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Abstract

Graph matching is a fundamental problem in computer
vision and pattern recognition area. In general, it can be
formulated as an Integer Quadratic Programming (IQP)
problem. Since it is NP-hard, approximate relaxations are
required. In this paper, a new graph matching method has
been proposed. There are three main contributions of the
proposed method: (1) we propose a new graph matching re-
laxation model, called Binary Constraint Preserving Graph
Matching (BPGM), which aims to incorporate the discrete
binary mapping constraints more in graph matching relax-
ation. Our BPGM is motivated by a new observation that
the discrete binary constraints in IQP matching problem
can be represented (or encoded) exactly by a {3-norm con-
straint. (2) An effective projection algorithm has been de-
rived to solve BPGM model. (3) Using BPGM, we propose
a path-following strategy to optimize IQP matching prob-
lem and thus obtain a desired discrete solution at conver-
gence. Promising experimental results show the effective-
ness of the proposed method.

1. Introduction

Many problems in computer vision and pattern recogni-
tion can be formulated by graph matching [23, 15, 14, 2,
20, 19]. Recent works [3, 4, 5, 11, 12, 23, 10] have formu-
lated graph matching as an Integer Quadratic Programming
(IQP) problem. Since IQP is NP-hard, approximate relax-
ation methods are required to find approximate solutions for
the problem [9, 7, 24, 29, 27, 22].

Many relaxation methods generally aim to optimize the
IQP matching problem approximately in a continuous do-
main. These methods first define a new continuous prob-
lem by relaxing the discrete mapping constraint and aim to
find the global optimum for the relaxed continuous prob-
lem. Then, they use a post-discretization step to obtain the
final discrete mapping solution [3, 5, 6]. One limitation for
these methods is that the required post-discretization step is
generally independent of the matching objective optimiza-
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tion which may lead to weak local optimum. Another kind
of methods aim to obtain a discrete binary solution for IQP
matching problem [12, 28, 1, 16]. For example, Leordeanu
et al. [12] proposed an integer projected matching method
(IPFP) which optimized the IQP problem directly in a dis-
crete domain and can obtain a discrete binary solution for
the problem. Zhou et al. [28, 29] proposed an effective
graph matching method (FGM) which optimized the IQP
problem approximately using a convex-concave relaxation
technique [26] and returns a discrete binary solution for the
original problem.

In this paper, we show that the discrete binary constraint
in IQP matching problem can be exactly represented (or
encoded) by a ¢s-norm constraint. Comparing with dis-
crete constraint, the ¢>-norm constraint is much easier to
implement computationally. To the best of our knowledge,
this particular observation has not been explored before, al-
though /5-norm has been used as a self-amplification regu-
larization term to aid the convergence of the solution to be
binary [21]. Based on this new observation, we propose a
new graph matching relaxation model, called Binary Con-
straint Preserving Graph Matching (BPGM), which aims
to incorporate the discrete mapping constraints via a fo-
norm constraint in graph matching relaxation. An effective
projection algorithm has been developed to solve BPGM
model. Moreover, based on BPGM, we propose a path-
following strategy to optimize IQP matching problem and
thus can obtain a desired discrete solution at convergence.
Experimental results on both synthetic and real-world im-
age matching tasks demonstrate the effectiveness of the pro-
posed method.

2. Problem Formulation and Related Work
2.1. Problem formulation

Given two attributed relation graphs G(V,E) and
G'(V',E’), each node v; € V or edge e¢;; € E has an
attribute vector a; or r;; and similarity to G’. The aim of
graph matching problem is to determine the correct corre-
spondence between V and V’. Here, we focus on equal-size



graph matching problem. For graphs with different sizes,
one can add dummy isolated nodes into the smaller graph
and transform them to equal-size case [26, 9]. For each
assignment (v;,v}), we can define a score sq(a;,a}) that
measures how well node v; € V matches node v.; e V.
Also, for each assignment pair (v;, v’;) and (v, v;), we can
define an affinity s, (r;z, r;‘z) that measures how compati-
ble the nodes (v;,vy) in G are with the nodes (v}, v;) in
G’. Thus, we can use a matrix W in which the diagonal
term W, ;; represents sq(a;, a;), and the non-diagonal el-
ement W;; ; contains s, (I, r;l). The one-to-one corre-
spondence solution can be denoted by a permutation matrix
X, i.e., X;; = 1 implies that node v; in G corresponds to
node v;- in G’, and X;; = 0 otherwise. In this paper, we de-
note X = (Xy1...X15, .. Xp1...- Xpn) T as a row-wise vector-
ized replica of X. In the following, we call X as the matrix
form of x. The graph matching problem, in its most recent
and general from, can be formulated as an Integer Quadratic
Programming (IQP) problem [5, 12, 3, 9], i.e.,

max x'Wx st Ax=1, x; € {0,1} (1)
where A € {0, 1}(2")”2 is set to encode the doubly
stochastic constraint of X. It is known that this IQP prob-
lem is NP-hard, thus approximate relaxations are required
to find approximate solutions for it.

