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Abstract

Understanding the camera wearer’s activity is central to

egocentric vision, yet one key facet of that activity is in-

herently invisible to the camera—the wearer’s body pose.

Prior work focuses on estimating the pose of hands and

arms when they come into view, but this 1) gives an incom-

plete view of the full body posture, and 2) prevents any pose

estimate at all in many frames, since the hands are only

visible in a fraction of daily life activities. We propose to

infer the “invisible pose” of a person behind the egocen-

tric camera. Given a single video, our efficient learning-

based approach returns the full body 3D joint positions for

each frame. Our method exploits cues from the dynamic

motion signatures of the surrounding scene—which change

predictably as a function of body pose—as well as static

scene structures that reveal the viewpoint (e.g., sitting vs.

standing). We further introduce a novel energy minimiza-

tion scheme to infer the pose sequence. It uses soft pre-

dictions of the poses per time instant together with a non-

parametric model of human pose dynamics over longer win-

dows. Our method outperforms an array of possible alter-

natives, including typical deep learning approaches for di-

rect pose regression from images.

1. Introduction

Wearable “egocentric” cameras are steadily gaining

traction—thanks not only to smaller devices, but also the

increasing promise of vision and learning technology to

transform applications. Head- or chest-mounted cameras,

initially perceived as the purview of hard-core life loggers,

are now valuable tools for many others. Law enforcement

agencies across the US are using bodycams in an effort to

promote transparency with the public. Psychologists lever-

age wearable cameras on infants to gain insights into mo-

tor and linguistic development [27]. In healthcare, ego-

centric vision could move daily-living activity monitoring

required for motor rehabilitation from the hospital to the

home [16, 21].

For many applications, the important vision problems

(a) (b) (c)

Figure 1. Our goal is to infer the full 3D body pose of a person

using the video captured from a single chest-mounted camera. (a):

Person with a chest-mounted camera. (b): Egocentric view. (c):

Predicted body pose using only video from view (b).

center around inferring the camera wearer’s behavior, i.e.,

his activity and interactions with people and objects. As

such, the ability to infer the camera wearer’s 3D body pose

is of great interest. However, doing so is challenging be-

cause most body parts are invisible to the egocentric cam-

era!

Existing work estimates a person’s pose by analyzing

the body parts visible in his first-person camera. Naturally,

this makes them restricted to the arms and hands [4, 11,

12, 13, 20]. However, from the view of a chest-mounted

wide-angle camera, arms and legs are often not visible in

daily life activity. For example, in our ground truth videos

in which people perform normal activities in public places

such as labs and offices, the chance to view arms and legs

is less than 10%. To estimate full body pose, one creative

approach [1] is to fasten multiple cameras to all the person’s

joints, then use structure from motion (SfM) to localize the

cameras and hence the joints. However, this comes with the

disadvantages of requiring 1) obtrusive multi-camera equip-

ment not amenable to everyday casual use and 2) intensive

computational requirements (hours to days of processing to

infer pose for a minute of video [1]).

We ask the question: Is it possible to estimate the “invis-

ible” human body pose behind a single egocentric camera?

(See Fig. 1). Despite the fact that we cannot see the per-

son behind the body-mounted camera, the video seen from

his point of view provides clues that may well be learnable.

In particular, we expect clues from two sources: dynamic

motion signatures and static scene structure. First, there

exist motion signatures for pose changes that are resistant

to scene changes. For example, the act of standing up has a

certain motion pattern as seen by the ego-camera, no mat-
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ter if he stands up from a chair in a restaurant or a bench

at the park. In fact, first-person games use these effects to

guide the virtual camera, giving gamers the impression they

are moving the same way as the virtual character. Second,

static scene structure sets the context and offers a prior on

likely poses. For example, the pose of typing on a keyboard

occurs in similar views showing a monitor or laptop, even

though the hands need not be visible. Or, if we see a table in

front of us with a specific distance and angle, we can predict

whether we are standing or sitting in front of the table.

Of course, not all poses are distinguishable from egocen-

tric video; some will be aliased, meaning different poses can

produce the same visual signal. Our intent is to leverage the

typical structure linking how the scene changes to how the

body is posed. When there is ambiguity, we infer a pose

with high probability from the egocentric view.

We introduce a novel approach to predict first-person

body pose, given an egocentric video sequence. As training

data, our approach takes videos from a wearable camera,

where each frame is labeled with ground truth pose param-

eters. The pose is parameterized by 25 3D joint positions,

i.e., a “stick figure” representation, and is obtained with

Kinect during training. At test time, we are given a novel

RGB egocentric video from a new user, and must infer the

sequence of 3D body poses based on the single wearable

camera video alone.

