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Abstract

Rain streaks removal is an important issue of the outdoor
vision system and has been recently investigated extensive-
ly. In this paper, we propose a novel tensor based video
rain streaks removal approach by fully considering the dis-
criminatively intrinsic characteristics of rain streaks and
clean videos, which needs neither rain detection nor time-
consuming dictionary learning stage. In specific, on the one
hand, rain streaks are sparse and smooth along the rain-
drops’ direction, and on the other hand, the clean videos
possess smoothness along the rain-perpendicular direction
and global and local correlation along time direction. We
use the 11 norm to enhance the sparsity of the underlying
rain streaks, two unidirectional Total Variation (TV) reg-
ularizers to guarantee the different discriminative smooth-
ness, and a tensor nuclear norm and a time directional dif-
ference operator to characterize the exclusive correlation of
the clean video along time. Alternation direction method of
multipliers (ADMM) is employed to solve the proposed con-
cise tensor based convex model. Experiments implemented
on synthetic and real data substantiate the effectiveness and
efficiency of the proposed method. Under comprehensive
quantitative performance measures, our approach outper-
forms other state-of-the-art methods.

1. Introduction

Outdoor vision system is frequently affected by bad
weather, one of which is the rain. Due to its scattering
light out and into the complementary metal oxide semicon-
ductor of cameras and its high velocities, raindrops usually
bring the bright streaks to the images or videos. Moreover,
rain streaks also interfere with the nearby pixels, because of
their specular highlights, scattering, and blurring effect [1].
This undesirable interference will degrade the performance
of various subsequent computer vision algorithms, such as
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Figure 1. From left to right: 1) the histograms of difference of
the 1st and 2nd frame from the rainy video, clean video and rain
streaks, respectively; 2) the singular values of O3y, B(s) and R 3)
in decreasing order, severally; 3) some example frames of rainy
video, clean video and rain streaks; 4) the histograms (c-1,2,3) of
rain directional difference of the 10th frame, and the intensities of
a row (d-1,2,3) of the rainy video, clean video and rain streaks,
respectively.

event detection [2]], object detection [3, 4], tracking([3]], and
recognition [6], and scene analysis [7]. For instance, in the
field of background substraction for the surveillance video,
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rainfree videos would alleviate the difficulties come from
dynamic background[8]]. Therefore, removal of rain streaks
is indeed considerable and essential, and has recently re-
ceived much attention[9, 10} (11} |12} |13} 114} 15].

In general, the observation model of rainy image is for-
mulated as O = B + R [1} 9} [10], which can be general-
ized to the video case: @ = B + R, where O, Band R €
R™*7Xt gre three 3-mode tensors, indicating the observed
rainy video, the unknown rain-free video and rain streaks,
respectively. Rain streaks removal methods aim at separat-
ing clean video and rain streaks from the input rainy video.
As we know, it is an ill-posed problem, which is tradition-
ally coped with by enforcing priors with corresponding reg-
ularizations, in low-level computer vision. Therefore, from
this perspective, the most significant issue is to rationally
extract and fully utilize the prior knowledge, which is dis-
criminative for separating the to-be-reconstructed rain-free
video and rain streaks. Meanwhile, as shown in Table [T}
many recent state-of-the-art rain streaks removal methods
can also be viewed as conducting the separation based on
some priors or assumptions. These approaches mentioned
in the Talbe. [I] are demonstrated to be effective, however
there are a few drawbacks. To begin with, some of their
priors or assumptions are not instinct sufficiently. Second,
they focus on the rain streaks more than the rain-freed part.
Actually, the rain-free part maintains a lot of useful infor-
mation, which is not fully utilized. At last, most of them in-
volve the time-consuming dictionary learning stage. There-
fore, it still has room to further enhance the potential capac-
ity and efficiency of the rain streaks removal model.