2.2. Related work

One popular relaxation way to IQP matching problem
Eq.(1) is to relax the binary constraint (x; € {0,1}) to the
nonnegative domain [4, 28, 11, 5], i.e.,

max X' Wx
X

sit. Ax=1, x; > 0. 2)
Since W is not necessarily a positive definite matrix, thus
this problem Eq.(2) is usually non-convex. Many efforts
have been devoted to find the local optimal solution of this
relaxation problem [3, 5, 24, 28]. Since the discrete binary
constraint has been entirely ignored in this relaxation, the
optimal solution is generally continuous and needs to be
further binarized to obtain the final discrete binary solution
for the original problem Eq.(1) [3, 5]. One drawback is that
this abrupt binarization (discretization) step is generally in-
dependent of the matching objective optimization and thus
may lead to weak local solution for the original problem.

3. Binary Preserving Graph Matching

In this section, we propose a new graph matching re-
laxation model, called Binary Constraint Preserving Graph
Matching (BPGM), which aims to incorporate more dis-
crete binary constraint while maintains the affine mapping
constraint in matching relaxation. Our BPGM is motivated
by a new observation that the discrete constraint x; € {0, 1}
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in IQP matching problem Eq.(1) can be exactly encoded by
a {o-norm constraint.

3.1. BPGM model

By further adding a ¢5-norm constraint on the related so-
lution in problem Eq.(2), our BPGM can be formulated as
follows,

max X Wx s.t. Ax =1,x; > 0, HX”g =7,
X

> 3)
where v is a parameter and ||x||2 VD X7 is the £o-
norm function. To avoid the conflict between two con-
straints Ax = 1 and [|x||3 = ~, here v should satisfy
[holl3 <~ <n,wherehg = AT(AA")"'1andn = |V|
is the size of graph G’. This can be seen in detail in §4.2.

One important feature of BPGM model is that it can be
viewed as a parameter-controlled balanced model between
original IQP problem Eq.(1) and its nonnegative relaxation
Eq.(2). Thus, it provides a series of parameter-controlled
relaxations for IQP matching problem whose tightness are
controlled by parameter . These can be seen in the follow-
ing properties in detail.

3.2. Properties analysis

Property 1 When v = n, BPGM is equivalent to original
IQP matching problem Eq.(1).

Proof. In BPGM, since Ax = 1,x; > 0, we have

X; € [Oa 1]7Z¢Xi =n,

where n = |V| = |V’|'. Since ||x||3 = v = n, thus, we
have >, x; = Y, X2,
That is

>ixi(l

Since x; > 0and 0 < x; < 1, we have x; € {0,1}. O

_Xi) =0.

Property 2 When v = ||x*||3, where x*is the optimal
solution of relaxed problem Eq.(2), BPGM degenerates to
problem Eq.(2).

From Property 1 and 2, we can see that BPGM can be
regarded as a balanced model between the relaxed problem
Eq.(2) and original problem Eq.(1). This is one important
feature of BPGM model. Empirically, the discrete binary
level can be controlled by parameter v in BPGM model,
i.e., the larger ~, the more closely X (matrix form of x) ap-
proximates to a permutation matrix. Figure 1 shows some
examples of converged solution X under different -y values.

!For one-to-one matching problem, the matrix form X of x is a doubly-
stochastic matrix, i.e., Y, X;; = 1, Zj X;; = 1,X;; > 0. Thus we

have 3, Xi; =32, % = n.
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Figure 1. Demonstration of BPGM converged solutions X across different v values (|[V'| = n = 15).

Here, we can note that, as ~ increases, the converged so-
lution becomes more and more sparse. In particular, when
v = n = 15, the converged solution is exactly a permuta-
tion matrix.

3.3. Path-following strategy

Using BPGM, we can provide a path-following strat-
egy to optimize IQP matching problem (Eq.(1)) which
aims to alleviate weak local solution and obtain a better
local solution for non-convex problem [28, 26, 16]. In
order to do so, we first introduce Lemma 1 which guar-
antees the good starting point in our path-following process.

Lemma 1 There exists a parameter vy such that BPGM
with v = 7o has a global optimal solution.

