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Abstract

Due to its low storage cost and fast query speed, cross-

modal hashing (CMH) has been widely used for similarity

search in multimedia retrieval applications. However, most

existing CMH methods are based on hand-crafted features

which might not be optimally compatible with the hash-code

learning procedure. As a result, existing CMH methods

with hand-crafted features may not achieve satisfactory

performance. In this paper, we propose a novel CMH

method, called deep cross-modal hashing (DCMH), by

integrating feature learning and hash-code learning into

the same framework. DCMH is an end-to-end learning

framework with deep neural networks, one for each modal-

ity, to perform feature learning from scratch. Experiments

on three real datasets with image-text modalities show

that DCMH can outperform other baselines to achieve

the state-of-the-art performance in cross-modal retrieval

applications.

1. Introduction

Approximate nearest neighbor (ANN) search [1] plays a

fundamental role in machine learning and related applica-

tions like information retrieval. Due to its low storage cost

and fast retrieval speed, hashing has recently attracted much

attention from the ANN research community [17, 34, 9, 15,

26, 10, 29, 21, 28, 4]. The goal of hashing is to map the

data points from the original space into a Hamming space

of binary codes where the similarity in the original space

is preserved in the Hamming space. By using binary hash

codes to represent the original data, the storage cost can

be dramatically reduced. Furthermore, we can achieve a

constant or sub-linear time complexity for search by using

hash codes to construct an index [15]. Hence, hashing has

become more and more popular for ANN search in large-

scale datasets.

In many applications, the data can have multi-modalities.

For example, besides the image content, there also exists

text information like tags for the images in Flickr and many

other social websites. This kind of data is always called

multi-modal data. With the rapid growth of multi-modal

data in real applications, especially multimedia application-

s, multi-modal hashing (MMH) has recently been widely

used for ANN search (retrieval) on multi-modal datasets.

Existing MMH methods can be divided into two main

categories: mutli-source hashing (MSH) [30, 36, 32, 14]

and cross-modal hashing (CMH) [18, 35, 7, 22, 3]. The

goal of MSH is to learn hash codes by utilizing all the in-

formation from multiple modalities. Hence, MSH requires

that all the modalities should be observed for all data points

including query points and those in database. In practice,

the application of MSH is limited because in many cases it

is difficult to acquire all modalities of all data points. On

the contrary, the application scenarios of CMH are more

flexible than those of MSH. In CMH, the modality of a

query point is different from the modality of the points in

database. Furthermore, typically the query point has only

one modality and the points in the database can have one or

more modalities. For example, we can use text queries to

retrieve images in the database, and we can also use image

queries to retrieve texts in the database. Due to its wide

application, CMH has gained more attention than MSH.

Many CMH methods have recently been proposed.

Existing representative methods include cross

modality similarity sensitive hashing (CMSSH) [2],

cross view hashing (CVH) [18], multi-modal

latent binary embedding (MLBE) [39], co-

regularized hashing (CRH) [38], semantic correlation

maximization (SCM) [35], collective matrix factorization

hashing (CMFH) [7], semantic topic multi-modal

hashing (STMH) [33] and semantics preserving

hashing (SePH) [22]. Almost all these existing CMH

methods are based on hand-crafted features. One

shortcoming of these hand-crafted feature based methods

is that the feature extraction procedure is independent of

the hash-code learning procedure, which means that the

hand-crafted features might not be optimally compatible
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with the hash-code learning procedure. Hence, these

existing CMH methods with hand-crafted features may not

achieve satisfactory performance in real applications.

Recently, deep learning with neural networks [19, 16]

has been widely used to perform feature learning from

scratch with promising performance. There also exist

some methods which adopt deep learning for uni-modal

hashing [37, 23, 20, 40, 24]. These methods show that

end-to-end deep learning architecture is more compatible

for hashing learning. For the CMH setting, there also

appears one method, called deep visual-semantic hash-

ing (DVSH) [3], with deep neural networks for feature

learning1. However, DVSH can only be used for a special

CMH case where one of the modalities have to be temporal

dynamics.