To alleviate these problems, this paper proposes a new
rain streaks removal model, which fully takes the discrim-
inatively intrinsic characteristics of rain and rain-free part
into consideration. More specifically, the spatial and tempo-
ral, global and local prior knowledge is analyzed. In the spa-
tial aspect, the directional property of the raindrops causes
two different effects on the rainy video, along the raindrops’
direction and its perpendicular direction respectively, which
can be seen from (c-1,2,3) and (d-1,2,3) of the Fig. |l| Prac-
tically, the traditional TV regularization is applied in [1}/10],
but it is not capable of handling these two different effects
[L6} [17]. Fortunately, the unidirectional TV, introduced in
[18L [19]], is naturally suitable, so that we adopt it to utilize
the spatial priors. As for the temporal aspect, the rain-free
part maintains a quite different situation with comparison-
s to the rain streaks and rainy part. (a-2) and (b-2) in Fig.
[[] show the tighter correlation along the time axis, compar-
ing with (a-1,3)and (b-1,3) respectively. Therefore, a tensor
nuclear norm and a time directional difference operator are
applied to simultaneously boost the global and local correla-
tion of the underlying clean video along the time direction.
Finally, we consider the sparsity of the rain streaks, and use
an /1 norm to guarantee it.

Our method is convex and concise, and it is easier to im-
plement and more efficiently generates considerably better
results qualitatively and quantitatively, compared with ex-
isting state-of-the-art methods. In addition, our method is
practical, since it is not limited by the rain streak orienta-
tions and the dynamic/stastic of the camera or scene (see
more details in Section f.2). For all we know, this is the
first method to rationally extract such priors together for the
task of rain streak removal.

The outline of this paper is given as follows. In Section
2, some preliminary knowledge of tensor is given. Section
3 discusses the related works. In Section 4, the formulation
of our model as well as the ADMM solver are proposed.
Experimental results are reported in Section 5. Finally, we
draw some conclusions in Section 6.

2. Notations and preliminaries

Table 2. Tensor Notations

Notations Explanations
X, X, x,x Tensor, matrix, vector, scalar.
pe Inner product of two same-sized
(X, 9) tensors X and Y.
1 X - Frobenius norm of tensor X.

Mode-n unfolding of a tensor X' €
X (1), unfold,, (X) RIxExxIN- denoted as X(,,) €
an XITitn Ii.

N-rank, where 7, = rank(X,)),

(11,72, , TN n=12---.N
) ) ) N

Following [20], we use low-case letters for vectors, e.g.,
a, upper-case letters for matrices, e.g., A, and calligraphic
letters for tensors, e.g., A. An N-mode tensor is defined as
X € RIle?X"'XlN, and Liigin is its (il, 19, -~ ,iN)-th
component.

The inner product of two same-sized tensors X and )

is defined as(X',)) := > Xjjinin * Yirio-in- LDE
11,82, IN

corresponding norm (Frobenius norm) is then defined as

¥ p =/ {X, &)

The mode-n unfolding of a tensor X is denot-
ed as X(n) € RIn*Iiznli  \where the tensor elemen-
t (41,42, - ,4n) maps to the matrix element (i,,j) sat-
isfying j = 1+ Yoy n(ic — 1)Jk with  J, =
an_:ll mon Im- The inverse operator of unfolding is de-
noted as “fold”, ie., X = fold, (X))

The n-rank, which we adopt in our work, is defined
as an array n-rank(X) = [rank(X(y)), rank(X(z)), ---,
rank(X ny)]. The tensor X is low-rank, if X, is low-
rank for all n.

Please refer to [20] for a more extensive overview.
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Table 1. Comparison of related recent works on rain removal

Method Priors or assumptions

Detection or dictio-
nary learning

Kang et al.[9]

Rain streaks exist only in the HF part and can be decomposed by MCA
based dictionary learning and sparse coding

Both

Yi-Lei Chen et
al.[10]

Rain streaks are spatio-temporally correlated, and TV regularization is
discriminative for image content from highly-patterned rain streaks

Nor

Hakim et al.[11]]

Rain streaks are sparse and the clean video is low-rank Nor

Kim et al.[[12]

Rain streaks are temporally correlated and the clean video is low-rank | Both

Luo et al.[13]

Local patches from both image and rain can be sparsely modeled in a
learned dictionary, and their sparse codes are sufficiently discriminative

Dictionary learning

Li et al.[1]

GMM patch priors and gradient sparsity of background

Dictionary learning

3. Related work

Numerous methods are proposed to improve the visibil-
ity of images/videos captured with rain streak interference.
They can be split into two categories: multiple image/video-
based and single image methods.