Our learning approach capitalizes on the clues described

above, while also incorporating longer term pose dynam-

ics. First, classifiers based on dynamic and static cues es-

timate the probability of each of a (large) set of quantized

poses per frame. Then, we jointly infer poses for a longer

sequence based on those initial predictions together with a

non-parametric model of pose dynamics. The latter is used

to identify a least-cost “pose path” through exemplar train-

ing video. This step regularizes the initial estimates with

priors about how people can move, and is efficiently opti-

mized with dynamic programming. The whole approach is

fast—about 0.5 seconds per frame.

We validate our method quantitatively on videos from

ten camera wearers performing daily activity poses, as well

as qualitatively on challenging videos in unconstrained en-

vironments. The experiments show the proposed method

gives robust results. It greatly outperforms several alterna-

tive methods, including a CNN regression method modeled

after the third-person DeepPose [5] approach retrained for

our setting.

In summary, our contributions are: (1) We tackle a new

problem that estimates the wearer’s “invisible” pose from

a single egocentric video; (2) We propose a novel global

optimization method that leverages both learned dynamic

and scene classifiers and the pose coupling over a long time

span; and (3) We benchmark several methods, including

hand crafted features and CNN learned features, for our

task.

2. Related work

We deal with a new problem of predicting invisible hu-

man poses from a single egocentric video stream.

Third-person pose Pose estimation from images and

video has been studied for decades [7]. Existing work tack-

les pose estimation from a third-person viewpoint, where

the person is entirely visible. In contrast, we consider es-

timating the body pose of the person behind the camera;

his body parts are rarely visible, if at all. So, existing pose

estimation methods are not applicable to our scenario.

Some third-person pose methods use regression to map

from images to pose parameters (e.g., [5, 8, 9, 6]), including

the recent DeepPose work using convolutional neural net-

works [5]. At a glance, a direct regression approach seems

like a possible solution for our problem. Even though the

body is not visible, we want to learn the connection between

what the person sees and how his body is posed. However,

a naive application of that idea is inadequate, since 1) even

large training sets cannot fully capture the possible variation

in environments, poses, and movements, and 2) the relevant

egocentric visual signals are inherently temporal. The pro-

posed method learns the connection between pose and dy-

namic and static cues from snippets of video, and enforces

long term constraints between estimated poses. Our exper-

iments show this yields superior results to a DeepPose-like

scheme applied to our task.

First-person pose Limited research explores ways to in-

fer the body pose of an egocentric camera wearer [4, 1, 13,

2, 11, 12]. Given interest in understanding handled objects,

some methods are dedicated to estimating pixel-wise 2D

maps of the camera wearer’s hands [13, 11, 12]. Recent

work also investigates how depth data from an egocentric

RGBD camera can help estimate shoulder, arm, and hand

poses in 3D [4], and how specially designed head mounted

stereo rigs can be used for markerless mocap [2]. These

lines of work assume the body parts are visible in the ego-

centric view. In contrast, we aim to estimate the full body

pose of the person (e.g., 25 joint positions), and we do so

even when the body is entirely out of view of the egocentric

camera.

In this sense, our goal is more related to the “inside-

out” mocap approach of [1]. In that work, 16 or more

body-mounted cameras are placed on a person’s joints, and

then each camera’s 3D location is recovered via structure

from motion (SfM). There are important differences with

our technical approach and motivation. First, rather than

16+ cameras attached at joints worn expressly for the pur-

pose of a mocap session [1], we employ a single chest-

mounted camera—the sort typical wearable-computer-users

may wear anyway while going about daily activities. Thus,

the SfM approach cannot be directly applied to our setting,

and our system requirements are more lightweight and flex-
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ible. Secondly, our approach is novel. Whereas the mocap

method employs a geometric solution to localize the joints,

we devise a learning solution that discovers the connection

between how the egocentered scene changes as a function

of body pose. The possible disadvantage of our method

relative to [1] is our need for representative training data,

though the data is relatively easy to collect, given that it re-

quires no manual annotations (see Sec. 3.1).

Egocentric activity analysis Most recent egocentric vi-

sion work studies activity recognition [14, 17, 21, 22, 23,

24, 15] or object recognition [20, 13]. Once again, the

focus is largely on visible activity happening in front of

the camera—particularly hand-object manipulation activi-

ties. However, some work shows that ego-actions (like rid-

ing a bus, snowboarding, etc.) are detectable from the scene

video [23, 17], and the walking style of the camera wearer

can even aid person identification [10] or visual SLAM

[18, 19]. We consider whether ego-video can go further

to reveal full 3D body pose. While we also use movement

information, our method does not infer action classes. For

instance, rather than recognize the current action as “walk-

ing”, our approach will produce the detailed pose across

the walking cycle. Thus, our method provides a mid-level

representation—explicit pose—which could be further used

in high-level activity recognition or other applications.

