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Abstract

Deep learning methods achieve great success recently on

many computer vision problems. In spite of these practical

successes, optimization of deep networks remains an active

topic in deep learning research. In this work, we focus on

investigation of the network solution properties that can po-

tentially lead to good performance. Our research is inspired

by theoretical and empirical results that use orthogonal ma-

trices to initialize networks, but we are interested in investi-

gating how orthogonal weight matrices perform when net-

work training converges. To this end, we propose to con-

strain the solutions of weight matrices in the orthogonal

feasible set during the whole process of network training,

and achieve this by a simple yet effective method called Sin-

gular Value Bounding (SVB). In SVB, all singular values

of each weight matrix are simply bounded in a narrow band

around the value of 1. Based on the same motivation, we al-

so propose Bounded Batch Normalization (BBN), which im-

proves Batch Normalization by removing its potential risk of

ill-conditioned layer transform. We present both theoretical

and empirical results to justify our proposed methods. Ex-

periments on benchmark image classification datasets show

the efficacy of our proposed SVB and BBN. In particular, we

achieve the state-of-the-art results of 3.06% error rate on

CIFAR10 and 16.90% on CIFAR100, using off-the-shelf net-

work architectures (Wide ResNets). Our preliminary results

on ImageNet also show the promise in large-scale learn-

ing. We release the implementation code of our methods at

www.aperture-lab.net/research/svb.

1. Introduction

Deep learning methods keep setting the new state-of-the-

art for many computer vision problems, with image classi-

fication [20] and object detection [16] as the prominent ex-

amples. These practical successes are largely achieved by

newly proposed deep architectures that have huge model ca-

pacities, such as Inception [25] and ResNet [7]. Training of

these ultra-deep/ultra-wide networks are enabled by mod-

ern techniques such as Batch Normalization (BN) [11] and

residual learning [7].

In spite of these practical successes, however, optimiza-

tion of deep networks remains an active topic in deep learn-

ing research. Until recently, deep networks are considered

to be difficult to train. Researchers argue for different rea-

sons causing such difficulties, such as the problem of van-

ishing/exploding gradients [6, 18], internal shift of feature

statistics [11], and also the proliferation of saddle points

[5, 12]. To address these issues, different schemes of pa-

rameter initialization [6, 21], shortcut connections [7, 8],

normalization of internal activations [11], and second-order

optimization methods [5] are respectively proposed.

In this work, we focus on another important issue to ad-

dress the difficulty of training deep neural networks. In par-

ticular, given the high-dimensional solution space of deep

networks, it is unclear on the properties of the (arguably)

optimal solutions that can give good performance at infer-

ence. Without knowing this, training by a specified objec-

tive function easily goes to unexpected results, partially due

to the proliferation of local optima/critical points [5, 12].

For example, it is empirically observed in [7] that adding

extra layers to a standard convolutional network (ConvNet)

does not necessarily give better image classification results.

This unclear issue is further compounded by other (afore-

mentioned) optimization difficulties.

Existing deep learning research has some favors on the

solutions of network parameters [4, 21], and also on net-

work architectures that can give desirable solutions [25, 3,

7]. In this paper, we are inspired by the analysis of orthogo-

nal initialization in [21], and propose to constrain the solu-

tions of weight matrices in the orthogonal feasible set dur-

ing the whole process of network training. To this end, we

propose a simple yet effective method called Singular Val-
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ue Bounding (SVB). In SVB, all singular values of each

weight matrix are simply bounded in a narrow band around

the value of 1 (Section 3). When using stochastic gradi-

ent descent (SGD) or its variants for network training, this

amounts to turning SVB on by every a specified number of

iterations. We present theoretical analysis, using deep lin-

ear networks, to show how such learned networks are better

on forward-propagation to achieve training objectives, and

backward-propagation of training errors (Section 4). Batch

normalization [11] is a very effective method to improve

and accelerate network training. We prove that in the frame-

work of our theoretical analysis, trainable parameters in BN

may cause ill-conditioned layer transform. We thus propose

Bounded Batch Normalization (BBN), a technique that im-

proves BN by removing this risk without sacrificing all its

other benefits (Section 5). BBN achieves this by simply

bounding the values of BN parameters during training.

We present benchmark image classification experiments

using both ConvNets [22] and modern network architec-

tures [8, 27, 25] (Section 6). Our results show that SVB

indeed improves over SGD based methods for training

various architectures of deep networks, and in many cas-

es with a large margin. Our proposed BBN further im-

proves over BN. In particular, we achieve the state-of-the-

art results of 3.06% error rate on CIFAR10 and 16.90%
on CIFAR100 [13], using off-the-shelf network architec-

tures (Wide ResNets [27]). Our preliminary results on the

large-scale ImageNet dataset are consistent with those on

moderate-scale ones.

2. Related works

In this section, we briefly review the closely related deep

learning methods that also pay attention to the properties of

network solutions.