In this paper, we propose a novel CMH method, called

deep cross-modal hashing (DCMH), for cross-modal re-

trieval applications. The main contributions of DCMH are

outlined as follows:

∙ DCMH is an end-to-end learning framework with deep

neural networks, one for each modality, to perform

feature learning from scratch.

∙ The hash-code learning problem is essentially a dis-

crete learning problem, which is difficult to learn.

Hence, most existing CMH methods solve this prob-

lem by relaxing the original discrete learning problem

into a continuous learning problem. This relaxation

procedure may deteriorate the accuracy of the learned

hash codes [25]. Unlike these relaxation-based meth-

ods, DCMH directly learns the discrete hash codes

without relaxation.

∙ Experiments on real datasets with image-text modali-

ties show that DCMH can outperform other baselines

to achieve the state-of-the-art performance in cross-

modal retrieval applications.

The rest of this paper is organized as follows. Section 2

introduces the problem definition of this paper. We present

our DCMH method in Section 3, including the model

formulation and learning algorithm. Experiments are shown

in Section 4. At last, we conclude our work in Section 5.

2. Problem Definition

2.1. Notation

Boldface lowercase letters like w are used to denote

vectors. Boldface uppercase letters like W are used to

denote matrices, and the element in the �th row and �th

1The first version of our DCMH method has been submitted to

arXiv [13] before this CVPR submission, which actually appeared earlier

than DVSH in public literature.

column of W is denoted as ��� . The �th row of W is

denoted as W�∗, and the �th column of W is denoted as

W∗� . W� is the transpose of W. We use 1 to denote

a vector with all elements being 1. tr(⋅) and ∥ ⋅ ∥�
denote the trace of a matrix and the Frobenius norm of

a matrix, respectively. sign(⋅) is an element-wise sign

function defined as follows:

sign(�) =

{

1 � ≥ 0,

−1 � < 0.

2.2. Cross-Modal Hashing

Although the method proposed in this paper can be easily

adapted to cases with more than two modalities, we only

focus on the case with two modalities here.

Assume that we have � training entities (data points),

each of which has two modalities of features. Without loss

of generality, we use image-text datasets for illustration in

this paper, which means that each training point has both

text modality and image modality. We use X = {x�}
�
�=1

to denote the image modality, where x� can be the hand-

crafted features or the raw pixels of image �. Moreover,

we use Y = {y�}
�
�=1 to denote the text modality, where

y� is typically the tag information related to image �. In

addition, we are also given a cross-modal similarity matrix

S. ��� = 1 if image x� and text y� are similar, and ��� = 0
otherwise. Here, the similarity is typically defined by some

semantic information such as class labels. For example, we

can say that image x� and text y� are similar if they share

the same class label. Otherwise, image x� and text y� are

dissimilar if they are from different classes.

Given the above training information X, Y and S, the

goal of cross-modal hashing is to learn two hash functions

for the two modalities: ℎ(�)(x) ∈ {−1,+1}� for the

image modality and ℎ(�)(y) ∈ {−1,+1}� for the text

modality, where � is the length of binary code. These two

hash functions should preserve the cross-modal similarity

in S. More specifically, if ��� = 1, the Hamming distance

between the binary codes b
(�)
� = ℎ(�)(x�) and b

(�)
� =

ℎ(�)(y�) should be small. Otherwise, if ��� = 0, the

corresponding Hamming distance should be large.

Here, we assume that both modalities of features for each

point in the training set are observed although our method

can also be easily adapted to other settings where some

training points have only one modality of features being

observed. Please note that we only make this assumption

for training points. After we have trained the model, we can

use the learned model to generate hash codes for query and

database points of either one modality or two modalities,

which exactly matches the setting of cross-modal retrieval

applications.