3. Method

We estimate 3D human poses from a chest-mounted

camera. Predicting human poses from egocentric video is

a regression problem: from the input video, we estimate the

3D position of each body joint. Next, we show how to com-

pute instantaneous pose estimates using local features and

full sequence estimation using our pose path method.

3.1. Pose parameterization and data collection

We use a Kinect V2 sensor to capture the ground truth

human poses. Pose is represented as the 3D positions of

25 body joints defined in the MS Kinect SDK. The pre-

dicted 3D pose is positioned in a local coordinate system

as shown in Fig. 2. The origin is at the center between two

hip joints. The first axis is parallel to the ground and points

to the wearer’s facing direction. The second one is paral-

lel to the ground and the vertical plane passing the shoulder

line. The third axis is perpendicular to the ground. The joint

coordinates are normalized by five times the shoulder width

of the subject. Note, poses are not aligned to the torso. The

local coordinate system allows the torso to lean in any di-

rection or rotate along the axis.

We choose chest-mounted (vs. head-mounted) because it

provides a stable view unaffected by constant head bobbles.

The frame rate of both the Kinect sensor and the ego-camera

is 30Hz. The two are synchronized using time stamps. We

capture a total of 18 ground truth videos, in which 3 videos
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Figure 2. Example poses and the corresponding dynamic features

for the surrounding 1-second video segment. Similar poses often

have similar dynamic features (see first two examples), and dis-

tinct poses have different features. We see that global scene mo-

tion gives valuable cues about the coarse body poses of the wearer.

are for training and the rest for testing. Ten subjects with

different height, body shape, and gender are involved in data

collection. They are instructed to perform normal daily ac-

tivities in public places such as offices, labs, and libraries.

The dataset is collected indoors due to the limitation of the

Kinect V2 sensor. However, our approach is general, and

we demonstrate outdoor tests as well.

3.2. Instantaneous pose estimation

We first estimate the probability of poses at each time

instant. Let function f(v, p) be the probability of video

segment v corresponding to pose p ∈ P , where P is the

set of all possible poses in the training sequence. Instead

of directly computing f , we train a classifier to obtain the

function g(v, c) to extract the probability of video segment

v matching the pose cluster c. We apply k-means to the

vectors of joints from the training data; each cluster cen-

ter is a pose cluster. The mapping f is approximated as

f(v, p) = g(v, c(p)), where c(p) is the pose cluster identity

of a pose p.

3.2.1 Dynamic clues

Egocentric video shows different dynamic patterns for dif-

ferent movements of the wearer. We extract the sequence of

homographies between successive video frames to quantify

the video dynamics. Strictly speaking, the homography is

scene invariant only when the camera is purely rotating. It

is still a body movement representation that is resistant to

scene changes when both rotation and translation are in-

volved. This allows us to use very few training data to

obtain good classifiers (as opposed to attempting to learn

solely appearance-specific cues, which would be overly re-

strictive to a given training environment).

To compute a homography between frames, we use op-

tical flow to find the point correspondence. A least squares

method is used to estimate the homographies using SVD.

The elements in each homography are then normalized by

the top-left corner element. The stack of normalized homo-

graphies over a fixed time interval (one second), is used to
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Figure 3. Samples from the training dataset of sitting (Row 1) and

standing (Row 2).

represent the camera movement. Fig. 2 illustrates how the

proposed feature helps differentiate poses of the wearer.

Using the above feature, we train a random forest to pre-

dict the probability of the pose at each instant of the input

video belonging to each of the pose clusters. The dynamic

feature classifier gives reasonable results. However, the re-

sult is ambiguous when there is little motion in the egocen-

tric video. To resolve this issue, we also use static scene

structure (context), as defined next.

3.2.2 Static scene structure clues

Apart from dynamics of the scene, the static scene structure

also indicates likely human poses. In everyday life, many

human poses can be classified as standing-like or sitting-

like, e.g., walking is standing-like and kneeling is sitting-

like. Indeed, in the dataset in [17], roughly 95% of frames

can be classified as standing-like or sitting-like.

We collect a training dataset containing 5,530 standing

images and 2,946 sitting images in different indoor environ-

ments from subjects of different heights. Fig. 3 shows sam-

ple images from the dataset. We train a CNN classifier to

categorize each image as representing a sitting- or standing-

like pose by fine tuning the last three layers of the fully con-

nected network in AlexNet [26]; the learning rates of other

layers are set to zero. The two-class classifier generalizes

well. On our ground truth dataset with 71,623 egocentric

video frames and poses from the Kinect V2, the sitting-like

and standing-like image classification accuracy is 65.09%
and 77.97%, respectively. The dataset is composed of 80%
images with standing-like poses.