Saxe et al. [21] theoretically study the gradient descent

learning dynamics of deep linear networks, and give similar

empirical insights for deep nonlinear networks. They fur-

ther suggest that using orthogonal initialization of weight

matrices can achieve learning efficiency similar to that of

unsupervised pre-training. Mishkin and Matas [17] present

promising results on image classification, using the orthog-

onal initialization idea in [21]. Our theoretical analysis in

Section 4 follows [21], but are different in the following

aspects. We focus on studying the conditions when net-

work training converges, while [21] focuses on the condi-

tions right after network initialization. Our analysis center-

s around our proposed SVB method, and we discuss how

SVB can resolve the issues that appear as the network train-

ing proceeds. We also extend our theoretical analysis to BN

[11], and propose a new BBN method that improves over

BN for training modern deep networks.

Arpit et al. [4] also study the properties of network pa-

rameters that can have good performance, but from a sig-

nal recovery point of view. In particular, they study the

reverse data-generating properties of auto-encoders where

input samples are generated from the true signals of hid-

den representations. They prove that for sparse true signals,

e.g., those out of ReLU activations, strong recovery can be

achieved if the weight matrix is highly incoherent. Different

from [4], our main concern is on the properties of network

parameters that can give good image classification perfor-

mance by feed-forward computations.

In [18], a soft constraint technique is proposed to deal

with the vanishing gradient in training recurrent neural net-

works (RNNs). The soft constraint regularizes the learning

of weight matrices so that those better to achieve norm p-

reservation of error signals across layers are favored. In

contrast, our proposed SVB method directly controls the

singular values of weight matrices, and norm preservation

of error signals is only part of our benefits.

A recent work from Wisdom and Powers et al. [26]

shows full-capacity unitary recurrence matrices can be used

in RNNs, and can be optimized over the differentiable man-

ifold of unitary matrices, which improves over [2]. In con-

trast, we focus on convolutional networks in this work,

where weight matrices are not square. We only enforce

column or row vectors of weight matrices of ConvNets to

be near orthogonal, while giving them more flexibility to

better learn to the training tasks. This relaxation from strict

orthogonality enables us to use very simple algorithms com-

patible with standard SGD based training. Practicably, we

observe our SVB algorithm is just as efficient as SGD based

training, while achieving the property of near orthogonality.

3. The proposed Singular Value Bounding al-

gorithm

Suppose we have � pairs of training samples

{��,��}
�
�=1, where �� ∈ ℝ

�� is a training input and ��
is its corresponding output. �� ∈ ℝ

�� could be a vec-

tor with continuous entries for regression problems, or a

binary one-hot vector for classification problems. A deep

neural network of � layers performs cascaded computa-

tions of �� = �(��) = �(� ���−1 + ��) ∈ ℝ
�� for

� = 1, . . . , �, where ��−1 ∈ ℝ
��−1 is the input feature

of the ��ℎ layer, �(⋅) is an element-wise activation func-

tion, and � � ∈ ℝ
��×��−1 and �� ∈ ℝ

�� are respec-

tively the layer-wise weight matrix and bias vector. We

have �0 = �. With appropriate training criteria, network

optimization aims to find solutions of network parameter-

s Θ = {� �, ��}��=1, so that the trained network is able to

produce good estimation of � for any test sample �. Train-

ing is usually based on SGD or its variants [24]. Given the

training loss function ℒ
(
{��,��}

�
�=1; Θ

)
, SGD updates Θ

based on a simple rule of Θ�+1 ← Θ� − � ∂ℒ
∂Θ�

, where �

is the learning rate. The gradient ∂ℒ
∂Θ�

is usually comput-

ed from a mini-batch of training samples. Network training
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proceeds by sampling for each iteration � a mini-batch from

{��,��}
�
�=1, until a specified number � of iterations or the

training loss plateaus.

Existing deep learning research suggests that in order to

get good performance, initializations of Θ matter. In par-

ticular, scaled random Gaussian matrices are proposed in

[6] as the initializations of weight matrices {� �}��=1, and

random orthogonal ones are advocated in [21, 17]. Given

different initializations, these methods train deep networks

using SGD or its variants. Theoretical analysis in [21] and

empirical results in [17] demonstrate some advantages of

orthogonal initializations over Gaussian ones. In this work,

we are interested in pushing a step further to know what so-

lutions of Θ matter when network training converges, rather

than just at the initialization. For the orthogonal case, our

empirical results (cf. Figure 1) show that as the training

proceeds, singular value spectra of weight matrices diverge

from their initial condition. We are thus motivated to in-

vestigate along this line, from the empirical observations of

Figure 1 and also the theoretical analysis in [21].