For single image de-raining task, Kang et al.[9] decom-
posed the rainy image into low frequency (LF) and high
frequency (HF) part, and applied an MCA based dictionary
learning and sparse coding to separate the rain streaks, in the
HF part. Following this elegant decomposition idea, Sun et
al. [21] take the structure information into account. Howev-
er, the background estimated by these methods tends to be
blurry. Chen et al.[10] considered the pattern of rain streak-
s and the smoothness of background, but the constraints in
their objective function are not sufficiently strong. Discrim-
inative sparse coding was adopt by Luo et al.[13], but it-
s performance is not desirable. The recent work by Li et
al.[[1]], firstly utilizing the Gaussian mixture model (GMM)
patch priors for rain streaks removal, was able to handle ori-
entations and scales of rain streaks. Nevertheless, there is
still over smooth in their results.

For video cases, Abdel-Hakim et al.[11] applied robust
principle components analysis (RPCA) for rain streaks re-
moval. Their method is limited for the statical camera and
statical background. Kim et al.[12] took the temporal cor-
relation of rain streaks and the low-rankness of clean video
into account, but its effectiveness is still somehow weak for
some dynamic video recorded by dynamic camera. Please
refer to [22], for a more comprehensive review on the ex-
isting video-based methods. In Table [I] characteristics of
recent related works are briefly introduced.

4. Tensor based video rain streaks removal
model

In general, from the point of image processing, a rainy
video @ € R™*™** can be modeled as a linear superimpo-
sition:

O=B+R,

where Band R € R™*"*! are the unknown rain-free
video and rain steaks, respectively. These three tensors are
illustrated in the third column of Figure[I} Our goal is to de-
compose the rain-free video B and the rain streaks R from
the input rainy video O. To solve this ill-posed problem,
we need to analyze the priors of both B and R, and then
introduce the corresponding regularizers, which will be dis-
cussed in the next subsection.

4.1. Priors and regularizers

Sparsity of rain streaks When the rain is light, the rain
streaks can naturally be considered as being sparse approxi-
mately. We can also obtain the sparsity of rain streaks from
the instantiated example in Fig. 1. Hence, the enhancement
of the sparsity of underlying rain streaks is helpful to the
separation. To boost the sparsity of rain streaks, [y norm,
which indicates the number of nonzero elements, is an ideal
choice. Meanwhile, we can tune the parameter of the spar-
sity term to handle the scene with heavy rain, since that the
rain streaks are always intrinsically sparser than the back-
ground clean video.

Smoothness along the rain-perpendicular direction In
Fig. 1, (d-1),(d-2) and (d-3) display the pixel intensity of a
fixed row in the rain-perpendicular direction, from the 10th
frame of rainy video, clean video and rain streaks, respec-
tively. It is obvious that only the variation of pixel intensity
in (d-2) is piecewise smooth while burrs appear frequently
in (d-1) and (d-3). Therefore, as previously mentioned, an
lp norm of the rain-perpendicularly unidirectional TV regu-
larizer for B is a suitable candidate.

Peculiarity of the rain along the rainy direction It can
be found in Fig. 1 that (c-3), which exhibits the histogram
of the intensity of rain directional difference of a rain streak-
s frame, maintains a particular distribution with respect to
(c-1) and (c-2). More zeros and smaller non-zeros values
indicate the smoothness of the rain streaks along the rain
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direction. Naturally, we apply {; norm to the rain direction-
al unidirectional TV regularizer , or said differently the rain
directional difference operator, of the rain streaks R.

Correlation along time direcion It can be found that,
clean video maintains different types of correlation along
the time direction from the first and second columns of the
Fig. 1, compared with the rainy video and rain streaks.

