+1 i=1 i=1

! Alternatively, one might relax this constraint and update {Wl}lL:1
using standard methods such as SGD, and change the left and right sin-
gular vectors of each updated W to satisfy W! = RITISIRIT (with
varying sets of {Rl }lL;ll). However, this would cause mixing of different
directions in the connecting output/input spaces across layers.

4347

(N

R'T. (8)

which turns out to be the gradient of the energy function

L 2
1
E(S%,...,s#):2<om—nsfn> . (10)
1=1

The positive scalar o, in (10) represents the strength of
the m*" direction of input-output correlations. It is usu-
ally fixed given provided training data. To characterize
the conditions under which the minimum energy of (10)
can be achieved, denote slimax = max(s} ..., sk) and
shwin = min(s} sL). One can easily prove that when

L — oo, it is necessary that slmex > 1 and shwin < 1.
Conversely, the sufficient conditions for not achieving the
minimum energy of (10) are either skmex < 1 or shonin > 1,
when L — oo.

For any fixed and finite o,,,, our proposed SVB algorith-
m is potentially able to achieve the minimum energy of (10)
(although it does not meet the assumptions used to derive
(10)), by choosing an appropriate value of € so that val-
ues of {sﬁn}lL:l are properly learned to range in a narrow
band [1/(1 + €), 1 + €]. This applies to any of the M direc-
tions of input-output correlations. Existing network train-
ing methods have no such constraints, and {s',,} of all lay-
ers/directions are free to be scaled up or down, resulting
in very uneven magnitude distribution of {{s!, }2 }M_,.
Consequently, training easily falls in local minima that min-
imize (10) for certain directions, but not for all of the M
ones. And only parts of the input-output correlations are
taken into account during learning.

Our derivation from (7) to (8) requires that the output sin-
gular vectors of the weight matrix of layer [be the input sin-
gular vectors of that of layer [+ 1. However, it does not hold
true in the SGD based Algorithm 1, where weight matrices
are updated without such constraints. Consider a two-layer
basic component WHWin (7), which propagates sig-
nal activations (and hence information of input variations)
from layer [to layer [4+ 1. After SGD updating, Algorithm
1 computes SVDs of the updated W and W, result-
ing in WIHW! = UistlyiHTylsiyIT | while
one may initialize W' and W' such that V™! = U’,
after SGD updating, they are generally not equal. Denote
M = S"VHTUS!, we have

M,y = sf;flsin,vl;{”u%,, (11)

where M, ./ is the (m,m’) entry of M, v! is the m?"
column of V'™ w! , is the m/*" column of U', and s}
and sin, are respectively the m!" and m/"" singular values
of 8! and S'. By projecting u! , onto v, vl 1 T4l
represents the mixing of the m’t" direction of variations in
the output space of layer [with the m'" one in the input
space of layer [+ 1. By bounding s’t'* and s! ,, our pro-
posed SVB algorithm controls both the independent (when

m = m' and the assumptions from (7) to (8) hold), and

the mixing strengths of propagation across layers. With-
out such constraints, some directions of variations could be
over-amplified while others are strongly attenuated, when
signals are propagated from lower layers to higher layers.
4.2. The backward propagation

For a deep linear network that performs cascaded com-
putations of &' = W'z!=! for | = 1,..., L, the gradient
of loss function £ w.r.t. the output activation 2 of layer [is
written as

-
87/: — % ' 87£ — ﬁ W 875 (12)
ol \oxl) ozl el ozl’

a‘zﬁ contains the error vector for back-propagation.