3.2.3 Local cost of pose estimation

Thus far we have provided two ways to quantify the pose

probability for each frame, using dynamic and static cues.

These instantaneous measurements alone are not sufficient

to give the final output of our system, however. As we will

explain in Sec. 3.3, errors can be corrected in a global opti-

mization stage where we infer the entire pose path over the

entire sequence.

In particular, the two classification outputs above serve

as unary terms of an energy function for the longer se-

quence of surrounding frames (1-3 minutes per clip in our

dataset). Let xi,n be an indicator variable, which is 1 if

at time n the pose i is predicted. Here i is a pose in P .

P is the set of all the poses, represented as joint position

vectors, in the training sequences. Let ei,n be the cost of

predicting pose i at time n. The overall unary cost term

is U =
∑

n=1..N,i∈P ei,nxi,n, where N is the number of

frames. We define the cost ei,n = 1 − g(vn, c(i)) + di,n,

where g is the probability of dynamic feature vn being clas-

sified as pose cluster c(i). We use di,n to penalize the se-

lection of pose i at time n if there is large chance that the

the pose class of i and the static scene estimation mismatch.

Specifically, we define d as: di,n = δ if hn > τ and ĝ(i)
is standing, or hn < 1 − τ and ĝ(i) is sitting, and other-

wise 0. Here hn is the probability of sitting from the static

scene feature at time n. The ĝ indicates whether pose i in

the training sequence is sitting or standing-like.

Simply optimizing the local cost is not sufficient. With-

out considering the inter-frame pose constraints the pose

predictions can be noisy. Another issue is the resolution.

Since the local pose cost is estimated from the probability

of quantized poses, it tends to be a staircase function over

time. In the following, we show how to solve both of these

problems by optimizing poses over a long time span.

3.3. Non-parametric prior on pose dynamics

Next we show how we optimize the final sequence of

pose estimates based on the local costs and a non-parametric

prior on pose dynamics. First we define the prior, then we

introduce an efficient optimization approach.

3.3.1 Pose paths in an implicit motion graph

To infer a likely sequence of poses over time, our method

constructs an implicit motion graph that controls the pos-

sible transitions between poses in the exemplar training

videos. The graph nodes correspond to poses in exemplar

videos. The edges indicate possible transitions from one

pose to another.

The optimal pose sequence corresponds to the optimal

pose path through the training data. The pose path is com-

posed of a sequence of “steps”, each of which represents a

transition from one pose to the next. We enforce that each

step can only move from a pose cluster to the same pose

cluster or a direct neighbor pose cluster. We define pose

clusters as direct neighbors if we can find two poses that

are drawn from each of the two pose clusters and are adja-

cent in time in the exemplar pose sequence. Since the same

pose cluster may appear at different times in the exemplar

pose sequence, the above rule allows large jumps. To fur-

ther regularize the pose path, we constrain the step sizes,

uniformity of the step sizes, and control the stationary steps

on the pose path (see below). Therefore when determining

where a step should lead to, we also have to consider pre-

vious decisions on the pose path. Thus, the transition costs

dynamically change with the traversal history.

This graph is reminiscent of motion-graphs used for

motion synthesis in computer graphics [25, 3]. How-

ever, whereas motion synthesis aims to generate convincing

movements within an annotated mocap database based on a
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few user-specified anchor poses, our task is to jointly infer

the sequence of poses in a novel egocentric video. Another

implicit model has also been used in third person people

tracking [29]. Unlike traditional motion graphs and implicit

models, edge weights in our graph dynamically change to

allow the regularizers mentioned above.

We use E to represent the concatenation of all the train-

ing pose sequences from the training dataset. The poses in

E thus preserve the original temporal order. Selecting a se-

quence of poses from E is equivalent to find a path on E so

that the following energy function is minimized:

min
X

{U(X ) + T (X ) + V (X ) + S(X )} (1)

s.t. X represents a sequence of poses drawn from E.

Here X is the matrix [xi,n], where n is the time index

and i is the index of poses in E and recall that xi,n is a bi-

nary variable to indicate whether pose i is selected at time

n. To represent a path, at each time instant n, we have∑
i xi,n = 1. Here U(.) is the unary term defined in the pre-

vious section. T (.), V (.), S(.) are terms that control cou-

pling between poses in the whole sequence. T (.) constrains

the step size between successive footprints on the path, V (.)
controls the speed of the pose transition, and S(.) restricts

stationary steps, all defined next.