On the one hand, the sub-figures (a-1), (a-2) and (a-3),
which present the distributions of the magnitudes of the dif-
ference of two adjacent frames, illustrate that the difference
of clean video possesses more zero values and smaller non-
zero values, while the differences of the rainy video and
rain streaks tend to have more and larger non-zero values.
Therefore, the [; norm is naturally selected for the time di-
rectional difference of clean video B.

On the other hand, (b-1), (b-2) and (b-3) respectively
show the singular values of the O ), B(;) and R ;) in de-
clining order, where the matrix X () is the time mode un-
folding of a tensor X’. What noteworthy is that the singu-
lar valves of By finally descend approximately to zeros,
yet the singular values of O(;) and R do not share this
property. Thus we can conclude that, the rank minimiza-
tion of B(;) would promote the separation of rain streaks
and clean video, although the clean video is not extreme-
ly low-rank, i.e. dynamic background and moving camera.
By the way, if the video is taken by static camera or with
static background, the rank minimization is more forceful.
Meanwhile, as discussed in [23]], there is weak correlations
in video frames or natural images. Hence, we consider to
minimize the rank of B.

4.2. Formulation

As a summary of the discussion of the prior and regular-
ization, our model can be succinctly formulated as:

min - a1 [|ViR[lo + az[Rllo + as[|V2B]|x

+ ay||VB||1 4 rank(B), ey
st. O=B+R, BR>0,

where V1 and V3 are the unidirectional TV operators of
rain direction and the perpendicular direction, respectively,
and V, indicates the time directional difference operator.

Nevertheless, the [y and rank terms in can only
take discrete values, and lead to combinatorial optimization
problem in applications which is hard to solve. We thus re-
lax them as {; norm and tensor nuclear norm, the definition
of which is selected form [24] as | X|. = >0, | Xl
where X; = Unfold;(X).

Moreover, in real rainfall scene, the raindrops generally
fall from top to bottom, so that the rain streaks’ direction
can be approximately counted as the mode-1 (column) di-
rection of the video tensor. Thus rain streaks direction is de-

noted as y-direction while the perpendicular direction (hor-
izontal direction) denoted as x-direction, for convenience.
Commonly, there would be an angle between the y-direction
and the real falling direction of raindrops. The priors, cor-
responding to the unidirectional TV regularizers, still exist,
when the angle is small. Actually, the rain streaks in Fig.
1 is not strictly vertical, and there is a 5-degree angle. For
the large angle cases, we can handle them by rotating the
frames of rainy videos.

Instead of solving (I)), our goal then turns to solving the
following convex optimization problem:

min - a1[|Vy (R + 2[R + |0 = R
+ a3[[Va(O = Rl + aa[[ Ve (O = R)|1-

2

where R € R™*"*! ig the rain streaks.
An efficient algorithm is then proposed in the following
section to solve the problem.

4.3. Optimization

Since the proposed model (Z)) is a convex model, many
state-of-the-art solvers are available. Here we apply the
ADMM |25} 26l 27, 28], an effective strategy for solving
large scale optimization problems. Firstly, five auxiliary
tensors Y, S, X', T and L are introduced and the proposed
model (2)) is reformulated as the following equivalent con-
strained problem:

a1]|Y[[1 + a2||S]1

+asl| X + aa[ T+ [I£]]
sit. Y :Vy’R, S =R, (3)
X =V, (0-R),
T :Vt(O—R),
L =0-R, O>2R=>0,

min
RY,S,X,T,L,

where S, Y, X, T and £ € R™*X"Xt,
Then the augmented Lagrangian function of (3)) is:

Lﬂ(Ray7$7XaT7£7A> = alHyHl + O[QHSH]_
+ asl| X1 + au|[ T + £+ + (A1, Vy(R) =)

9, R) - PIE+ (Ae R - 8) + 2R -8l
+ {83, V(0 - R) - X) + V.0 - R) - X[}
+ (A, V(O - R) -~ T) + V.0 - R) - T
A5 (0 -R) - £)+ 20 - R~ L}

where A = [Aq,As, -, Aj] is the Lagrange Multipliers
and 8 = [B1, 52, - ,Bs| are five positive scalars. Now
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this joint minimization problem, which can be decomposed
into six easier and smaller subproblems, is able to be solved
within the ADMM framework.