More specifically, we propose a simple yet very effec-

tive network training method, which preserves the orthogo-

nality of weight matrices during the procedure of network

training. This amounts to solving the following constrained

optimization problem

min
Θ={� �,��}�

�=1

ℒ
(
{��,��}

�
�=1; Θ

)

s.t. � � ∈ � ∀ � ∈ {1, . . . , �}, (1)

where � stands for the set of matrices whose row or col-

umn vectors are orthonormal. Compared with standard S-

GDs, the feasible set of problem (1) for {� �}��=1 is much

reduced. For � � of any ��ℎ layer, problem (1) in fac-

t constrains its solution set as a Riemannian manifold called

Stiefel manifold [1]. In this work, we consider near or-

thonormality of {� �}��=1, and propose to approximately

solve this problem based on projected SGD (or its variants):

we simply bound, after every ���� iterations of SGD train-

ing, the singular values of each � �, for � = 1, . . . , �, in a

narrow band [1/(1+�), (1+�)] around the value of 1, where

� is a specified small constant. Algorithm 1 presents details

of our proposed Singular Value Bounding (SVB) method.

In Section 4, we present theoretical analysis on deep lin-

ear networks to justify the advantages of our proposed SVB

on forward propagation to achieve training objectives, and

backward propagation of training errors.

Empirical computation cost Applying SVB to network

training amounts to solving singular value decompositions

(SVD) for weight matrices of all the network layers. We

note that this cost can be amortized by doing SVB every

���� number of iterations. We usually apply SVB once ev-

ery epoch of SGD training. When the set of training sam-

ples is huge (e.g., the ImageNet dataset), the wall-clock
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Figure 1. Normalized singular value histograms for weight matri-

ces of a 38-layer ConvNet trained for CIFAR10 image classifica-

tion (cf. Section 6.1 for details of the network architecture). Red s-

tairs are from SGD based training, and blue ones are from our pro-

posed SVB method. For both methods, three histograms respec-

tively for lower, middle, and higher network layers are counted

when network training converges from orthogonal initializations.

Given the sharp difference of singular value spectra between the

two methods, it is interesting to observe that both methods give

reasonably good performance, and our method even outperforms

SGD based training.

Algorithm 1: Singular Value Bounding

input : A network of � layers with trainable parameters

Θ = {� �, ��}�
�=1

, training loss ℒ, learning rate �, the

maximal number � of training iterations, a specified number

���� of iteration steps, a small constant �
1 Initialize Θ such that � �⊤� � = � or � �� �⊤ = � for

� = 1, . . . , �
2 for � = 0, . . . , � − 1 do

3 Update Θ�+1 ← Θ� − � ∂ℒ

∂Θ�
using SGD based methods

4 while training proceeds for every ���� iterations do

5 for � = 1, . . . , � do

6 Perform [� �,��,� �] = svd(� �)

7 Let {��
�
}
��
�=1

be the diagonal entries of ��

8 for � = 1, . . . , �� do

9 ��
�
= 1 + � if ��

�
> 1 + �

10 ��
�
= 1/(1 + �) if ��

�
< 1/(1 + �)

11 end

12 end

13 if network contains BN layers then

14 Use BBN of Algorithm 2 to update BN parameters

15 end

16 end

17 end

output: Trained network with parameters Θ� for inference

time caused by SVB computation is practically negligible;

in fact, we often observe even faster training when using

SVB, possibly due to the better conditioning of weight ma-

trices resulting from SVB.

4. Propagations of all directions of variations

with Singular Value Bounding

In this section, we present theoretical analysis on deep

linear networks to discuss the importance of forward-
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propagating all the directions of training objectives and

backward-propagating those of training errors, in order to

better train deep neural networks. Our analyses resemble,

but are different from, those in [21] (cf. Section 2 for de-

tails of the difference). These analyses justify our proposed

SVB algorithm, and are supported by the experimental re-

sults reported in Section 6.

4.1. The forward propagation

We start our analysis of optimal network solutions with

a simple two-layer linear network that computes � 2� 1�,

where we have used a linear activation �(�) = � and ig-

nored the bias for simplicity. Using squared Euclidean dis-

tance as the training criterion gives the following loss func-

tion ℒ = 1
2�

∑�
�=1 ∥�� − � 2� 1��∥

2
2. To minimize ℒ

with respect to (w.r.t.) � 1 and � 2, we note that the opti-

mal solutions are characterized by the gradients

∂ℒ

∂� 1 = � 2⊤
(
��� −� 2� 1���

)

∂ℒ

∂� 2 =
(
��� −� 2� 1���

)
� 1⊤, (2)

where ��� = 1
�

∑�
�=1 ���

⊤
� and ��� = 1

�

∑�
�=1 ���

⊤
� .

When training deep networks, the input samples {��}
�
�=1

are usually pre-processed by whitening, i.e., each �� has

zero mean and ��� = � . With input data whitening,

��� is in fact the cross-covariance matrix between input

and output training samples, which models how the input

variations relate to those of the outputs. Thus ��� con-

tains all the information that determines the learning re-

sults of (2) w.r.t. � 1 and � 2. Applying SVD to ���

gives ��� = ������ �⊤, where the orthogonal matrix

�� ∈ ℝ
��×�� contains columns of singular vectors in the

output space that represent independent directions of out-

put variations, the orthogonal matrix � � ∈ ℝ
��×�� con-

tains columns of singular vectors in the input space that

represent independent directions of input variations, and

��� ∈ ℝ
��×�� is a diagonal matrix with ordered singu-

lar values �1 ≥ �2 ≥ ⋅ ⋅ ⋅ ≥ �min(��,��).