Foranyi € {I+1,..., L}, assume W' satisfies the condi-
tion W' = R S'R'" that we have used to derive from
(7) to (10), with analysis similar to the forward propagation
case, we have

aL: .- e 7 L+1,,14+1T ! a‘c
el DN | I LA e B N

m=1 \i=[l+1

where

where rL+1 (or rLH1) denotes the m'" column of R*T!
(or R, and M = min(Ny,...,N;). As the network
goes deep (i.e., L becomes large), HiL:lH st would ei-
ther explode or vanish if {s} }~, , do not satisfy a nec-
essary condition similar to the one for achieving the mini-

mum of (10). Consequently, the m‘" component error vec-
tor (HiLle s%) rlHlp LT 0L in (13) would either ex-
plode or vanish. When ¢ — 0 in Algorithm 1, our proposed
method guarantees that all the M components of the error
vector would propagate to lower layers without attenuation
or explosion. In the ideal case of N, = --- = Nj, our
method also guarantees that ||%H2 = H%HQ, i.e., to p-
reserve the norm of error vector. Without such constraints
on singular values of {W"}£, | itis still possible that the
norm of error vector is preserved by amplifying some sin-
gular values while shrinking others, as the way advocated in
[6]. However, its norm preservation is achieved in a rather
anisotropic way.

5. Compatibility with Batch Normalization

In this section, we investigate how our proposed network
training algorithm could be compatible with Batch Normal-
ization [11]. BN addresses a network training issue called
internal covariate shift, which slows down the training s-
ince distributions of each layer’s inputs keep changing dur-
ing the training process. BN alleviates this issue by insert-
ing into network trainable normalization layers, which nor-
malize each layer’s neuron activations as zero mean and unit
variance in a mini-batch and neuron-wise manner.

4348

Formally, for a network layer computing f(z) =
f(Wz) € RY, BN inserts a normalization layer before
the activation function, giving the new layer f(BN(z)) =
f(BN(Wx)), where we have ignored the bias term for sim-
plicity. BN in fact applies the following linear transforma-
tion to 2z

BN(2) = I'S(z — p) + B, (14)

where each entry of g € RY is the output mean at each of
the IV neurons of the layer, the diagonal matrix ¥ € RV*V
contains entries {1/¢;} ; that is the inverse of the neuron-
wise output standard deviation g; (obtained by adding a s-
mall constant to the variance for numerical stability), I' €
RN*N s a diagonal matrix containing trainable scalar pa-
rameters {v;}¥;, and B € R¥ is a trainable bias term.
Note that during training, ¢ and ¢ for each neuron are com-
puted using mini-batch samples, and during inference they
are fixed representing the statistics of all the training popu-
lation, which are usually obtained by running average. Thus
the computation (14) for each sample is deterministic after
network training.
Inserting z = Wx into (14) we get

BN(z) =Wz +b st. W=ISW b=g8-I%pu, (15)

which is simply a standard network layer with change of
variables. The following lemma suggests that we may
bound the entries {~;/s;}_; of the product of the diago-
nal matrices I" and %, to make our proposed SVB algorithm
be compatible with BN.

Lemma 1 For a matrix W € RM*N vith singular val-

ues of all 1, and a diagonal matrix G € RM*M with
nonzero entries {g; },, let gmax = max(|g1l,...,|gnm])
and gmin = min(|g1|, ..., |gm|), the singular values of
W = GW is bounded in [9mins Gmax)- When W is fat,
i.e, M < N, and rank(W) = M, singular values of W
are exactly {|g;|}]4,.

Proof of the lemma is presented in the supplemental ma-
terial. Lemma 1 suggests that for a deep network with B-
N layers, the trainable parameters {v;}Y,, together with
sample statistics {s; }¥, could change the conditioning of
layer transform, and consequently the behaviors of signal
propagation across network layers. In particular, when ab-
solute values {|7;/s;|}}¥, of the diagonal entries of T'S: for
all the network layers simultaneously drift up or down away
from the value of 1, signal propagation would be suscepti-
ble to explosion or attenuation when the network goes deep.
One direct way to remove this risk is to control the val-
ues of {7;/s;}¥ ., e.g., to let them be around 1. However,
this would also remove an important benefit of BN. More
specifically, the introduction of trainable scaling parameters
{7}, in BN is to make sure that after neuron-wise nor-
malization by {¢;}¥, (and {u;}Y,), the change to layer

Algorithm 2: Bounded Batch Normalization

input : A network with L BN layers, trainable parameters
(T}, {BLYE . and statisties {p]}E . {Z}}F of
BN layers at iteration ¢, a small constant €