3233



Binary Code

Loss Function

S
Convolutions Pooling Convolutions Fully Connected

Q
u
an
tizatio

nTEXT

A black dog and a white dog

with brown spots are staring

at each other in the street

……

Fully Connected

basketball

cat

dog

spots

ball

street

tree

white

zoo

…

0

0

1

1

0

1

0

1

0

...

Bag of Words

.

Figure 1. The end-to-end deep learning framework of our DCMH model.

Table 1. Configuration of the CNN for image modality.

Layer Configuration

conv1 f. 64× 11× 11; st. 4× 4, pad 0, LRN,×2 pool

conv2 f. 265× 5× 5; st. 1× 1, pad 2, LRN,×2 pool

conv3 f. 265× 3× 3; st. 1× 1, pad 1

conv4 f. 265× 3× 3; st. 1× 1, pad 1

conv5 f. 265× 3× 3; st. 1× 1, pad 1,×2 pool

full6 4096

full7 4096

full8 Hash code length �

3. Deep Cross-Modal Hashing

In this section, we present the details about our deep

CMH (DCMH) method, including model formulation and

learning algorithm.

3.1. Model

The whole DCMH model is shown in Figure 1, which is

an end-to-end learning framework by seamlessly integrating

two parts: the feature learning part and the hash-code

learning part. During learning, each part can give feedback

to the other part.

3.1.1 Feature Learning Part

The feature learning part contains two deep neural network-

s, one for image modality and the other for text modality.

The deep neural network for image modality is a con-

volutional neural network (CNN) adapted from [5]. There

are eight layers in this CNN model. The first seven layers

are the same as those in CNN-F of [5]. The eighth layer

is a fully-connected layer with the output being the learned

image features.

Table 1 shows the detailed configuration of the CN-

N for image modality. More specifically, eight layers

are divided into five convolutional layers and three fully-

connected layers, which are denoted as “conv1 - conv5” and

“full6 - full8” in Table 1, respectively. Each convolutional

layer is described by several aspects:

∙ “f. ��� × ���� × ����” denotes the number of

convolution filters and their receptive field size.

∙ “st” denotes the convolution stride.

∙ “pad” denotes the number of pixels to add to each size

of the input.

∙ “LRN” denotes whether Local Response Normaliza-

tion (LRN) [16] is applied or not.

∙ “pool” denotes the down-sampling factor.

∙ The number in the fully connected layers, such as

“4096”, denotes the number of nodes in that layer. It is

also the dimensionality of the output at that layer.

All the first seven layers use the Rectified Linear Unit (Re-

LU) [16] as activation function. For the eighth layer, we

choose identity function as the activation function.

To perform feature learning from text, we first represent

each text y� as a vector with bag-of-words (BOW) repre-

sentation. And then the bag-of-words vectors are used as

the input to a deep neural network with two fully-connected

layers, denoted as “full1 - full2”. The detailed configuration

of the deep neural network for text is shown in Table 2,

where the configuration shows the number of nodes in each

layer. The activation function for the first layer is ReLU,

and that for the second layer is the identity function.

Table 2. Configuration of the deep neural network for text

modality.

Layer Configuration

full1 8192

full2 Hash code length �

Please note that the main goal of this paper is to show

that it is possible to design an end-to-end learning frame-

work for cross-modal hashing by using deep neural net-

works for feature learning from scratch. But how to design
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different neural networks is not the focus of this paper.

Other deep neural networks might also be used to perform

feature learning for our DCMH model, which will be leaved

for future study.

3.1.2 Hash-Code Learning Part

Let �(x�; ��) ∈ ℝ
� denote the learned image feature for

point �, which corresponds to the output of the CNN for

image modality. Furthermore, let �(y� ; ��) ∈ ℝ
� denote

the learned text feature for point �, which corresponds to the

output of the deep neural network for text modality. Here,

�� is the network parameter of the CNN for image modality,

and �� is the network parameter of the deep neural network

for text modality.