3.3.2 The step size term T

If we choose pose l ∈ E at instant n − 1, we say we step

on point l at time n − 1. At time n, we may step to l + k,

where k is the step size from time n − 1 to n. Since the

original exemplar video is continuous, the smaller the k the

smoother the pose transition is likely to be. If the step size is

0, we keep the same pose in the time interval. The stationary

step can be used to infer a slower movement in the testing

video. If the step size is 1, the movement has the same speed

in the training and testing video. For k > 1, the movement

in the testing video is faster than the exemplar sequence. In

the energy function, we prefer the step size to be small and

at the same time we allow occasional large jumps from one

point to the other.

In particular, T =
∑

i,j,n wj,ixj,n−1xi,n, where wj,i =
0 if i − j ≤ 2, i ≥ j and otherwise wj,i = δ, where δ is a

positive constant penalizing backward steps and steps that

are greater than two. Apart from the step size constraint, we

also constrain that if pose cluster c(i) �= c(j) and c(i) and

c(j) are not consecutive in the training video wj,i = +∞.

Here c(i) is the pose cluster of pose i. This prohibits the

path from going from one pose to another with too much

difference or using a transition of pose clusters not seen in

the exemplars. However, it does allow long jumps from one

pose cluster to the same pose cluster or one that is a direct

neighbor to the cluster. However, such long jumps do have

a penalty. So, we prefer that steps on the path move to a

directly adjacent frame if possible. We allow the path to go

forward or backward.

3.3.3 The speed smoothness of the path V

The above step size term roughly enforces a first order con-

straint on the path: small steps are taken when possible.

However, the path may still have a non-uniform speed of

steps in a short time span, which is undesirable because

within a time of 1 or 2 seconds human body motion is usu-

ally uniform. We thus introduce a second order term to pe-

nalize the speed changes:

V =
∑

i,j,n

q(|sj,n−1 − (i− j)|)xj,n−1xi,n , (2)

where sj,n−1 is the speed at time n − 1, for step j. Here q

is a truncated linear function: q(x) = μx if x < γ and oth-

erwise q(x) = μγ, where γ and μ are constant parameters.

This term encourages the path to maintain a constant speed.

3.3.4 The stationary step penalty S in the path

Simply minimizing the first order and second order smooth-

ness of the path is not enough. Recall that the local cost in

short time intervals tends to be constant. The steps in the

pose path thus tend to be stationary because the first and

second order smoothness terms will be zero. The step size

penalty helps but is not sufficient. We thus penalize station-

ary steps:

S =
∑

i,j,n

r(u(j, n− 1), i)xj,n−1xi,n , (3)

where r(u(j, n − 1), i) = 0 if i �= j, otherwise r(u(j, n −
1), i) = t(u(j, n−1)+1). We therefore count the number of

stationary steps and penalize the pose to stay unchanged for

a long time. Here, u(i, n) is the number of stationary steps

accumulated at time n if the current pose is i; u(j, n − 1)
is similarly defined. Similar to q, t(.) is a truncated linear

function. The stationary step penalty term thus makes the

path less likely to stay at one point and helps resolve the

temporal resolution loss problem.

3.3.5 Optimizing the pose path

Let H(i, n) be the optimal energy of a pose path if the path
ends at a specific pose i at time n. The dimension of H is
the number of nodes (pose) in the pose graph × the number
of frames. We can rewrite the problem into a recursion:

H(i, n) =ei,n + min
j∈Di

{H(j, n− 1) + wj,i+ (4)

q(|s(j, n− 1)− (i− j)|) + r(u(j, n− 1), i)}

where u(i, n) = u(j∗, n − 1) + 1, if j∗ =

i and otherwise u(i, n) = 0, s(i, n) = i− j∗, p(i, n) = j∗, and

j∗ = argminj∈Di
{H(j, n− 1) + wj,i + q(|s(j, n− 1)− (i−

3980



j)|) + r(u(j, n− 1), i)}. Di is the set of poses that can trans-

form to i. u(i, n), s(i, n), p(i, n) are the stationary step

number, speed of steps and previous optimal pose selection

of the optimal pose path ending at pose i at time n. We

initialize H(i, 1) = ei,1, u(i, 1) = 0, s(i, 1) = 0, ∀i ∈ E.

All the other H are initialized to be +∞, and p to be −1.

We can verify that solving the recursion is equivalent to

optimizing the pose path energy in Eq. 1. The recursion can

be efficiently solved using dynamic programming (DP).

It helps to visualize the optimization in a trellis. The

trellis contains M columns and N rows, where M is the

number of poses in E and N is the number of input video

frames. Each edge corresponds to one possible step in the

path. Each node has a cost ei,n, where i is the column and

n is the row of the trellis. Each edge has a weight wj,i +
q(|sj,n−1 − (i − j)|) + r(u(j, n − 1), i). The DP finds a

minimum cost path in the trellis. Note that the edge weights

dynamically change in the path finding.