Update to get {FiJrl}lL:l from {T'{}% | (and {ﬁiJrl}lI‘:l from

{,BQ}ZL:I), using SGD based methods

Update to get {32!, } | from {S{} , (and {p}; }/ | from

{ ui}le), using running average over statistics of mini-batch

samples
forl=1,...,Ldo

-

N

w

4 Let {'yi}ZN:’l and {1/ gi}f.vzll be respectively the diagonal
entries of FiJrl and Ei+1

5 Leta:N%Zﬁ\Qlw/q

6 fori:l,.'..,Nldo

7 vi = agi(1 + €) if é’yi/§i>1+€

8 vi =asi/(1+e) if Lyi/a <1/(1+¢)

9 end

10 end

output: Updated BN parameters and statistics at iteration ¢ 4+ 1

outputs is compensated by {~;},, so that the BN transfor-
m is overall an identity transform [11]. One might expect
that the value of each ¢; in X is similar to that of the corre-
sponding ; in I'. However, this is not the case in practice.
In fact, {;}¥, bring additional and significant benefits to
training of deep neural networks: the decoupled {v;}¥,
enable scales of the magnitude of features at different net-
work layers become freely adjustable for better training ob-
jectives. Inspired by this scheme of BN, we introduce a
decoupled scalar a from I'Y, and propose to control the
re-scaled version {1+;/¢}Y,, instead of {v;/q;}Y,, to
make our proposed SVB be compatible with BN. We set
o=+ 21111 ~:/<; during network training. Note that re-
scaling the magnitude scales of features at different layers
is equivalent to simultaneously scaling up {s! }M_, of all
the M directions in (10) for certain layers, while simultane-
ously scaling down for other layers, and this does not cause
sacrifice of propagation of certain directions of input-output
correlations. Algorithms 2 presents our improved BN trans-
form called Bounded Batch Normalization (BBN). We note
that in Algorithm 2, we do not take the absolute values. This
is because values of {v;}Y, are usually initialized as 1,
and they are empirically observed to keep positive during
the process of network training. Experiments in Section 6
show that image classification results are improved when
using BBN instead of BN, demonstrating a consistency be-
tween our theoretical analysis and practical results.

6. Experiments

We present image classification results to show the ef-
ficacy of our proposed SVB and BBN. We use benchmark
datasets of CIFAR10, CIFAR100 [13], and ImageNet [20].
CIFARI10 is intensively used for our controlled studies. We
investigate how SVB and BBN perform on standard Con-

4349

vNets, and also the modern architectures of (pre-activation
versions of) ResNets [8] and Wide ResNets [27].

We use BN layers or our proposed BBN layers in all net-
works. Training is based on SGD with momentum using
softmax loss function. We initialize networks using orthog-
onal weight matrices (cf. Algorithm 1). Except experiments
reported in Table 3, all other experiments are based on a
mini-batch size of 128, momentum of 0.9, and weight de-
cay of 0.0001; the learning rate starts from 0.5 and ends at
0.001, and decays every two epochs until the end of 160 e-
poches of training. When SVB is turned on, we apply it to
weight matrices of all layers ? after every epoch of training.

6.1. Controlled studies using ConvINets

In this section, we use ConvNets to study the behaviors
of our proposed SVB algorithm on deep network training.
‘We choose modern convolutional architectures from [22, 7].
The networks start with a conv layer of 16 3 x 3 filters,
and then sequentially stack three types of 2.X conv layers of
3 x 3 filters, each of which has the feature map sizes of 32,
16, and 8, and filter numbers 16, 32, and 64, respectively.
Spatial sub-sampling of feature maps is achieved by conv
layers of stride 2. The networks end with a global average
pooling and fully-connected layers. Thus for each network
we have 6.X + 2 weight layers in total. We consider X =
3 and X = 6 in our studies. The used CIFAR10 dataset
consists of 10 object categories of 60,000 color images of
size 32 x 32 (50, 000 training and 10, 000 testing ones). We
use raw images without pre-processing. Data augmentation
follows the standard manner in [14]: during training, we
zero-pad 4 pixels along each image side, and sample a 32 x
32 region crop from the padded image or its horizontal flip;
during testing, we use the original non-padded image.