The objective function of DCMH is defined as follows:

min
B(�),B(�),��,��

� = −

�
∑

�,�=1

(���Θ�� − log(1 + �Θ�� ))

+ �(∥B(�) − F∥2� + ∥B(�) −G∥2� )

+ �(∥F1∥2� + ∥G1∥2� ) (1)

�.�. B(�) ∈ {−1,+1}�×�,

B(�) ∈ {−1,+1}�×�,

where F ∈ ℝ
�×� with F∗� = �(x�; ��), G ∈ ℝ

�×� with

G∗� = �(y� ; ��), Θ�� =
1
2F

�
∗�G∗� , B

(�)
∗� is the binary hash

code for image x�, B
(�)
∗� is the binary hash code for text y� ,

� and � are hyper-parameters.

The first term −
∑�

�,�=1(���Θ�� − log(1 + �Θ�� )) in (1)

is the negative log likelihood of the cross-modal similarities

with the likelihood function defined as follows:

�(��� ∣F∗�,G∗�) =

{

�(Θ��) ��� = 1

1− �(Θ��) ��� = 0

where Θ�� =
1
2F

�
∗�G∗� and �(Θ��) =

1

1+�
−Θ��

.

It is easy to find that minimizing this negative log likeli-

hood, which is equivalent to maximizing the likelihood, can

make the similarity (inner product) between F∗� and G∗�

be large when ��� = 1 and be small when ��� = 0. Hence,

optimizing the first term in (1) can preserve the cross-modal

similarity in S with the image feature representation F and

text feature representation G.

By optimizing the second term �(∥B(�)−F∥2�+∥B(�)−
G∥2� ) in (1), we can get B(�) = sign(F) and B(�) =
sign(G). Hence, we can consider F and G to be the con-

tinuous surrogate of B(�) and B(�), respectively. Because

F and G can preserve the cross-modal similarity in S, the

binary hash codes B(�) and B(�) can also be expected

to preserve the cross-modal similarity in S, which exactly

matches the goal of cross-modal hashing.

The third term �(∥F1∥2� + ∥G1∥2� ) in (1) is used to

make each bit of the hash code be balanced on all the

training points. More specifically, the number of +1 and

that of −1 for each bit on all the training points should be

almost the same. This constraint can be used to maximize

the information provided by each bit.

In our experiment, we find that better performance can

be achieved if the binary codes from the two modalities are

set to be the same for the same training points. Hence, we

set B(�) = B(�) = B. Then, the problem in (1) can be

transformed to the following formulation:

min
B,��,��

� = −
�
∑

�,�=1

(���Θ�� − log(1 + �Θ�� ))

+ �(∥B− F∥2� + ∥B−G∥2� )

+ �(∥F1∥2� + ∥G1∥2� ) (2)

�.�. B ∈ {−1,+1}�×�.

This is the final objective function of our DCMH for

learning.

From (2), we can find that the parameters of the deep

neural networks (�� and ��) and the binary hash code (B)

are learned from the same objective function. That is to

say, DCMH integrates both feature learning and hash-code

learning into the same deep learning framework.

Please note that we only make B(�) = B(�) for the train-

ing points. After we have learned the problem in (2), we

still need to generate different binary codes b
(�)
� = ℎ(�)(x�)

and b
(�)
� = ℎ(�)(y�) for the two different modalities of the

same point � if point � is a query point or a point from the

database rather than a training point. This will be further

illustrated in Section 3.3.

3.2. Learning

We adopt an alternating learning strategy to learn ��,

�� and B. Each time we learn one parameter with the

other parameters fixed. The whole alternating learning

algorithm for DCMH is briefly outlined in Algorithm 1, and

the detailed derivation will be introduced in the following

content of this subsection.

3.2.1 Learn ��, with �� and B Fixed

When �� and B are fixed, we learn the CNN parameter ��
of the image modality by using a back-propagation (BP)

algorithm. As most existing deep learning methods [16], we

utilize stochastic gradient descent (SGD) to learn �� with

the BP algorithm. More specifically, in each iteration we

sample a mini-batch of points from the training set and then

carry out our learning algorithm based on the sampled data.

