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Abstract

When building artificial intelligence systems that can

reason and answer questions about visual data, we need

diagnostic tests to analyze our progress and discover short-

comings. Existing benchmarks for visual question answer-

ing can help, but have strong biases that models can exploit

to correctly answer questions without reasoning. They also

conflate multiple sources of error, making it hard to pinpoint

model weaknesses. We present a diagnostic dataset that

tests a range of visual reasoning abilities. It contains mini-

mal biases and has detailed annotations describing the kind

of reasoning each question requires. We use this dataset to

analyze a variety of modern visual reasoning systems, pro-

viding novel insights into their abilities and limitations.

1. Introduction

A long-standing goal of artificial intelligence research

is to develop systems that can reason and answer ques-

tions about visual information. Recently, several datasets

have been introduced to study this problem [4, 10, 21, 26,

32, 46, 49]. Each of these Visual Question Answering

(VQA) datasets contains challenging natural language ques-

tions about images. Correctly answering these questions

requires perceptual abilities such as recognizing objects,

attributes, and spatial relationships as well as higher-level

skills such as counting, performing logical inference, mak-

ing comparisons, or leveraging commonsense world knowl-

edge [31]. Numerous methods have attacked these prob-

lems [2, 3, 9, 24, 44], but many show only marginal im-

provements over strong baselines [4, 16, 48]. Unfortunately,

our ability to understand the limitations of these methods is

impeded by the inherent complexity of the VQA task. Are

methods hampered by failures in recognition, poor reason-

ing, lack of commonsense knowledge, or something else?

The difficulty of understanding a system’s competences

∗Work done during an internship at FAIR.

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that

is left of the big sphere? Q: There is a sphere with the same size as the

metal cube; is it made of the same material as the small red sphere?

Q: How many objects are either small cylinders or metal things?

Figure 1. A sample image and questions from CLEVR. Questions

test aspects of visual reasoning such as attribute identification,

counting, comparison, multiple attention, and logical operations.

is exemplified by Clever Hans, a 1900s era horse who ap-

peared to be able to answer arithmetic questions. Care-

ful observation revealed that Hans was correctly “answer-

ing” questions by reacting to cues read off his human ob-

servers [30]. Statistical learning systems, like those used

for VQA, may develop similar “cheating” approaches to

superficially “solve” tasks without learning the underlying

reasoning processes [35, 36]. For instance, a statistical

learner may correctly answer the question “What covers the

ground?” not because it understands the scene but because

biased datasets often ask questions about the ground when

it is snow-covered [1, 47]. How can we determine whether

a system is capable of sophisticated reasoning and not just

exploiting biases of the world, similar to Clever Hans?

In this paper we propose a diagnostic dataset for study-

ing the ability of VQA systems to perform visual reasoning.

We refer to this dataset as the Compositional Language and

Elementary Visual Reasoning diagnostics dataset (CLEVR;

pronounced as clever in homage to Hans). CLEVR contains

100k rendered images and about one million automatically-

generated questions, of which 853k are unique. It has chal-
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lenging images and questions that test visual reasoning abil-

ities such as counting, comparing, logical reasoning, and

storing information in memory, as illustrated in Figure 1.

We designed CLEVR with the explicit goal of enabling

detailed analysis of visual reasoning. Our images depict

simple 3D shapes; this simplifies recognition and allows us

to focus on reasoning skills. We ensure that the information

in each image is complete and exclusive so that external in-

formation sources, such as commonsense knowledge, can-

not increase the chance of correctly answering questions.

We control question-conditional bias via rejection sampling

within families of related questions, and avoid degenerate

questions that are seemingly complex but contain simple

shortcuts to the correct answer. Finally, we use structured

ground-truth representations for both images and questions:

images are annotated with ground-truth object positions and

attributes, and questions are represented as functional pro-

grams that can be executed to answer the question (see Sec-

tion 3). These representations facilitate in-depth analyses

not possible with traditional VQA datasets.