Solving the DP involves updating the state variables

H, s, u, p in each node. Since only the nodes inside the

same or neighboring cluster are connected by each stage

of the trellis, the complexity is much lower than O(M2N).
Moreover, we can use the local pose probability to prune

impossible nodes from the trellis. In fact, most of the poses

have near zero probability from the random forest classi-

fier. If we only keep nodes that correspond to poses that

have probability greater than 0.01, the trellis becomes very

sparse and the corresponding DP can be quickly completed

(typically contributing 0.01 seconds per frame for our whole

system, which takes 0.5 sec/frame).

We stress that our method learns more than 3D camera

pose, thanks to the scene structure cues and pose-path prior.

It estimates detailed body poses and their transitions at each

time instant.

4. Experimentation

We evaluate the performance of the proposed method on

both a ground truth dataset and challenging videos in un-

constrained environments.

In our ground truth data, the 3D human poses are cap-

tured from the Kinect V2 for ten human subjects. The syn-

chronized egocentric video is from a chest-mounted GoPro

camera. Below we consider two settings. In the first setting

(GT1), training and testing videos are from the same hu-

man subject, but taken in disjoint indoor environments such

as lab, office, hallway and living room. In the second setting

(GT2), the training and testing videos are from different hu-

man subjects and recorded at different locations. There are

in total 71,623 test video frames (about 40 minutes) in the

ground truth experiments, consisting of clips ranging from

1-3 minutes each, and 7k-10k training frames. We also test

about 15 minutes of video from unconstrained video, which

lacks ground truth for evaluation.

G

P

C

Figure 4. Comparison with the DeepPose [5] method retrained

for our task. G: ground truth. P: proposed method. C:

CNN-Regression baseline.

GroundTruth Ours V1 V2 V3 C1 C2 D1 D2

97.5 76.3 70.4 8.75 53.8 37.4 27.6 3.2 0.4

Table 1. Percentage of 3D poses that are consistent with human

observers’ thought. The numbers show the percentages. Ours:

Path, V1: Path-Cluster, V2: CNN-Class, V3: CNN-Class-R, C1:

KdTree, C2: CNN-Regr, D1: AwaysStanding, D2: AwaysSitting.

Ours V1 V2 V3 C1 C2 D1 D2

Head 15.8(8) 16.5(8) 21.6(14) 22.9(14) 18.1(11) 16.2(10) 15.1(8) 32.5(9)
Elbow 14.4(7) 15.4(7) 18.6(12) 19.4(12) 15.8(10) 14.4(9) 14.5(8) 20.7(8)
Wrist 19.1(9) 20.6(10) 26.5(17) 27.1(17) 21.3(13) 22.0(14) 22.9(12) 21.3(8)
Knee 15.4(9) 17.2(9) 27.3(17) 26.2(17) 22.0(14) 21.3(13) 21.2(11) 40.0(11)
Ankle 20.7(10) 22.9(10) 33.8(21) 33.3(21) 28.4(18) 26.4(17) 26.7(13) 37.9(9)

NAvgAll 17.2 19.1 48.1 48.7 32.8 29.7 24.6 31.9
NAvgWA 19.9 22.6 60.0 60.2 40.8 38.7 32.4 27.1

Table 2. Average joint error (cm) and standard errors (scaled by

100), when training and testing on same subject but in different

environments. See Table 1 for the column labels. The training

sequence has 6,950 frames. There are 7 test videos with a total

of 25,195 frames. We compute the mean error normalized by the

standard error for the nine joints denoted NAvgAll, and for the

wrists and ankles denoted NAvgWA.

Ours V1 V2 V3 C1 C2 D1 D2

Head 16.6(7) 18.0(7) 19.4(9) 21.3(10) 20.1(9) 15.8(7) 14.3(7) 29.1(7)
Elbow 15.3(6) 16.9(6) 19.1(9) 19.5(9) 18.0(8) 15.8(7) 14.9(6) 20.9(6)
Wrist 22.2(8) 24.2(8) 29.7(14) 29.4(14) 24.9(12) 24.3(11) 23.8(9) 22.9(7)
Knee 18.9(7) 24.4(9) 21.6(10) 21.8(10) 31.9(15) 27.6(13) 21.7(8) 45.7(9)
Ankle 24.9(9) 29.9(10) 29.2(14) 29.2(14) 38.1(18) 33.3(15) 28.2(10) 43.0(9)

NAvgAll 19.9 24.6 35.4 36.4 44.5 34.6 22.4 32.9
NAvgWA 23.6 28.4 46.6 46.3 53.3 44.6 28.9 30.7

Table 3. Joint errors when training and testing on disjoint people

and environments. Reported in the same format as Table 2. Train-

ing sequence has 10K frames from two subjects. There are 8 test

videos with a total of 46,428 frames.