Figure 2 shows that for each depth case, our results us-
ing SVB are consistently better than those from standard
SGD with momentum, verifying that bounding the singular
values of weight matrices indeed improves the conditioning
of layer transform. Replacing BN with BBN gives similar
performance. This shows that in the case of plain ConvNet-
s, the issue of ill-conditioning caused by BN is not severe.
In the more complex ResNet type architectures, BBN im-
proves over BN effectively, as presented shortly. Compara-
tive results in Figure 2 also suggest that with the increase of
network layers, training becomes more difficult: results of
deeper network (X = 6) are worse than those of shallower
one (X = 3). This is consistent with the observation in [7].

6.2. Ablation studies using ResNet

We conduct experiments to investigate whether our pro-
posed SVB and BBN methods are effective for “residual

2When applying SVB to a conv layer, we convert its kernel tensor of the
size Nowt X Nip X Np X Ny, as a matrix of the size Nowt X Nipn Np Noy,
where Ny ¢ and N;,, denote the numbers of output and input feature chan-
nels, and Ny, and N, denote the kernel height and width, respectively.

Table 1. Ablation studies on CIFAR10, using a pre-activation
ResNet with 68 weight layers of 3 x 3 convolutional filters. We run
each setting for 5 times, using standard data augmentation [14].
Results are in the format of best (mean + std).

Training methods Error rate (%)

6.10 (6.22 £ 0.14)
5.65 (5.79 £ 0.10)
5.37 (5.49 £ 0.11)

SGD with momentum + BN
SVB + BN
SVB + BBN

learning” [7]. We use an architecture similar to those p-
resented in Section 4.2 in [7], but change it to the pre-
activation version [8]. The network construction is based
on the ConvNets presented in Section 6.1, and we use an “i-
dentify shortcut” to connect every two conv layers of 3 x 3
filters, and use a “projection shortcut” when sub-sampling
of feature maps is needed. We use a network of X = 11 for
experiments in this section, which gives 68 weight layers.

We conduct ablation studies by switching SVB on or of-
f, and switching BBN on or off. The parameters ¢ and €
are fixed as 0.5 and 1 respectively. All experiments are run
for 5 times, and we report the best, mean, and standard de-
viation results in Table 1. These results show that using
SVB improves deep residual learning, and BBN further im-
proves over standard BN, demonstrating the efficacy of our
proposed methods for modern deep architectures.

6.3. Comparisons with the state-of-the-art

We use Wide ResNet [27] to compare with the state-of-
the-art results on CIFAR10 and CIFAR100. The CIFAR100
dataset has the same number of 32 x 32 color images as
CIFAR10 does, but it has 100 object categories and each
category contains one tenth images of those of CIFARI10.
We use raw data without pre-processing, and do data aug-
mentation in the same way as for CIFAR10.

Our architecture of Wide ResNet is the same as that of
“WRN-28-10"in [27], but our training hyperparameters (cf.
the beginning of Section 6) are different from those in [27].
When BBN is turned on, we replace all BN layers with the
BBN ones. The parameters € and € are fixed as 0.5 and 1 re-
spectively. Without using SVB and BBN, our Wide ResNet
gives an error rate of 4.50 on CIFARI10 and 20.78 on CI-
FAR100. With SVB and BBN, the results are significantly
boosted to 3.58 on CIFAR10 and 18.32 on CIFAR100.

To compare with the state-of-the-art method DenseNet
[9], we use improved training hyperparameters inspired by
[9]: we use the batchsize of 64 for CIFAR10 and 128 for
CIFAR100, and train for an extended duration of 300 e-
pochs; all other training parameters are the same as those
described in the beginning of Section 6. We set € and € of
our methods as 0.5 and 0.2 respectively. Table 3 reports
the comparative results. Wide ResNet in Table 3 uses the
same architecture of “WRN-28-10" as in [27], and Wider
ResNet increases the widening factor from 10 to 16 (cor-

4350

60 0 100 120 140 180 &0 a0 100 120 140 160
Epoch Epoch

&0 a0 100 120 140 160 &0 a0 100 120 140 160
Epoch Epoch

Figure 2. Validation curves on CIFAR10 using two ConvNets of 20 and 38 weight layers respectively. Blue lines are results by SGD
with momentum. Red lines are results by SVB at different values of € (0.01, 0.05, 0.2, 0.5, 1) in Algorithm 1. Black lines are results using
both SVB (fixing € = 0.05) and BBN at different values of € (0.01,0.05,0.2,0.5, 1)) in Algorithm 2. These parameter settings are simply
casual choices. The left two figures are from the 20-layer ConvNet, and the right two ones are from the 38-layer ConvNet.