Proof. First, we solve the following problem,

“4)

maxx ' W'x st Ax=1,x; >0
X

where W = W — [i,,,I, Lis a identity matrix, and

{

where (1., is the maximum eigenvalue of matrix W and € >
0 is a small value. Note that Eq.(4) is convex, thus we can
obtain its global optimum X* by using some optimization
algorithms, such as Frank-Wolfe algorithm [8]. Then, we
set parameter v as

0
Hm + €

Hm <0

Hom = fm =0

®)

Note that, X* is also the global optimum of BPGM model
with v = 7, i.e., we can obtain the global optimum for
BPGM problem with v = ~y. O

Based on by Lemma 1 and Property 1, we propose to
optimize IQP matching problem by iteratively optimizing a
series of the following BPGM problems

0 = [IK7]3.

max X'Wx st Ax=1,x;>0,[x]|2=7% (6)

where k =0,1,2---andyo <71 < --- < n.
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As shown in Lemma 1, when [|x||2 = 70, the problem
has a global optimal solution. When ||x||3 = n, the prob-
lem is equivalent to IQP matching problem (Eq.(1)) (Prop-
erty 1). Our path-following process starts with o and suc-
cessively tracks a path of solution of a series of BPGM
problems with different 7, where we solve BPGM problem
with ~; using previous solution X7, as the starting point.
By increasing vy gradually, the discrete matching constraint
can be imposed more and more strongly, and the algorithm
can obtain a discrete solution at convergence. For a specific
Yk, We optimize it using the proposed graduated projection
algorithm, as shown in §4 in detail. The general schema of
our path-following optimization is presented in Algorithm
1. From Property 2, we can note that, in real implement,
one can also use the continuous solutions X* of problem
Eq.(2) which are obtained from some other methods as the
starting point in our BPGM Algorithm 1.

Algorithm 1 BPGM based path-following algorithm
Input:  Affinity matrix W, graph size |V| = |V’| = n,
step size §
Qutput: Final discrete matching solution x*
1: Compute the global optimal solution X* of problem
Eq.(4) and set 7o = [|X"|3
2: Initialize X! = X k=1
while v, < n do
Optimize BPGM model using gradually projection

(Eq.(7)) (§4) with initialization Xfyk,l

R

X*

_ T
e = arg’r(nax x- Wx

st. Ax=1,x; >0, ||x[|3 = v

k=k+1

Ve =TYh—1+9
end while
X =x,

® W

Comparison with related works: Our path-following
strategy has some resemblance to the recent popular path-
following process used in graph matching [28, 26, 16].
These methods gradually change the objective from convex



to concave formulation to obtain discrete solution. Differ-
ently, in our strategy, starting from global solution of the
relaxed problem, it gradually changes the constraint from
nonnegative domain to discrete domain to obtain the desired
discrete solution. Also, the 5 norm constraint has been dis-
cussed in the previous work [22]. In work [22], the {5 norm
is used to simplify the objective. Differently, we study and
use it to encode the discrete constraint and derive a series of
relaxation problems.

4. Algorithm

In this section, we design a graduated projection algo-
rithm to solve the pr(ﬂaosed BPGM model (Eq.(3)). Let
Jgm(x) = xTWx and \,, defined as

|

where A, is the minimum eigenvalue of affinity matrix W.
Here, Xm is set to make matrix W = W + Xml positive def-
inite. The proposed algorithm updates the current solution
x* by iteratively solving the following projection problem,

0
[Am| + €

Am >0
Am <0

x*+1 = argmin ||v — Wx"||2
v

st. Av=1,|[v||? =~,v; > 0. (7)

The iteration starts with an initial x° and is repeated until
convergence.

From algorithm aspect, this projection process has some
resemblance to the work [25]. Differently, we further con-
sider the nonnegative constraints v; > 0. This nonnegative
constraints v; > 0 along with affine constraint Av = 1
are necessary for encoding the discrete binary constraint in
BPGM model, as discussed in §3.2. In the following, we
first present the convergence property of this update algo-
rithm, and then provide the detail computation of this pro-
jection problem.

4.1. Convergence analysis

Theorem 1 Under the update projection Eq.(7), the graph
matching objective function Jgm, = xTWx is monotoni-
cally increasing.

Proof. Similar to the proof of work [25], problem Eq.(7) is
equivalent to

Tk

x**1 = argmax viu* = arg max viwx* ()
v v
sit. Av=1,||v|3 =7,v; > 0.
This implies
T Wxk > Xk Wk, )
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Also, since W is a positive definite matrix, we have

xk“Tka“ + kaVNka - 2xk+1TV~ka
= (xF1 —x*")TW(xF+ — xF) > 0. (10)
Combing inequality Eq.(9) and Eq.(10), we conclude that
xFH1TWxk+1 5 xkTWxk | That is,

YW 4 XD s W LDk (1)
Note that x*+17 xk+1 = [[xF1|2 = |[x*[|2 = x*'xk = ~,
thus we have

xk"’lTWX’f'*'1 > kaka. (12)

This completes the proof.