Head Elbow Wrist Knee Ankle NAvgAll NAvgWA

G1 25.0(13) 17.4(9) 21.3(10) 21.1(11) 24.7(11) 26.6 25.7

G2 22.5(9) 19.6(7) 25.7(8) 24.4(8) 29.3(9) 27.0 28.8

Table 4. Hybrid sitting/standing baseline (D3) joint errors on the

ground truth setting one (G1) and two (G2). See Tables 2 and 3

for definitions of NAvgAll and NAvgWA and units.

Implementation details In the experiment, we use 300

pose clusters. For the unary term U , we set δ = 0.1, τ =
0.99. For the truncated linear functions q and t, we fix

γ = 10, μ = 0.01 and γ = 5, μ = 0.02, respectively. All

parameters were set based on manual inspection of a few

examples during method development, then fixed for all ex-

periments. With sufficient labeled data, their values could

be set with DP to minimize pose errors.
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Figure 5. Comparing with the Kd-tree baseline. Row 1: Sample

frames. Row 2: Ground truth poses. Row 3: Our result in left box

and Kd-tree result in right box. Best viewed on pdf.

Baselines No prior work predicts full body pose from a

single egocentric video. We therefore devise a series of in-

formative baselines to gauge the impact of our method, in-

cluding methods inspired by today’s best third-person pose

estimators:

• CNN-Regression (C2): an adaption of the DeepPose

[5] method to our task. Our problem is still a regres-

sion problem, even though the camera wearer is not vis-

ible from the egocentric view. We use the same network

structure as DeepPose except that our input is a stack of

grayscale images in every one-second video clip and out-

put is the 25 body joints defined by the Kinect SDK. We

scale each image to 100 × 100. We properly normalize

all coordinates for the CNN sigmoid layer.

• KdTree (C1): simple nearest neighbor approach using

Kd-trees. It finds the “closest” video segments in the

training data and then takes the corresponding 3D poses

as the prediction result. The stacked homography in ev-

ery 30 frames is used as the feature, and the L2 norm is

the distance metric.

• Path-Cluster (V1): a variant of the proposed

method. Instead of directly optimizing the poses, this

method first finds the pose clusters and then refines the

pose estimates using dynamic programming. The refine-

ment is similar to the proposed pose path optimization,

except that the pose candidates at each instant can only

come from the pose clusters estimated in the first stage.

• CNN-Class (V2, V3): a variant of the proposed method

that uses deep-trained features in place of our hand

crafted homography features. We train a deep neural

network to classify each sequence of 30 frames to one

of the 300 pose clusters. We use AlexNet [26] due to

its good results in many applications. In the first setting

(CNN-Class), we rescale each input video frame to 100

× 100 and retrain the network from scratch. In the second

setting (CNN-Class-R), we fine-tune on the modified

AlexNet with depth 30. The fine-tuning is only on the

first convolution layer and the last three fully connected

layers. We compute the local pose cost as one minus the

class probability from the CNN output. The proposed

global optimization is then applied to obtain the final re-

sult.

• AlwaysStanding, AlwaysSitting and hybrid ap-

proach (D1, D2, D3): simple guessing methods that ex-

GT

Path

CNC

CNR

Figure 6. Comparison with methods using deeply learned features.

GT: ground truth. Path: proposed method. CNC: CNN-Class.

CNR: CNN-Class-R. Best viewed on pdf.

ploit the prior that poses are typically somewhere near

a standing or sitting pose (hence much stronger than a

truly random guess). We compute the standing and sit-

ting poses by the average over training subjects. The hy-

brid baseline (D3) is a variant of path-cluster method that

only uses two pose clusters (sitting and standing).

Comparison to pose baselines: Figs. 4 and 5 show qual-

itatively that the proposed method indeed gives better re-

sults than the DeepPose adaptation (CNN-Regression)

and nearest neighbors (KdTree). Please also see project

webpage for video examples.

If we directly use the the estimated pose cluster cen-

ters as the predicted poses, the results have lower tempo-

ral resolution than the proposed method. Refining the pose

selection in each estimated pose cluster is inferior to the

proposed approach because the errors in the first stage can-

not be undone. The predicted pose sequence is also not as

smooth as the proposed method. Path-Cluster is es-

sentially an interpolation method that smooths the cluster

centers estimated in the first step. Note that a simpler linear

interpolation method is not directly usable because it does

not always give valid poses.

Fig. 6 shows qualitatively that using deep neural net-

works to train the dynamic and scene structure features does

not give better results. Neither training from scratch nor

fine-tuning improves the result. Neural network approaches

need a large dataset to capture different variations of the

scene and human poses, yet due to the complexity of learn-

ing pose from the surrounding scene, CNNs remain infe-

rior to our approach even with 5× more training data. Our

method achieves good performance even if training on a rel-

atively small dataset.