As suggested in [21], when we initialize � 1 and � 2 as

� 1 = ��1� �⊤, � 2 = ���2�⊤, (3)

where � ∈ ℝ
�1×�1 is an arbitrary orthogonal matrix and

�1 and �2 are diagonal matrices with nonnegative entries,

and keep � fixed during optimization, the gradients (2) at

optimal solutions can be derived as

∂ℒ

∂� 1 = ��2⊤
(
��� − �2�1

)
� �⊤

∂ℒ

∂� 2 = ��
(
��� − �2�1

)
�1⊤�⊤. (4)

Since � is fixed, the above conditions ensure that � 1

and � 2 are optimized along their respective indepen-

dent directions of variations. Denote �� and ��, � =
1, . . . ,min(��, �1, ��), are the ��ℎ diagonal entries of

�1 and �2 respectively. By change of optimization vari-

ables, (2) can be further simplified as the following equa-

tions for each ��ℎ direction of variations

∂ℒ

∂��
= (�� − ����) ��,

∂ℒ

∂��
= (�� − ����) ��. (5)

In fact, the gradients (5) w.r.t. �� and �� arise from the

following energy function

ℰ(��, ��) =
1

2
(�� − ����)

2
, (6)

showing that the product of optimal pairs �� and �� ap-

proaches ��.

We subsequently extend the analysis from (2) to (6) for a

deep linear network of � layers. With the same loss function

ℒ of squared Euclidean distance, the optimal weight matrix

� � of the ��ℎ layer is characterized by the gradient

∂ℒ

∂� �
=

(
�∏

�=�+1

� �

)⊤ (
��� −

�∏

�=1

� �

)(
�−1∏

�=1

� �

)⊤

, (7)

where
∏�′

�=� �
� = � �′� �′−1 ⋅ ⋅ ⋅� � with the special

case that
∏�′

�=� �
� = � when � > �′, and we have assumed

in (7) that ��� = � . Similar to (3), when we initialize

weight matrices of the deep network as � � = ��+1����⊤

for any � ∈ {1, . . . , �}, where each �� is an orthogonal ma-

trix with the special cases that �1 = � � and ��+1 = �� ,

and each �� is an diagonal matrix with nonnegative entries,

and keep {��}�+1
�=1 fixed during optimization 1, the gradient

(7) at optimal solutions can be derived as

∂ℒ

∂� �
= ��+1

(
�∏

�=�+1

��

)⊤ (
��� −

�∏

�=1

��

)(
�−1∏

�=1

��

)⊤

��⊤. (8)

By change of optimization variables, (8) can be fur-

ther simplified as the following independent gradient for

the ��ℎ direction of variations with � ≤ � =
min(��, . . . , ��, . . . , ��)

∂ℒ

∂���
=

�∏

�=�+1

���

(
�� −

�∏

�=1

���

)
�−1∏

�=1

���, (9)

1Alternatively, one might relax this constraint and update {� �}�
�=1

using standard methods such as SGD, and change the left and right sin-

gular vectors of each updated � � to satisfy � � = ��+1����⊤ (with

varying sets of {��}�+1

�=1
). However, this would cause mixing of different

directions in the connecting output/input spaces across layers.
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which turns out to be the gradient of the energy function

ℰ(�1�, . . . , ���) =
1

2

(
�� −

�∏

�=1

���

)2

. (10)

The positive scalar �� in (10) represents the strength of

the ��ℎ direction of input-output correlations. It is usu-

ally fixed given provided training data. To characterize

the conditions under which the minimum energy of (10)

can be achieved, denote ��max

� = max(�1�, . . . , ���) and

��min

� = min(�1�, . . . , ���). One can easily prove that when

� → ∞, it is necessary that ��max

� > 1 and ��min

� < 1.

Conversely, the sufficient conditions for not achieving the

minimum energy of (10) are either ��max

� < 1 or ��min

� > 1,

when � → ∞.

For any fixed and finite ��, our proposed SVB algorith-

m is potentially able to achieve the minimum energy of (10)

(although it does not meet the assumptions used to derive

(10)), by choosing an appropriate value of � so that val-

ues of {���}��=1 are properly learned to range in a narrow

band [1/(1 + �), 1 + �]. This applies to any of the � direc-

tions of input-output correlations. Existing network train-

ing methods have no such constraints, and {���} of all lay-

ers/directions are free to be scaled up or down, resulting

in very uneven magnitude distribution of {{���}��=1}
�
�=1.

Consequently, training easily falls in local minima that min-

imize (10) for certain directions, but not for all of the �
ones. And only parts of the input-output correlations are

taken into account during learning.