YV, S, X, and T sub-problems With other parameters
fixed, Y, §, X and T sub-problems all turn to the same
format equivalent problem:

A" = arg min aHAHl—FgﬂA—BH%,
A
which has a closed-form solution by soft thresholding:
+ _ .
A" = Shrinks (B).

Here, the tensor nonnegative soft-thresholding operator
Shrink, (-) is defined as

Shrink, (B) = B

B _ biliQ"‘iN -,
t1i2 N T 0
)

Therefore, Y, S, X, and T can be updated as:

A(t)
) = Shrinke, | V,(RY)+ =,
o1 b1
A(t)
— Shrink ez (R“) + 2) :
P2 B2
A
Bs |’
AY
+ =4 ).
Ba

with other parameters fixed, respectively. The time com-
plexity of the each sub-problem above is O (mnt).

with
biyigerin >0,

otherwise.

y(t+1

S+
“)

D = Shrink e (vx(o ~RWy
3

T = Shrink as (vt(o - R®)

L-subproblem The £-subproblem is:

As o
L+ —|%

3, I
Since we adopt the tensor nuclear norm definition as
Xl = >i, | Xi]l«, where X; = Unfold;(X’), then £
can be updated as:

£t =agmin ). + 20 -R) -
L

£t Z ~Fold, ( t+1)) (5)

®
where L&Y = D, ( BY + Aoy
(%) B3 (i )

Dﬂi (X)) in indicates doing soft-thresholding to the singular

Valaes of X.

(i =1,2,3) and

Algorithm 1 Algorithm for video rain streaks removal

Input: The rainy video O;
1: Initialization: B = 0, R = zeros(m x n x t)
2: while not converged do
3: Update Y, S, X, and T via ();
4: Update £ via (3));
5: Update R via (6));
6: Update the multipiers via (7);
7: end while
Output: The estimation of rain-free video B = O — R
and rain streaks R;

R-subproblem The R sub-problem is a least squares
problem:

R = argmin

SV, (R) -
R

A1,
_A'_i
y ﬁlllp
52 A2 2
+Z|R-8+ =
2| 2l

A
+ 523 1V:(0 = R) — & + 27
3

A
Lo -r) T A
2 Ba

Asa
ﬂo F

which has the following closed-form solution:

L (F(K)
(t+1) _ 1
RO=F <f</c2>>’ ©

+Zlo-r-c+

where, F and F~! denote the fast Fourier transform (FFT)
and its inverse, K1 = vg(ﬁly““) — Agt)) + ﬂzs(t“) -
AP+ VI (B3V,0- B3V AL+ VT (8,V,00+D —
BT+ AD)) + 850 — £y + AY and K, =
B1VyVy + B2 + B3V, Ve + B4VIV, + Z. Elements in
‘R, which are smller than O or bigger than the same elements
in O would be shrank. The time complexity of updating R
is O(mnt - log(mnt))

Multipliers update Following the framework of the AD-

MM, the Lagrange multipliers A = [A1, Ay, -+, As] can
be updated as:

AP =AY 4 51(7,(0 = RUFH) — ),

AT = AP 4 By (0 - RUFD — s+,

ALY = A 4 B3 (W, RUFD — (D),

Aff“) _ Aflt) + Bi(ViR (t+1) T(t“)),

Agﬂrl) _ Aét) + Bs (R(t+1 £(t+1)).