4.2. Constraint projection
Here we solve the projection problem Eq.(7). We rewrite
problem Eq.(7) as

min|[v—ul2 s.t. Av=1]v|2=~,v;>0 (13)
v

where u = Wx*. We will use the Von-Neumann successive
projection method [17] to solve this problem. In order to do
so, we first define the following two sub-projections, i.e.,
the affine sub-projection

Py (v) = argmin ||v — u||§ st. Av=1, ||v||§ =1, (14)
v

and the convex sub-projection

Py(v) = argmin ||v —ul||? s.t.v; > 0. (15)
v

The process of Von-Neumann method [17] is to alterna-

tively conducts sub-projection P; and P, until convergence

to obtain the optimal solution for constraint projection prob-

lem Eq.(13).

In the following, we show that both problem P; and
P, have closed-from solution and thus can be solved
efficiently. For problem P, similar projection has been
proposed in work [25]. Here, we concerns a more general
case, i.e., ||v|]3 = 7. Similar to work [25], we have the
following,

Lemma 2 Problem Py has a closed-from optimal solution.
The optimal solution v* is

*

Pu
Vi=/v— ||ho|\§m + hy, (16)

whereP =T1—AT(AAT)"1A hg = AT(AAT) 1.



Proof. Indeed, the problem P; is equivalent to

Py(v) = argmaxviu s.t. Av=1]v|3=1.

v
First, it is easy to see that v = 4/~ — ||h0||§”lfﬁ is the
normalized projection of u onto the intersection space Av =
0 and ||V||3 = v — ||hg||3. Thus, v is the optimal solution of
the problem,

7)

V=argmaxviu s.t. Av=0,|v|3=~—|hol? (18)
v
Then, we can infer that v = v + h is the optimal solution
of problem Eq.(17), as shown in work [25]. Also, we can
see that the parameter y should to satisfy v > ||hg]|3, as
discussed before. [

Lemma 3 Problem P» has a closed-from optimal solution.
The optimal solution v* is

v = %(u+ ul). (19)

4.3. Computational complexity

The main computational complexity in each iteration of
the algorithm is on computing Wx* and solving the projec-
tion problem Eq.(13). Thus, the computational complexity
for each iteration is less than O(n?) + O(Nn?), where N
is average number of iterations on solving problem Eq.(13).
Empirically, the algorithm converges quickly and the aver-
age number of iterations IV is generally less than 150.

5. Experiments

In this section, we have applied our BPGM method to the
matching tasks including synthetic graph matching, feature
point matching using image sequences and feature match-
ing on real-world images. We have compared our BPGM
method with some other state-of-the-art methods including
SM [11], IPFP [12], SMAC [5], RRWM [3] and FGM [28].
We implemented IPFP with two versions: (1) IPFP-U that
is initialized by the uniform solution; (2) IPFP-S that is ini-
tialized by SM [11].

5.1. Synthetic graph matching

Our first experiment is based on synthetic random graph
data. Following the experimental setting [3], we first gen-
erated two random graphs, G and G, both of them contain
n;, inlier nodes. Then we added n,,,; outlier nodes in both
graphs. For each pair of nodes in G, the edge is randomly
generated according to the density p € [0, 1]. For each edge
in G, we assigned a random attribute r;; which is uniformly
distributed form O to 1. The corresponding edge r, ;, in G’
was perturbed by adding a random Gaussian type perturba-
tion noise N (0, o) to the value of r;;. For each noise level o

4406

70

-8 -FGM
60| ' =0- BPGM S
(0] ,'
£ 50} -
@) b
= 7’
'S 40f P
= ’,
2 57
o 30r ’
(@] ’
o bs
S 201 _-8 0
3 Ll o
t . s i
o _L-- . _.0"
G: . e==T == = L | L
16 18 20 22 24 26 28 30 32
Graph sizes

Figure 3. Comparison results on running times.