Our derivation from (7) to (8) requires that the output sin-

gular vectors of the weight matrix of layer � be the input sin-

gular vectors of that of layer �+1. However, it does not hold

true in the SGD based Algorithm 1, where weight matrices

are updated without such constraints. Consider a two-layer

basic component � �+1� � in (7), which propagates sig-

nal activations (and hence information of input variations)

from layer � to layer � + 1. After SGD updating, Algorithm

1 computes SVDs of the updated � �+1 and � �, result-

ing in � �+1� � = � �+1��+1� �+1⊤� ���� �⊤. While

one may initialize � �+1 and � � such that � �+1 = � �,

after SGD updating, they are generally not equal. Denote

� = ��+1� �+1⊤� ���, we have

��,�′ = ��+1
� ���′�

�+1⊤
� ��

�′ , (11)

where ��,�′ is the (�,�′) entry of � , ��+1
� is the ��ℎ

column of � �+1, ��
�′ is the �′�ℎ column of � �, and ��+1

�

and ���′ are respectively the ��ℎ and �′�ℎ singular values

of ��+1 and ��. By projecting ��
�′ onto ��+1

� , ��+1⊤
� ��

�′

represents the mixing of the �′�ℎ direction of variations in

the output space of layer � with the ��ℎ one in the input

space of layer � + 1. By bounding ��+1
� and ���′ , our pro-

posed SVB algorithm controls both the independent (when

� = �′ and the assumptions from (7) to (8) hold), and

the mixing strengths of propagation across layers. With-

out such constraints, some directions of variations could be

over-amplified while others are strongly attenuated, when

signals are propagated from lower layers to higher layers.

4.2. The backward propagation

For a deep linear network that performs cascaded com-

putations of �� = � ���−1 for � = 1, . . . , �, the gradient

of loss function ℒ w.r.t. the output activation �� of layer � is

written as

∂ℒ

∂��
=

(
∂��

∂��

)⊤
∂ℒ

∂��
=

(
�∏

�=�+1

� �

)⊤

∂ℒ

∂��
, (12)

where ∂ℒ
∂�� contains the error vector for back-propagation.

For any � ∈ {�+ 1, . . . , �}, assume � � satisfies the condi-

tion � � = ��+1����⊤ that we have used to derive from

(7) to (10), with analysis similar to the forward propagation

case, we have

∂ℒ

∂��
=

(
�∑

�=1

(
�∏

�=�+1

���

)
��+1
� ��+1⊤

�

)⊤

∂ℒ

∂��
, (13)

where ��+1
� (or ��+1

� ) denotes the ��ℎ column of ��+1

(or ��+1), and � = min(��, . . . , ��). As the network

goes deep (i.e., � becomes large),
∏�

�=�+1 �
�
� would ei-

ther explode or vanish if {���}��=�+1 do not satisfy a nec-

essary condition similar to the one for achieving the mini-

mum of (10). Consequently, the ��ℎ component error vec-

tor
(∏�

�=�+1 �
�
�

)
��+1
� ��+1⊤

�
∂ℒ
∂�� in (13) would either ex-

plode or vanish. When � → 0 in Algorithm 1, our proposed

method guarantees that all the � components of the error

vector would propagate to lower layers without attenuation

or explosion. In the ideal case of �� = ⋅ ⋅ ⋅ = ��, our

method also guarantees that ∥ ∂ℒ
∂�� ∥2 = ∥ ∂ℒ

∂�� ∥2, i.e., to p-

reserve the norm of error vector. Without such constraints

on singular values of {� �}��=�+1, it is still possible that the

norm of error vector is preserved by amplifying some sin-

gular values while shrinking others, as the way advocated in

[6]. However, its norm preservation is achieved in a rather

anisotropic way.

5. Compatibility with Batch Normalization

In this section, we investigate how our proposed network

training algorithm could be compatible with Batch Normal-

ization [11]. BN addresses a network training issue called

internal covariate shift, which slows down the training s-

ince distributions of each layer’s inputs keep changing dur-

ing the training process. BN alleviates this issue by insert-

ing into network trainable normalization layers, which nor-

malize each layer’s neuron activations as zero mean and unit

variance in a mini-batch and neuron-wise manner.
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Formally, for a network layer computing �(�) =
�(��) ∈ ℝ

� , BN inserts a normalization layer before

the activation function, giving the new layer �(BN(�)) =
�(BN(��)), where we have ignored the bias term for sim-

plicity. BN in fact applies the following linear transforma-

tion to �

BN(�) = ΓΣ(� − �) + �, (14)

where each entry of � ∈ ℝ
� is the output mean at each of

the � neurons of the layer, the diagonal matrix Σ ∈ ℝ
�×�

contains entries {1/��}
�
�=1 that is the inverse of the neuron-

wise output standard deviation �� (obtained by adding a s-

mall constant to the variance for numerical stability), Γ ∈
ℝ

�×� is a diagonal matrix containing trainable scalar pa-

rameters {��}
�
�=1, and � ∈ ℝ

� is a trainable bias term.