In particular, for each sampled point x�, we first compute

the following gradient:
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∂�

∂F∗�

=
1

2

�
∑

�=1

(�(Θ��)G∗� − ���G∗�)

+ 2�(F∗� −B∗�) + 2�F1. (3)

Then we can compute ∂�
∂��

with ∂�
∂F∗�

by using the chain

rule, based on which BP can be used to update the parameter

��.

3.2.2 Learn �� , with �� and B Fixed

When �� and B are fixed, we also learn the neural network

parameter �� of the text modality by using SGD with a BP

algorithm. More specifically, for each sampled point y� , we

first compute the following gradient:

∂�

∂G∗�

=
1

2

�
∑

�=1

(�(Θ��)F∗� − ���F∗�)

+ 2�(G∗� −B∗�) + 2�G1. (4)

Then we can compute ∂�
∂��

with ∂�
∂G∗�

by using the chain

rule, based on which BP can be used to update the parameter

�� .

3.2.3 Learn B, with �� and �� Fixed

When �� and �� are fixed, the problem in (2) can be

reformulated as follows:

max
B

tr(B� (�(F+G))) = tr(B�V) =
∑

�,�

������

�.�. B ∈ {−1,+1}�×�,

where V = �(F+G).
It is easy to find that the binary code ��� should keep the

same sign as ��� . Therefore, we have:

B = sign(V) = sign(�(F+G)). (5)

3.3. Out-of-Sample Extension

For any point which is not in the training set, we can

obtain its hash code as long as one of its modalities (image

or text) is observed. In particular, given the image modality

x� of point �, we can adopt forward propagation to generate

the hash code as follows:

b(�)
� = ℎ(�)(x�) = sign(�(x�; ��)).

Similarly, if point � only has the text modality y�, we

can also generate the hash code b
(�)
� as follows:

b(�)
� = ℎ(�)(y�) = sign(�(y�; ��)).

Hence, our DCMH model can be used for cross-modal

search where the query points have one modality and the

points in database have the other modality.

Algorithm 1 The learning algorithm for DCMH.

Input: Image set X, text set Y, and cross-modal similarity

matrix S.

Output: Parameters �� and �� of the deep neural networks, and

binary code matrix B.

Initialization

Initialize neural network parameters �� and �� , mini-batch size

�� = �� = 128, and iteration number �� = ⌈�/��⌉, �� =
⌈�/��⌉.

repeat

for ���� = 1, 2, ⋅ ⋅ ⋅ , �� do

Randomly sample �� points from X to construct a mini-

batch.

For each sampled point x� in the mini-batch, calculate

F∗� = �(x�; ��) by forward propagation.

Calculate the derivative according to (3).

Update the parameter �� by using back propagation.

end for

for ���� = 1, 2, ⋅ ⋅ ⋅ , �� do

Randomly sample �� points from Y to construct a mini-

batch.

For each sampled point y� in the mini-batch, calculate

G∗� = �(y� ; ��) by forward propagation.

Calculate the derivative according to (4).

Update the parameter �� by using back propagation.

end for

Learn B according to (5).

until a fixed number of iterations

4. Experiment

We carry out experiments on image-text datasets to veri-

fy the effectiveness of DCMH. DCMH is implemented with

the open source deep learning toolbox MatConvNet [31] on

a NVIDIA K80 GPU server.

4.1. Datasets

Three datasets, MIRFLICKR-25K [12], IAPR TC-12 [8]

and NUS-WIDE [6], are used for evaluation.

The original MIRFLICKR-25K dataset [12] consists of

25,000 images collected from Flickr website. Each image

is associated with several textual tags. Hence, each point

is a image-text pair. We select those points which have at

least 20 textual tags for our experiment. The text for each

point is represented as a 1386-dimensional bag-of-words

vector. For the hand-crafted feature based method, each

image is represented by a 512-dimensional GIST feature

vector. Furthermore, each point is manually annotated with

one of the 24 unique labels.