Now we present the quantitative comparisons with all

baselines. We analyze the errors of the joints with highest

variance in everyday activity: head, elbows, wrists, knees,

and ankles. We quantify error by the distance between the

predicted 3D joints and the ground truth. Recall that the

predicted coordinates are already in normalized coordinates

according to the shoulder length of the subject. We convert

raw errors to centimeters based on a reference shoulder joint

distance of 30 cm.
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Figure 7. Experiments on data without ground truth. There are

three subjects (S1, S2, and S3). Row 1: Classroom (S1). Row 2:

Classroom (S2). Row 3: Lab (S3). Row 4: Library (S1). Row 5:

Library (S2). Row 6: Art gallery (S1). Row 7: Outdoor (S1). Row

8: Hallway (S1). Each result contains three columns: egocentric

view, side view (unseen by our method), and pose prediction.

Tables 2 and 3 show the results, for the two set-

tings defined above. Overall the proposed method

gives smaller errors than all the competing methods.

While AlwaysStanding is a reasonable prior for most

test frames, our method still makes noticeable gains

on it, showing our ability to make fine-grained esti-

mates (e.g., 6 cm better on average for the ankles and

knees). AlwaysSitting has much larger errors than any

method, in line with the distribution of the test data. Ta-

ble 4 shows that the hybrid approach is also inferior. Finally,

among Table 2, 3 and 4, as expected we see that absolute er-

ror is lower for all methods with the benefit of observing the

same subject during training.

Qualitative perceptual result: We conduct a user study

to obtain a human perceptual result on pose inference from

egocentric video. The interface shows egocentric video and

the 3D poses side by side on a screen. Each 10-second clip

is randomly extracted from the ground truth video one and

two. Then the output from the Kinect sensor, our proposed

method, and all the competing methods are randomly se-

lected. The video and the pose sequences are played at the

same time. The users have no knowledge about the source

of each pose sequence and need to answer the question

about whether the poses are consistent with their thought

on the video clip. We invited 30 randomly selected users

with different backgrounds to conduct the test. Each user is

given 120 video clips in the test.

Table 1 shows how often human observers think the

poses and the videos are consistent. The result shows that

the ground truth pose from the Kinect sensor is almost al-

ways consistent with human observation. The ground truth

itself thus has high accuracy and it is a good benchmark to

evaluate other methods’ results. Our proposed method also

has much higher user evaluation score than the competing

methods. These are consistent with our ground truth quan-

titative results.

Comparison to SLAM: We also compare our method

against a SLAM (simultaneous location and mapping) ap-

proach that estimates the egocentric camera’s position and

rotation via the video sequence. Note that the trajectory of

the camera only gives one point on the chest of a wearer.

The question is whether the single camera 3D poses recov-

ered from a state of art SLAM method [28] can be used to

infer the full body 3D poses effectively. To estimate the

3D poses, we first cluster trajectory segments in every one-

second interval of the training samples using K-means, with

the starting point of these 3D trajectories being normalized

to the origin. Then a method similar to CNN-Class is used

to infer the poses. The SLAM based method gives average

normalized error of 38.14 in GT1 and 35.77 in GT2 for the

9 joints (head, elbows, wrists, knees and ankles), while our

approach’s errors are 17.2 and 19.9 respectively. The re-

sults of the pure SLAM and the camera motion approach

(KdTree) show that simply estimating the egocentric cam-

era’s trajectory or movement is not sufficient to infer accu-

rate 3D human poses. It is key that our approach uses both

the information from camera motion and the scene context

to achieve accurate results.

Our method could fail just like a human observer when

estimating human pose by only looking at the egocentric

video. Failures are mostly due to the ambiguity of the input.

Arm poses are not always predictable, if they do not affect

the motion or the viewing angle of the egocentric camera.

Application to unconstrained video: Finally, we test our

method on 8 video sequences with no ground truth, captured

in varying environments and with 3 subjects. The training

dataset is the same as above. Fig. 7 shows sample results.

For each example, we display the frame from the egocen-

tric camera as well as one from a side camera viewing the

subject. Note that the side view is for display only, and

never used by our method. The 3D pose is estimated using

only the egocentric video. Our method works well on this

data, including an outdoor test sequence despite all train-

ing taking place indoors. Please see videos on our project

webpage.

5. Conclusion

We tackle a new problem in computer vision: predicting

human poses from egocentric video. The proposed global

optimization method is able to give accurate pose predic-

tions in both same-person and cross-person tests. Our ex-

periments show our method gives results superior to a num-

ber of alternative approaches. We believe our method will

be useful for many different applications including ego-

centric video logging, summarization, and information re-

trieval, and it could facilitate action understanding.
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