@)
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The proposed algorithm for video rain streaks removal
can be summarized in Algorithm 1. In fact, the objective
function in (@) can be divided into two blocks. One is the
nuclear norm term, while another block contains the oth-
er four /; norm terms. Hence, our algorithm fits the typi-
cal ADMM framework, and its convergency is theoretically
guaranteed (see more details in the supplementary material-

S).
5. Experimental results

To validate the effectiveness and efficiency of the pro-
posed method, we compare our method with recent state-of-
the-art methods, including the method using temporally cor-
relation and low-rankness (denoted as 15’ TIP), sparse
coding based dictionary learning method (denoted as
15’ICCV) and the method using layer priors [1] EI (denot-
ed as 16’CVPR). Actually the 15’ICCV and 16’CVPR are
single image based derain methods, but their performances
sometimes surpass the video based methods. Moreover, on-
ly some frames of the experimental results using the real
videos are able to be illustrated in this paper. Hence, the
comparisons with these two single image based methods are
reasonable and challenging. Additionally, in the following
experiments, the parameters {ov, ao, a3, a4} are selected
from {10%,10%,10%} and 3; (i = 1,2,---,5) are set 50
(please see more details about the parameters in the supple-
mental materials).

5.1. Synthetic data

For synthetic data, since the ground truth clean video is
available, three evaluation measures are employed, includ-
ing peak signal-to-noise ratio (PSNR), structure similari-
ty (SSIM) [29] and the residual error (RESﬂ Six videos,
named as “carphone”, “container”, “coastguard”, “bridge-
far”, “highway” and “foreman’ﬂ are selected as the ground

truth videos.

Rain streaks generation We generate the rain by the fol-
lowing steps. Firstly, a salt and pepper noise is added to a
zero tensor with the same size as the ground truth videos.
The denser the noise is, the heavier the synthetic rain will
be. Then, a motion blur is added to the noisy zero tensor,
and a small angle (5 degree) exists between the motion di-
rection and the y-axis. Finally, the blurred noisy zero tensor
is linearly superposed to the ground truth videos, and the
intensities of pixels, which are greater than 1, are set as 1.

ICode available on http://www.math.nus.edu.sg/~matjh/research/ re-
search.htm.

2Code available on http:/mcl.korea.ac.kr/ jhkim/deraining/.

3The authors would like to express their thanks to Dr. Yu Li for sharing
the code.

4 Defined as RSE= || X — Y|| 7, where X and Y denote the estimated
clean videos and the ground truth, respectively.

Shttp://trace.eas.asu.edu/yuv/.

Rainy 15"TIP 15’ 1CCV 16’CVPR  Proposed  Ground truth

Figure 2. From left to right: the rainy frames, results of 15 TIP,
15’ICCV, 16’CVPR, the proposed method, and the ground truth
frame. From top to bottom: the “carphone”, “container”, “coast-
guard”, “bridgefar”, “highway” and “foreman” videos with heavy

and light synthetic rain, respectively.

1 MssMB
HPsnR SSIMR.

HRse
08
60 06
4 0.4
A hlillh 5 EE LT

0 "
Al noL noS noT noX noY RPCA Rainy Al noL noS noT noX noY RPCA Rainy

Figure 3. The performance of the proposed method and its degrad-
ed methods, which respectively leave one regularizer out.

Discussion of each component There are five compo-
nents in our model (]Z[) To make their effects clear, we test
our method by leaving each component out, respectively.
Additionally, when only containing the sparse and low-rank
terms, our model degrades to a robust principle components
analysis model, which is similar to the method in [11]. We
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Table 3. Quantitative comparisons of rain streaks removal results on the selected 6 synthetic videos.