The IAPR TC-12 dataset [8] consists of 20,000 image-

text pairs which are annotated using 255 labels. We use the

entire dataset for our experiment. The text for each point

is represented as a 2912-dimensional bag-of-words vector.

For the hand-crafted feature based method, each image is

represented by a 512-dimensional GIST feature vector.
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The NUS-WIDE dataset [6] contains 260,648 web im-

ages, and some images are associated with textual tags.

It is a multi-label dataset where each point is annotated

with one or multiple labels from 81 concept labels. We

select 195,834 image-text pairs that belong to the 21 most

frequent concepts. The text for each point is represented as

a 1000-dimensional bag-of-words vector. The hand-crafted

feature for each image is a 500-dimensional bag-of-visual

words (BOVW) vector.

For all datasets, the image � and text � are considered to

be similar if point � and point � share at least one common

label. Otherwise, they are considered to be dissimilar.

4.2. Evaluation Protocol and Baseline

4.2.1 Evaluation Protocol

For MIRFLICKR-25K and IAPR TC-12 datasets, we ran-

domly sample 2,000 data points as the test (query) set and

the remaining points as the retrieval set (database). For

NUS-WIDE dataset, we take 2,100 data points as the test

set and the rest as the retrieval set. Moreover, we sample

10,000 data points from the retrieval set as training set

for MIRFLICKR-25K and IAPR TC-12. For NUS-WIDE

dataset, we sample 10,500 data points from the retrieval

set as training set. The ground-truth neighbors are defined

as those image-text pairs which share at least one common

label.

For hashing-based retrieval, Hamming ranking and hash

lookup are two widely used retrieval protocols [25]. We also

adopt these two protocols to evaluate our method and other

baselines. The Hamming ranking protocol ranks the points

in the database (retrieval set) according to their Hamming

distances to the given query point, in an increasing order.

Mean average precision (MAP) [25] is the widely used

metric to measure the accuracy of the Hamming ranking

protocol. The hash lookup protocol returns all the points

within a certain Hamming radius away from the query point.

The precision-recall curve is the widely used metric to

measure the accuracy of the hash lookup protocol.

4.2.2 Baseline

Six state-of-the-art cross-modal hashing methods are

adopted as baselines for comparison, including SePH [22],

STMH [33], SCM [35], CMFH [7], CCA [11] and

DVSH [3]. Since DVSH can only be used for a special

CMH case where one of the modalities have to be temporal

dynamics, we compare DCMH with DVSH only on IAPR

TC-12 dataset where the original texts are sentences

which can be treated as temporal dynamics. The texts

in MIRFLICKR-25K and NUS-WIDE are tags which are

not suitable for DVSH. Please note that the texts are

represented as BOW vectors for all the evaluated methods

except DVSH.

Source codes of SePH, STMH and SCM are kindly pro-

vided by the corresponding authors. While for CMFH and

CCA whose codes are not available, we implement them

carefully by ourselves. SePH is a kernel-based method, for

which we use RBF kernel and take 500 randomly selected

points as kernel bases by following its authors’ suggestion.

In SePH, the authors propose two strategies to construct

the hash codes for retrieval (database) points according to

whether both modalities of a point are observed or not.

However, in this paper we only use one modality for the

database (retrieval) points2, because the focus of this paper

is on cross-modal retrieval. All the other parameters for all

baselines are set according to the suggestion of the original

papers of these baselines.

For DCMH, we use a validation set to choose the hyper-

parameters � and �, and find that good performance can be

achieved with � = � = 1. Hence, we set � = � = 1 for

DCMH. We exploit the CNN-F network [5] pre-trained on

ImageNet dataset [27] to initialize the first seven layers of

the CNN for image modality. All the other parameters of the

deep neural networks in DCMH are randomly initialized.