Note that during training, � and � for each neuron are com-

puted using mini-batch samples, and during inference they

are fixed representing the statistics of all the training popu-

lation, which are usually obtained by running average. Thus

the computation (14) for each sample is deterministic after

network training.

Inserting � = �� into (14) we get

BN(�) = �̃�+ �̃ s.t. �̃ = ΓΣ� �̃ = � − ΓΣ�, (15)

which is simply a standard network layer with change of

variables. The following lemma suggests that we may

bound the entries {��/��}
�
�=1 of the product of the diago-

nal matrices Γ and Σ, to make our proposed SVB algorithm

be compatible with BN.

Lemma 1 For a matrix � ∈ ℝ
�×� with singular val-

ues of all 1, and a diagonal matrix � ∈ ℝ
�×� with

nonzero entries {��}
�
�=1, let �max = max(∣�1∣, . . . , ∣�� ∣)

and �min = min(∣�1∣, . . . , ∣�� ∣), the singular values of

�̃ = �� is bounded in [����, �max]. When � is fat,

i.e., � ≤ � , and rank(� ) = � , singular values of �̃

are exactly {∣��∣}
�
�=1.

Proof of the lemma is presented in the supplemental ma-

terial. Lemma 1 suggests that for a deep network with B-

N layers, the trainable parameters {��}
�
�=1, together with

sample statistics {��}
�
�=1, could change the conditioning of

layer transform, and consequently the behaviors of signal

propagation across network layers. In particular, when ab-

solute values {∣��/��∣}
�
�=1 of the diagonal entries of ΓΣ for

all the network layers simultaneously drift up or down away

from the value of 1, signal propagation would be suscepti-

ble to explosion or attenuation when the network goes deep.

One direct way to remove this risk is to control the val-

ues of {��/��}
�
�=1, e.g., to let them be around 1. However,

this would also remove an important benefit of BN. More

specifically, the introduction of trainable scaling parameters

{��}
�
�=1 in BN is to make sure that after neuron-wise nor-

malization by {��}
�
�=1 (and {��}

�
�=1), the change to layer

Algorithm 2: Bounded Batch Normalization

input : A network with � BN layers, trainable parameters

{Γ�
�
}�
�=1

, {��
�}

�

�=1
, and statistics {��

�
}�
�=1

, {Σ�
�
}�
�=1

of

BN layers at iteration �, a small constant �̃
1 Update to get {Γ�

�+1}
�

�=1
from {Γ�

�
}�
�=1

(and {��
�+1}

�

�=1
from

{��
�}

�

�=1
), using SGD based methods

2 Update to get {Σ�
�+1}

�

�=1
from {Σ�

�
}�
�=1

(and {��
�+1}

�

�=1
from

{��
�
}�
�=1

), using running average over statistics of mini-batch

samples

3 for � = 1, . . . , � do

4 Let {��}
��
�=1

and {1/��}
��
�=1

be respectively the diagonal

entries of Γ�
�+1 and Σ�

�+1

5 Let � = 1

��

∑��
�=1

��/��

6 for � = 1, . . . , �� do

7 �� = ���(1 + �̃) if 1

�
��/�� > 1 + �̃

8 �� = ���/(1 + �̃) if 1

�
��/�� < 1/(1 + �̃)

9 end

10 end

output: Updated BN parameters and statistics at iteration �+ 1

outputs is compensated by {��}
�
�=1, so that the BN transfor-

m is overall an identity transform [11]. One might expect

that the value of each �� in Σ is similar to that of the corre-

sponding �� in Γ. However, this is not the case in practice.

In fact, {��}
�
�=1 bring additional and significant benefits to

training of deep neural networks: the decoupled {��}
�
�=1

enable scales of the magnitude of features at different net-

work layers become freely adjustable for better training ob-

jectives. Inspired by this scheme of BN, we introduce a

decoupled scalar � from ΓΣ, and propose to control the

re-scaled version { 1
�
��/��}

�
�=1, instead of {��/��}

�
�=1, to

make our proposed SVB be compatible with BN. We set

� = 1
�

∑�
�=1 ��/�� during network training. Note that re-

scaling the magnitude scales of features at different layers

is equivalent to simultaneously scaling up {���}��=1 of all

the � directions in (10) for certain layers, while simultane-

ously scaling down for other layers, and this does not cause

sacrifice of propagation of certain directions of input-output

correlations. Algorithms 2 presents our improved BN trans-

form called Bounded Batch Normalization (BBN). We note

that in Algorithm 2, we do not take the absolute values. This

is because values of {��}
�
�=1 are usually initialized as 1,

and they are empirically observed to keep positive during

the process of network training. Experiments in Section 6

show that image classification results are improved when

using BBN instead of BN, demonstrating a consistency be-

tween our theoretical analysis and practical results.

6. Experiments

We present image classification results to show the ef-

ficacy of our proposed SVB and BBN. We use benchmark

datasets of CIFAR10, CIFAR100 [13], and ImageNet [20].