rain type Heavy Light
‘Whole Average Whole Average
PSNR SSIM  SSIM RSE PSNR SSIM  SSIM RSE Time (s) PSNR SSIM  SSIM RSE PSNR SSIM  SSIM RSE Time (s)
video Method (B) (R) (B) (R) (B) (R) (B) (R)
Rainy 26.830 0579 — 69.176 26.843 0614 — 7.246 — 35.256 0771 — 26.221 35319 0832 — 2.739 —
15’TIP 29.028 0.619  0.523 53712 29.078 0.645 0401 5.614 2029.673 34.852 0.890  0.628  27.470 35.024 0.892  0.368  2.851 1211.811
carphone 15’ ICCV 27.478 0.590  0.138  64.205 27.496 0.618 0.054 6.723 1558.478 31.280 0.777  0.111  41.446 31.336 0.827 0.046 4331 1593.010
16°CVPR 32.396 0.713  0.706  36.777 32.339 0.768  0.688  3.850 7582.206 34.086 0813 0444  31.083 33.787 0.840 0309 3.257 7300.395
Proposed 33.597 0.820 0790 31.741 33.632 0.819 0721  3.320 11.377 40.104 0926 0732 15.006 40.532 0927 0431 1532 11.230
Rainy 27.634 0.558 — 63.063 27.640 0.608 — 6.608 — 36.151 0757 0.000  23.655 36.185 0832 — 2475 —
15°TIP 29.994 0.606  0.573  48.058 30.021 0.647 0441 5029 1750.081 35.428 0.900 0.631 25707 35.484 0906 0.376  2.686 1200.039
container 15’ ICCV 29.031 0.570  0.127  53.690 29.052 0.616 0.061 5.621 1591.627 31.082 0.763  0.090  42.398 31.106 0.829  0.040 4.439 1614.712
16°CVPR 32.659 0.643  0.649  35.820 32.555 0.716  0.626  3.753 4497.388 33478 0.694  0.334 33436 33.147 0.733 0218  3.505 5476.641
Proposed 37.975 0910  0.920 19.174 37.985 0913  0.877  2.008 11.351 46.730 0.963  0.814 6.998 46.771 0.966  0.489  0.732 11.447
Rainy 27.716 0769 — 69.487 26.726 0807 — 7.280 — 35.061 0929 — 26.587 35.113 0945 — 2779 —
15°TIP 33.347 0.926  0.846  32.385 33.599 0.924  0.772  3.341 2467.202 33.279 0917 0429  32.641 33.515 0915 0241 3372 1875.336
coastguard 15’ ICCV 28.531 0.790  0.176  56.389 28.595 0.819  0.093 5889 1528.879 32.161 0932  0.165 37.126 32.941 0944  0.075 3.713 1737.723
16°CVPR 30.585 0.727  0.592  46.843 30.154 0.742 0526 4.907 4551.357 29.683 0.734  0.134  51.784 29.281 0.725  0.112 5425 5144.503
Proposed 34.039 0947  0.793  29.905 34.203 0949 0724  3.104 11.736 39.573 0981 0.701 15815 39.805 0982 0431 1.636 11.927
Rainy 27.789 0571 — 61.947 27.801 0623 — 6.489 — 36.208 0841 — 23.500 36.270 0876 — 2.455 —
15’ TIP 31.720 0622 0.650  39.395 31.762 0.646 0537  4.119 1681.520 35.587 0.807 0491 25242 35.668 0814 0299  2.633 1141.919
highway  15°ICCV 29.841 0.596  0.124 48911 29.856 0.639  0.060  5.122 1644.783 36.639 0.855  0.111 22361 36.690 0.883  0.049 2337 1598.950
16°CVPR 32.244 0.565  0.627  38.768 31.867 0.610  0.590  4.062 10327.949 32.054 0.636  0.323  40.171 31.554 0.648 0228 4210 4874.038
Proposed 36.743 0.831  0.773  22.096 36.761 0.840 0.719 2313 11.682 42.457 0936 0.702 11.445 42.552 0939 0429 1.193 11.707
Rainy 28.128 0584 — 59.576 28.141 0623 — 6.240 — 36.310 0837 — 23.224 36.381 0858 — 2.425 —_
15’ TIP 32245 0557 0548  37.086 35.257 0573 0411  3.885 1574.131 37.469 0781 0488  20.323 37.492 0781 0254  2.128 1117.143
bridgefar 15’ 1CCV 29.960 0.601  0.084 48427 29.973 0632 0029 5.053 1638.194 34.895 0843 0.056 27.334 34936 0860  0.024  2.859 1663.539
16'CVPR 31.736 0482  0.387  39.699 31.667 0519 0359  4.158 5017.966 33.527 0.516  0.180  34.718 32.820 0525  0.133  3.639 4928.519
Proposed 36.342 0.807  0.696  23.139 36.352 0.808  0.640 2.424 11.353 42.361 0925 0.642 11571 42.393 0920 0363 1.211 11.252
Rainy 27.128 0.682 — 66.839 27.135 0.695 — 7.004 — 35.626 0.850  0.000  25.128 35.665 0.879  0.000 2.628 —
15°TIP 28.684 0.708  0.471  55.881 28.750 0713 0356  5.835 2020.531 34.443 0.927  0.563  28.794 34.959 0923 0298 2.923 1380.608
foreman 15’ ICCV 28.570 0.687  0.039  56.621 28.577 0.698 0013 5932 1608.919 33.262 0853 0.039  32.989 33.282 0.879  0.001  3.454 1583.973
16'CVPR 32416 0791 0700  36.640 32362 0816  0.678  3.838 5077.714 33.645 0854 0375 32900 33.290 0862 0276  3.448 5417.467
Proposed 34.324 0.896 0.825  29.193 34.525 0.889  0.756  3.022 11.196 39.591 0.956  0.675 15.919 40.104 0952  0.365 1.618 11.070