The input for the image modality is the raw pixels, and

that for the text modality is the BOW vectors. We fix the

mini-batch size to be 128 and set the iteration number of

the outer-loop in Algorithm 1 to be 500. The learning

rate is chosen from 10−6 to 10−1 with a validation set.

All experiments are run for five times, and the average

performance is reported.

4.3. Accuracy

4.3.1 Hamming Ranking

The MAP results for DCMH and other baselines with hand-

crafted features on MIRFLICKR-25K, IAPR TC-12 and

NUS-WIDE datasets are reported in Table 3. Here, “� → � ”

denotes the case where the query is image and the database

is text, and “� → �” denotes the case where the query is

text and the database is image. We can find that DCMH

can outperform all the other baselines with hand-crafted

features.

To further verify the effectiveness of DCMH, we exploit

the CNN-F deep network [5] pre-trained on ImageNet

dataset, which is the same as the initial CNN of the image

modality in DCMH, to extract CNN features. All the

baselines are trained based on these CNN features. The

MAP results for DCMH and other baselines with CNN

features on three datasets are reported in Table 4. We

can find that DCMH can outperform all the other baselines

except SePH for image to text retrieval on NUS-WIDE.

2For both SePH and DCMH, the accuracy by using both modalities for

database points is typically higher than that by using only one modality

for database points. DCMH can still outperform SePH for cases with both

modalities for database points. This result is omitted in this paper due to

space limitation.
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Table 3. MAP. The best accuracy is shown in boldface. The baselines are based on hand-crafted features.

Task Method
MIRFLICKR-25K IAPR TC-12 NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DCMH 0.7410 0.7465 0.7485 0.4526 0.4732 0.4844 0.5903 0.6031 0.6093

SePH 0.6573 0.6603 0.6616 0.4112 0.4158 0.4203 0.4787 0.4869 0.4888

� → �
STMH 0.5921 0.5950 0.5980 0.3580 0.3732 0.3819 0.3973 0.4082 0.4153

SCM 0.6290 0.6404 0.6480 0.3833 0.3898 0.3878 0.4650 0.4714 0.4822

CMFH 0.5818 0.5808 0.5805 0.3683 0.3734 0.3786 0.3568 0.3624 0.3661

CCA 0.5695 0.5663 0.5641 0.3345 0.3254 0.3193 0.3414 0.3336 0.3282

DCMH 0.7827 0.7900 0.7932 0.5185 0.5378 0.5468 0.6389 0.6511 0.6571

SePH 0.6480 0.6521 0.6545 0.4024 0.4074 0.4131 0.4489 0.4539 0.4587

� → �
STMH 0.5802 0.5846 0.5855 0.3445 0.3570 0.3690 0.3607 0.3738 0.3842

SCM 0.6195 0.6302 0.6366 0.3698 0.3734 0.3696 0.4370 0.4428 0.4504

CMFH 0.5787 0.5774 0.5784 0.3619 0.3687 0.3769 0.3623 0.3670 0.3723

CCA 0.5690 0.5659 0.5639 0.3340 0.3255 0.3197 0.3392 0.3320 0.3272

Table 4. MAP. The best accuracy is shown in boldface. The baselines are based on CNN-F features.

Task Method
MIRFLICKR-25K IAPR TC-12 NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DCMH 0.7410 0.7465 0.7485 0.4526 0.4732 0.4844 0.5903 0.6031 0.6093