Table 2. Error rates (%) of different methods on CIFAR10 and
CIFAR100 [13]. All methods use standard data augmentation as
in [14]. A “-” indicates that result is not explicitly specified in the
cited work.

Methods CIFAR10 CIFAR100 # layers # params
NIN [15] 8.81 - - -
FitNet [19] 8.39 - 19 2.56M
DSN [14] 7.97 - - -
Highway [23] 7.54 32.24 19 2.3M
ResNet [7] 6.43 25.16 110 1.7™M
Stoc. Depth [10] 4.91 - 1202 10.2M
Pre-Act ResNet [8] 4.92 22.71 1001 10.2M
Wide ResNet [27] 4.17 20.50 28 36.5M
ResNet of ResNet [28] 3.77 19.73 - 13.3M
Our Wide ResNet
W/O SVB+BBN 4.50 20.78 28 36.5M
Our Wide ResNet
WITH SVB+BBN 3.58 18.32 28 36.5M

responding to “WRN-28-16" in [27]). Our proposed SVB
and BBN improve both architectures, and achieve the new
state-of-the-art results of 3.06 on CIFAR10 and 16.90 on
CIFARI100 3. These results demonstrate the great potential
of SVB and BBN on training modern deep architectures.

6.4. Preliminary results on ImageNet

We present preliminary results on ImageNet [20], which
has 1.28 million images of 1000 classes for training, and
50 thousand images for validation. The data augmentation
scheme follows [25]. We investigate how SVB and BBN
may help large-scaling learning, for which we use the pre-
activation version of Inception-ResNet [25]. We use the

3In Table 3, Wider ResNet has much more model parameters than
DenseNet does. However, we note that DenseNet practically consumes
more GPU memories in both training and inference. This is due to the
architectural design of DenseNet: in (each stage/block of) DenseNet, the
input of an upper layer is formed by concatenating output feature maps
of all its lower layers; thus it is easy to have bottleneck layers of tremen-
dous memory consumption when the number of each layer’s output feature
maps (i.e., the growth rate in [9]) is large. This is indeed the case for model
setting of the best result achieved by [9].

Table 3. Comparisons of error rate (%) with the state-of-the-
art method DenseNet [9] on CIFAR10 and CIFAR100 [13]. Our
results are obtained by using improved training hyperparameters
inspired by [9]. All methods use standard data augmentation as
in [14]. We note that DenseNet practically consumes more GPU
memories than Wider ResNet does.

Methods CIFAR10 CIFAR100 # layers ## params
DenseNet [9] 3.46 17.18 190 25.6M
Our Wide ResNet
W/O SVB+BBN 3.78 19.92 28 36.5M
Our Wide ResNet
WITHSVB+BBN 3.24 17.47 28 36.5M
Our Wider ResNet
W/O SVB+BBN 3.64 19.25 28 94.2M
Our Wider ResNet
WITHSVB+BBN 3.06 16.90 28 94.2M

Table 4. Error rates of single-model and single-crop testing on the
ImageNet validation set.

Training methods Top-1 error (%) Top-5 error (%)
Our Inception-ResNet 21.61 5.91
Our Inception-ResNet WITH SVB+BN 21.20 5.57

same parameter settings as those for the CIFAR10 exper-
iments in Section 6.3, except the learning rate that starts
from 0.045. Table 4 shows that SVB and BBN indeed im-
proves the large-scale learning, with a similar performance
gain for top-1 and top-5 errors. The improvement is how-
ever lower than what we expected. We are interested for
further studies in future research. We note that our architec-
ture is almost identical to [25], but we did not manage to get
the results in [25], possibly due to the different choices of
gradient descent methods ([25] uses RMSProp while ours
are based on SGD with momentum).