CIFAR10 is intensively used for our controlled studies. We

investigate how SVB and BBN perform on standard Con-
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vNets, and also the modern architectures of (pre-activation

versions of) ResNets [8] and Wide ResNets [27].

We use BN layers or our proposed BBN layers in all net-

works. Training is based on SGD with momentum using

softmax loss function. We initialize networks using orthog-

onal weight matrices (cf. Algorithm 1). Except experiments

reported in Table 3, all other experiments are based on a

mini-batch size of 128, momentum of 0.9, and weight de-

cay of 0.0001; the learning rate starts from 0.5 and ends at

0.001, and decays every two epochs until the end of 160 e-

poches of training. When SVB is turned on, we apply it to

weight matrices of all layers 2 after every epoch of training.

6.1. Controlled studies using ConvNets

In this section, we use ConvNets to study the behaviors

of our proposed SVB algorithm on deep network training.

We choose modern convolutional architectures from [22, 7].

The networks start with a conv layer of 16 3 × 3 filters,

and then sequentially stack three types of 2� conv layers of

3× 3 filters, each of which has the feature map sizes of 32,

16, and 8, and filter numbers 16, 32, and 64, respectively.

Spatial sub-sampling of feature maps is achieved by conv

layers of stride 2. The networks end with a global average

pooling and fully-connected layers. Thus for each network

we have 6� + 2 weight layers in total. We consider � =
3 and � = 6 in our studies. The used CIFAR10 dataset

consists of 10 object categories of 60, 000 color images of

size 32×32 (50, 000 training and 10, 000 testing ones). We

use raw images without pre-processing. Data augmentation

follows the standard manner in [14]: during training, we

zero-pad 4 pixels along each image side, and sample a 32×
32 region crop from the padded image or its horizontal flip;

during testing, we use the original non-padded image.

Figure 2 shows that for each depth case, our results us-

ing SVB are consistently better than those from standard

SGD with momentum, verifying that bounding the singular

values of weight matrices indeed improves the conditioning

of layer transform. Replacing BN with BBN gives similar

performance. This shows that in the case of plain ConvNet-

s, the issue of ill-conditioning caused by BN is not severe.

In the more complex ResNet type architectures, BBN im-

proves over BN effectively, as presented shortly. Compara-

tive results in Figure 2 also suggest that with the increase of

network layers, training becomes more difficult: results of

deeper network (� = 6) are worse than those of shallower

one (� = 3). This is consistent with the observation in [7].

6.2. Ablation studies using ResNet

We conduct experiments to investigate whether our pro-

posed SVB and BBN methods are effective for “residual

2When applying SVB to a conv layer, we convert its kernel tensor of the

size ����×���×�ℎ×�� as a matrix of the size ����×����ℎ�� ,

where ���� and ��� denote the numbers of output and input feature chan-

nels, and �ℎ and �� denote the kernel height and width, respectively.

Table 1. Ablation studies on CIFAR10, using a pre-activation

ResNet with 68 weight layers of 3×3 convolutional filters. We run

each setting for 5 times, using standard data augmentation [14].

Results are in the format of best (mean + std).

Training methods Error rate (%)

SGD with momentum + BN 6.10 (6.22± 0.14)

SVB + BN 5.65 (5.79± 0.10)

SVB + BBN 5.37 (5.49± 0.11)

learning” [7]. We use an architecture similar to those p-

resented in Section 4.2 in [7], but change it to the pre-

activation version [8]. The network construction is based

on the ConvNets presented in Section 6.1, and we use an “i-

dentify shortcut” to connect every two conv layers of 3× 3
filters, and use a “projection shortcut” when sub-sampling

of feature maps is needed. We use a network of � = 11 for

experiments in this section, which gives 68 weight layers.

We conduct ablation studies by switching SVB on or of-

f, and switching BBN on or off. The parameters � and �̃
are fixed as 0.5 and 1 respectively. All experiments are run

for 5 times, and we report the best, mean, and standard de-

viation results in Table 1. These results show that using

SVB improves deep residual learning, and BBN further im-

proves over standard BN, demonstrating the efficacy of our

proposed methods for modern deep architectures.

6.3. Comparisons with the state-of-the-art

We use Wide ResNet [27] to compare with the state-of-

the-art results on CIFAR10 and CIFAR100. The CIFAR100

dataset has the same number of 32 × 32 color images as

CIFAR10 does, but it has 100 object categories and each

category contains one tenth images of those of CIFAR10.

We use raw data without pre-processing, and do data aug-

mentation in the same way as for CIFAR10.

Our architecture of Wide ResNet is the same as that of

“WRN-28-10” in [27], but our training hyperparameters (cf.

the beginning of Section 6) are different from those in [27].

When BBN is turned on, we replace all BN layers with the

BBN ones. The parameters � and �̃ are fixed as 0.5 and 1 re-

spectively. Without using SVB and BBN, our Wide ResNet

gives an error rate of 4.50 on CIFAR10 and 20.78 on CI-

FAR100. With SVB and BBN, the results are significantly

boosted to 3.58 on CIFAR10 and 18.32 on CIFAR100.