SePH 0.7123 0.7194 0.7232 0.4442 0.4563 0.4639 0.6037 0.6136 0.6211

� → �
STMH 0.6132 0.6219 0.6274 0.3775 0.4002 0.4130 0.4710 0.4864 0.4942

SCM 0.6851 0.6921 0.7003 0.3692 0.3666 0.3802 0.5409 0.5485 0.5553

CMFH 0.6377 0.6418 0.6451 0.4189 0.4234 0.4251 0.4900 0.5053 0.5097

CCA 0.5719 0.5693 0.5672 0.3422 0.3361 0.3300 0.3604 0.3485 0.3390

DCMH 0.7827 0.7900 0.7932 0.5185 0.5378 0.5468 0.6389 0.6511 0.6571

SePH 0.7216 0.7261 0.7319 0.4423 0.4562 0.4648 0.5983 0.6025 0.6109

� → �
STMH 0.6074 0.6153 0.6217 0.3687 0.3897 0.4044 0.4471 0.4677 0.4780

SCM 0.6939 0.7012 0.7060 0.3453 0.3410 0.3470 0.5344 0.5412 0.5484

CMFH 0.6365 0.6399 0.6429 0.4168 0.4212 0.4277 0.5031 0.5187 0.5225

CCA 0.5742 0.5713 0.5691 0.3493 0.3438 0.3378 0.3614 0.3494 0.3395

4.3.2 Hash Lookup

In the hash lookup protocol, we can compute the precision

and recall for the returned points given any Hamming

radius. By varying the Hamming radius from 0 to � with

a stepsize 1, we can get the precision-recall curve.

Figure 2 shows the precision-recall curve with code

length 16 on three datasets, where the first two sub-figures

are based on hand-crafted features and the last two sub-

figures are based on CNN-F features for baselines in each

row of the figures. We can find that DCMH can dramatically

outperform the baselines for both hand-crafted features and

CNN-F features. Our DCMH can also achieve the best

performance on other cases with different values of code

length, such as 32 bits and 64 bits. Those results are omitted

due to space limitation.

4.4. Comparison with DVSH

Since the source code of DVSH is not publicly available

and it is also difficult to re-implement DVSH, we adopt

the same experimental setting as that in DVSH [3] to

evaluate DCMH and directly use the result in DVSH [3]

Table 5. Top-500 MAP on IAPR TC-12 dataset.

Task Method 16 bits 32 bits 64 bits

� → �
DCMH 0.5780 0.6061 0.6310

DVSH 0.5696 0.6321 0.6964

� → �
DCMH 0.6594 0.6744 0.6905

DVSH 0.6037 0.6395 0.6806

for comparison. The top-500 MAP result on IAPR TC-12

dataset is listed in Table 5. Please note that the text input for

DVSH is sentences and we represent the sentences as BOW

vectors for DCMH. We can find that DCMH can outperform

DVSH in most cases.

4.5. Sensitivity to Parameters

We explore the influence of the hyper-parameters � and

�. Figure 3 shows the MAP results on MIRFLICKR-25K

dataset with different values of � and �, where the code

length is 16 bits. We can see that DCMH is not sensitive to

� and � with 0.01 < � < 2 and 0.01 < � < 2.
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Figure 2. Precision-recall curves on three datasets. The code length is 16.
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Figure 3. The influence of hyper-parameters.

4.6. Further Analysis

To further verify the effectiveness of feature learning, we

evaluate some variants of DCMH, i.e., DCMH-I, DCMH-

T, DCMH-IT. DCMH-I denotes the variant without image

feature learning, in which we fix the parameters of the first

seven layers for image modality during training. DCMH-T

denotes the variant without text feature learning, in which

we replace the deep neural network of text modality as a

linear projection. DCMH-IT denotes the variant without

both image and text feature learning.

Figure 4 reports the MAP results on IAPR TC-12. We

can find that DCMH can achieve higher accuracy than

DCMH-I, DCMH-T and DCMH-IT, which demonstrates

the importance of simultaneous hash-code learning and

feature learning.
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Figure 4. MAP on IAPR TC-12.

5. Conclusion

In this paper, we have proposed a novel hashing method,

called DCMH, for cross-modal retrieval applications.

DCMH is an end-to-end deep learning framework

which can perform feature learning and hash-code

learning simultaneously. Experiments on three datasets

show that DCMH can significantly outperform other

baselines to achieve the state-of-the-art performance in real

applications.
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