Of Moy t, We have generated 100 random graph pairs and then
computed the average performances including matching ac-
curacy and objective score. The matching accuracy is mea-
sured by the number of detected true matches divided by
the total number of ground truths, and the objective score is
computed by xT Wx of the IQP objective. The affinity ma-
trix W is computed by Wi 51 = exp(—(ri, —1r};)?/0.015).
Figure 2 summarizes the comparison results on matching
accuracy and objective score. As discussed before, com-
pared with RRWM [3], the main feature of our BPGM is
that it incorporates more the discrete binary constraint in op-
timization process. From Figure 2, we can note that BPGM
consistently returns higher objective score and matching ac-
curacy than RRWM [3] method, which clearly demonstrates
the benefits of discrete constraint in searching for the op-
timal solution for IQP matching problem. BPGM outper-
forms the discrete domain projection method IPFP [12], in-
dicating that BPGM can find a discrete solution more op-
timal than IPFP method. Also, BPGM performs slightly
better than FGM [28], which demonstrates the effectiveness
and robustness of BPGM method.

Our BPGM iteratively solves a series of problems us-
ing Path-following strategy and thus slower than some other
single optimization algorithms such as RRWM [3], SM [11]
and IPFP [12]. However, it is generally faster than previous
path-following algorithm. Figure 3 shows comparison of
running times between FGM [28] and BPGM. We can note
that, BPGM is faster than FGM [28].

5.2. Feature point matching across image sequence

Our second experiment is performed on feature match-
ing tasks on CMU “hotel” sequence dataset [2, 3]. For
this dataset, there are 101 images of a toy house cap-
tured from moving viewpoints. For each image, there ex-
ist about 30 landmark points which were manually marked
with known correspondences. For each image, the coordi-
nates of these landmark points were normalized to [0, 1].
We have matched all images spaced by 5, 10, 15 --- 75
and 95 frames and computed the average accuracy per sep-
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aration gap. For each image pair, the affinity matrix has with the results on the synthetic data experiments and fur-
been computed by W, 1,y = exp((rikfr; 1)2 /0.015), where ther demonstrates the effectiveness of the proposed BPGM
r;; is the Euclidean distance between two points. Figure 4 method.

summarizes the performance results with respect to the sep-

aration gaps on CMU image sequence dataset. It is noted 5.3. Real-world image matching

that BPGM outperforms the other methods in both matching

accuracy and objective score. This is generally consistent In this experiment, we first evaluate our BPGM method

on the image pairs (30 pairs) selected from Zurich Build-
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Figure 5. Comparison results on real-world image datasets.

ing Image Database (ZuBud) [18]. The candidate corre-
spondences have been generated using the SIFT descrip-
tor. Here, each feature in first image can match the six
closest features in the second image using the distance of
SIFT descriptor. The affinity between two correspondences
has been computed as W, 11 = exp(—(d;r, — dj;)?/1500),
where where d;;. is the Euclidean distance between the
feature points 4 and %, and similar to dj;. For all im-
age pairs in this dataset, the average performances includ-
ing true positive and false positive and relative objective
score [3] are computed. We compare our method with SM,
SMAC, IPFP and RRWM, because FGM method cannot
be directly used here. Figure 5 (a) shows the compari-
son results. Note that BPGM obtains better performance
than other compared methods on true positive, false posi-
tive and objective score, which demonstrates the effective-
ness and optimality of BPGM method on solving real-world
image feature matching problem. Then, we test our match-
ing method on the Pascal image dataset which consists of
30 pairs of car images and 20 pairs of motorbike images
selected from Pascal 2007 dataset [13, 28]. Each pair con-
tains 30-60 ground-truth correspondences. The coordinates
of the feature point were first normalized to [0, 1]. Here,
we generated complete graphs and each edge was assigned
by the Euclidean distance between two nodes. The affinity
between two correspondences was computed as W 1y =
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exp((rir — r;l)2/0.015), where r;i, 1}, are the Euclidean
distances between two points. Figure 5 (b) summarizes
the comparison results. BPGM generally performs better
than than other compared methods, which further demon-
strates the effectiveness of BPGM method on conducting
real-world image feature matching tasks.

6. Conclusions

In this paper, we first propose a new graph matching re-
laxation model, called Binary Constraint Preserving Graph
Matching (BPGM), which incorporates the discrete binary
mapping constraints via a {2 norm constraint. BPGM can be
regarded as a parameter-controlled balanced model between
the original IQP matching problem Eq.(1) and its nonnega-
tive relaxation Eq.(2). An effective projection algorithm has
been developed to solve the proposed BPGM model. The
convergence of the algorithm is theoretically guaranteed.
Based on BPGM, we also provide a new path-following
process to optimize IQP matching problem. Promising ex-
perimental results on several matching tasks show the effec-
tiveness and benefits of the proposed method.

Note that the path-following strategy and algorithm pro-
posed in this paper are not limited to graph matching prob-
lem only and can also be used in some other similar prob-
lems, such as MAP inference.
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