To compare with the state-of-the-art method DenseNet

[9], we use improved training hyperparameters inspired by

[9]: we use the batchsize of 64 for CIFAR10 and 128 for

CIFAR100, and train for an extended duration of 300 e-

pochs; all other training parameters are the same as those

described in the beginning of Section 6. We set � and �̃ of

our methods as 0.5 and 0.2 respectively. Table 3 reports

the comparative results. Wide ResNet in Table 3 uses the

same architecture of “WRN-28-10” as in [27], and Wider

ResNet increases the widening factor from 10 to 16 (cor-
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Figure 2. Validation curves on CIFAR10 using two ConvNets of 20 and 38 weight layers respectively. Blue lines are results by SGD

with momentum. Red lines are results by SVB at different values of � (0.01, 0.05, 0.2, 0.5, 1) in Algorithm 1. Black lines are results using

both SVB (fixing � = 0.05) and BBN at different values of �̃ (0.01, 0.05, 0.2, 0.5, 1)) in Algorithm 2. These parameter settings are simply

casual choices. The left two figures are from the 20-layer ConvNet, and the right two ones are from the 38-layer ConvNet.

Table 2. Error rates (%) of different methods on CIFAR10 and

CIFAR100 [13]. All methods use standard data augmentation as

in [14]. A “-” indicates that result is not explicitly specified in the

cited work.

Methods CIFAR10 CIFAR100 # layers # params

NIN [15] 8.81 - - -

FitNet [19] 8.39 - 19 2.5M

DSN [14] 7.97 - - -

Highway [23] 7.54 32.24 19 2.3M

ResNet [7] 6.43 25.16 110 1.7M

Stoc. Depth [10] 4.91 - 1202 10.2M

Pre-Act ResNet [8] 4.92 22.71 1001 10.2M

Wide ResNet [27] 4.17 20.50 28 36.5M

ResNet of ResNet [28] 3.77 19.73 - 13.3M

Our Wide ResNet

W/O SVB+BBN 4.50 20.78 28 36.5M

Our Wide ResNet

WITH SVB+BBN 3.58 18.32 28 36.5M

responding to “WRN-28-16” in [27]). Our proposed SVB

and BBN improve both architectures, and achieve the new

state-of-the-art results of 3.06 on CIFAR10 and 16.90 on

CIFAR100 3. These results demonstrate the great potential

of SVB and BBN on training modern deep architectures.

6.4. Preliminary results on ImageNet

We present preliminary results on ImageNet [20], which

has 1.28 million images of 1000 classes for training, and

50 thousand images for validation. The data augmentation

scheme follows [25]. We investigate how SVB and BBN

may help large-scaling learning, for which we use the pre-

activation version of Inception-ResNet [25]. We use the

3In Table 3, Wider ResNet has much more model parameters than

DenseNet does. However, we note that DenseNet practically consumes

more GPU memories in both training and inference. This is due to the

architectural design of DenseNet: in (each stage/block of) DenseNet, the

input of an upper layer is formed by concatenating output feature maps

of all its lower layers; thus it is easy to have bottleneck layers of tremen-

dous memory consumption when the number of each layer’s output feature

maps (i.e., the growth rate in [9]) is large. This is indeed the case for model

setting of the best result achieved by [9].

Table 3. Comparisons of error rate (%) with the state-of-the-

art method DenseNet [9] on CIFAR10 and CIFAR100 [13]. Our

results are obtained by using improved training hyperparameters

inspired by [9]. All methods use standard data augmentation as

in [14]. We note that DenseNet practically consumes more GPU

memories than Wider ResNet does.

Methods CIFAR10 CIFAR100 # layers # params

DenseNet [9] 3.46 17.18 190 25.6M

Our Wide ResNet

W/O SVB+BBN 3.78 19.92 28 36.5M

Our Wide ResNet

WITH SVB+BBN 3.24 17.47 28 36.5M

Our Wider ResNet

W/O SVB+BBN 3.64 19.25 28 94.2M

Our Wider ResNet

WITH SVB+BBN 3.06 16.90 28 94.2M

Table 4. Error rates of single-model and single-crop testing on the

ImageNet validation set.

Training methods Top-1 error (%) Top-5 error (%)

Our Inception-ResNet 21.61 5.91
Our Inception-ResNet WITH SVB+BN 21.20 5.57

same parameter settings as those for the CIFAR10 exper-

iments in Section 6.3, except the learning rate that starts

from 0.045. Table 4 shows that SVB and BBN indeed im-

proves the large-scale learning, with a similar performance

gain for top-1 and top-5 errors. The improvement is how-

ever lower than what we expected. We are interested for

further studies in future research. We note that our architec-

ture is almost identical to [25], but we did not manage to get

the results in [25], possibly due to the different choices of

gradient descent methods ([25] uses RMSProp while ours

are based on SGD with momentum).
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