show the performances of the proposed method and its de-
graded versions in Fig. |3l We can conclude that each com-
ponent contributes to the separation of rain streaks.

Performance comparisons Fig. [2] shows one frame of
the results of 15’ TIP, 15’ICCV, 16’CVPR and the proposed
method, while the corresponding quantitative comparisons
are presented in Table As observed, our method con-
siderably outperforms the other three methods in terms of
both visual quality on the selected three evaluation mea-
sures. With reference to the ground truth (the right most col-
umn in Fig. 2} our method removes almost all rain streaks
and maintains details, while many rain streaks still exist in
the results of 15°TIP and 15’ICCV. Although the 16’°CVPR
method removes more rain streaks than 15’ TIP and 15°IC-
CV, spatial details are erased. For instance, in the “coast-
guard” video (the 5th and 6th row in Fig. [2), water waves
are smoothed by 16’CVPR, while well preserved by our
method. Furthermore, it is inspiring that our method takes
significantly less time than other three methods.

5.2. Real data

Fig. [ and Fig. 5 show four adjacent frames of the re-
sults. The first real video is clipped from the well-known
movie “the Matrix”, and the second one is recorded by one
of the authors in a rainy day. Qualitatively, our method pro-
vides the best results both on removing rain streaks and re-
taining spatial details. We can see that there are still many

rain streaks on the results of 15°TIP and 15’ICCV, while
16’CVPR erases some spatial details, for instance, the nose
of Agent Smith in the 2nd frame and the leaves in Fig. [
Besides, when the camera is dynamic, the rapid changing
between two adjacent frames seriously effects the perfor-
mance of 15’TIP. More experimental results of real data,
including rotation case, parameter tuning strategy and pa-
rameter analysis will be presented in the supplementary ma-
terials.

6. Conclusion

We have proposed a novel tensor based approach to re-
move the video rain streaks. Actually, it is a bit counter-
intuitive to see the derivation of total-variation, cooperated
with low-rankness, beats the derivation of sparse dictionary
learning and patch prior, because the latter two significant-
ly outperformed total-variation in image denoising. Apart
from that the video based methods can utilize more infor-
mation than image based approaches, we attribute the out-
performance of our method to our intensive analysis on the
priors of rainy videos, clean videos and rain streaks. As a
matter of fact, the priors, taken into consideration by us, var-
ied from spatial to temporal, from local to global. Hence, it
is reasonable to achieve such performance.

Our method is not without limitations. If the rainy di-
rection is far away from the y-axis, we can handle it with
video/image rotation, but for the digital data, the rotation
inevitably causes distortion (please see the results of the ro-
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15°TIP 15’ICCV 16°CVPR

Rainy frame Proposed

Figure 4. Results on “the Matrix” data.

Rainy frame - 1S’TIP - 15'ICCV 16’CVPR

Figure 5. Results on our video.
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