Acknowledgements

This work is supported in part by The Thousand Tal-
ents Plan of China (for young professionals) and Australian
Research Council Projects FT-130101457, DP-140102164,
LP-150100671.

4351

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

P. A. Absil, R. Mahony, and R. Sepulchre. Optimization Al-
gorithms on Matrix Manifolds. Princeton University Press,
Princeton, NJ, USA, 2007. 3

M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution
recurrent neural networks. CoRR, arXiv:1511.06464, 2016.
2

S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable bounds
for learning some deep representations. In Proceedings of the
31th International Conference on Machine Learning, ICM-
L 2014, Beijing, China, 21-26 June 2014, pages 584-592,
2014. 1

D. Arpit, H. Q. Ngo, Y. Zhou, N. Napp, and V. Govindara-
ju. Towards optimality conditions for non-linear networks.
CoRR, abs/1605.07145, 2016. 1, 2

Y. N. Dauphin, R. Pascanu, C. Giilgehre, K. Cho, S. Ganguli,
and Y. Bengio. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. In
Advances in Neural Information Processing Systems 27: An-
nual Conference on Neural Information Processing System-
s 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 2933-2941, 2014. 1

X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In In Proceed-
ings of the International Conference on Artificial Intelligence
and Statistics (AISTATS10). Society for Artificial Intelligence
and Statistics, 2010. 1,3, 5

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In arXiv prepring arXiv:1506.01497,
2015. 1, 7,8

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In European Conference on Com-
puter Vision (ECCV), 2016. 1,2,7, 8

G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. CoRR, abs/1608.06993, 2016. 7, 8

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger.
Deep networks with stochastic depth. In arXiv prepring arX-
iv:1603.09382, 2016. 8

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July 2015,
pages 448-456, 2015. 1, 2,5, 6

K. Kawaguchi. Deep learning without poor local minima. In
Advances in Neural Information Processing Systems (NIPS),
2016. 1

A. Krizhevsky. Learning multiple layers of features from
tiny images. Tech. Report, 2009. 2, 6, 8

C. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu. Deeply-
supervised nets. In Proceedings of the Eighteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
AISTATS, 2015. 7, 8

M. Lin, Q. Chen, and S. Yan. Network in network. In In
Proceedings of ICLR, 2013. 8

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common

(17]

[18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

4352

objects in context. In European Conference on Computer Vi-
sion (ECCV), 2014. 1

D. Mishkin and J. Matas. All you need is a good init. CoRR,
abs/1511.06422, 2015. 2,3

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty
of training recurrent neural networks. In Proceedings of the
30th International Conference on Machine Learning, ICM-
L 2013, Atlanta, GA, USA, 16-21 June 2013, pages 1310-
1318,2013. 1,2

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gat-
ta, and Y. Bengio. Fitnets: Hints for thin deep nets. In In
Proceedings of ICLR, 2015. 8

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211-252,2015. 1,6, 8

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact so-
lutions to the nonlinear dynamics of learning in deep linear
neural networks. In ICLR, 2014. 1,2, 3,4

K. Simonyan and A. Zisserman. Very deep convolution-
al networks for large-scale image recognition. CoRR, ab-
s/1409.1556, 2014. 2,7

R. K. Srivastava, K. Greff, and J. Schmidhuber. Training
very deep networks. CoRR, abs/1507.06228, 2015. 8

I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the
importance of initialization and momentum in deep learning.
In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), volume 28, pages 1139-1147,
May 2013. 2

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In /CLR 2016 Workshop, 2016. 1,
2,8

S. Wisdom, T. Powers, J. R. Hershey, J. L. Roux, and L. At-
las. Full-capacity unitary recurrent neural networks. CoRR,
arXiv:1611.00035, 2016. 2

S. Zagoruyko and N. Komodakis. Wide residual networks.
CoRR, abs/1605.07146, 2016. 2,7, 8

K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu.
Residual networks of residual networks: Multilevel residual
networks. CoRR, abs/1608.02908, 2016. 8