These design choices also mean that while images in

CLEVR may be visually simple, its questions are complex

and require a range of reasoning skills. For instance, fac-

torized representations may be required to generalize to un-

seen combinations of objects and attributes. Tasks such as

counting or comparing may require short-term memory [15]

or attending to specific objects [24, 44]. Answering ques-

tions that combine multiple subtasks in diverse ways may

require compositional systems [2, 3].

We use CLEVR to analyze a suite of VQA models and

discover weaknesses that are not widely known. For exam-

ple, we find that current state-of-the-art VQA models strug-

gle on tasks requiring short-term memory, such as compar-

ing the attributes of objects, or compositional reasoning,

such as recognizing novel attribute combinations. These

observations point to novel avenues for further research.

Finally, we stress that accuracy on CLEVR is not an end

goal in itself: a hand-crafted system with explicit knowl-

edge of the CLEVR universe might work well, but will not

generalize to real-world settings. Therefore CLEVR should

be used in conjunction with other VQA datasets in order to

study the reasoning abilities of general VQA systems.

The CLEVR dataset is publicly available at http://

cs.stanford.edu/people/jcjohns/clevr/.

2. Related Work

In recent years, a range of benchmarks for visual under-

standing have been proposed, including datasets for image

captioning [7, 8, 23, 45], referring to objects [19], rela-

tional graph prediction [21], and visual Turing tests [12, 27].

CLEVR, our diagnostic dataset, is most closely related to

benchmarks for visual question answering [4, 10, 21, 26,

32, 37, 46, 49], as it involves answering natural-language

questions about images. The two main differences between

CLEVR and other VQA datasets are that: (1) CLEVR con-

trols biases found in prior VQA datasets that can be used

by learning systems to answer questions correctly without

visual reasoning and (2) CLEVR’s synthetic nature and de-

tailed annotations facilitate in-depth analyses of reasoning

abilities that are impossible with existing datasets.

Prior work has attempted to mitigate biases in VQA

datasets in simple cases such as yes/no questions [12, 47],

but it is difficult to apply such bias-reduction approaches

to more complex questions without a high-quality se-

mantic representation of both questions and answers. In

CLEVR, this semantic representation is provided by the

functional program underlying each image-question pair,

and biases are largely eliminated via sampling. Winograd

schemas [22] are another approach for controlling bias in

question answering: these questions are carefully designed

to be ambiguous based on syntax alone and require com-

monsense knowledge. Unfortunately this approach does

not scale gracefully: the first phase of the 2016 Winograd

Schema Challenge consists of just 60 hand-designed ques-

tions. CLEVR is also related to the bAbI question answer-

ing tasks [38] in that it aims to diagnose a set of clearly

defined competences of a system, but CLEVR focuses on

visual reasoning whereas bAbI is purely textual.

We are also not the first to consider synthetic data for

studying (visual) reasoning. SHRDLU performed sim-

ple, interactive visual reasoning with the goal of moving

specific objects in the visual scene [40]; this study was

one of the first to demonstrate the brittleness of manu-

ally programmed semantic understanding. The pioneer-

ing DAQUAR dataset [28] contains both synthetic and

human-written questions, but they only generate 420 syn-

thetic questions using eight text templates. VQA [4] con-

tains 150,000 natural-language questions about abstract

scenes [50], but these questions do not control for question-

conditional bias and are not equipped with functional pro-

gram representations. CLEVR is similar in spirit to the

SHAPES dataset [3], but is more complex and varied both

in terms of visual content and question variety and complex-

ity: SHAPES contains 15,616 total questions with just 244

unique questions while CLEVR contains nearly a million

questions of which 853,554 are unique.

3. The CLEVR Diagnostic Dataset

CLEVR provides a dataset that requires complex reason-

ing to solve and that can be used to conduct rich diagnos-

tics to better understand the visual reasoning capabilities

of VQA systems. This requires complete control over the

dataset, which we achieve by using synthetic images and

automatically generated questions. The images have asso-

ciated ground-truth object locations and attributes, and the

questions have an associated machine-readable form. These
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Figure 2. A field guide to the CLEVR universe. Left: Shapes, attributes, and spatial relationships. Center: Examples of questions and

their associated functional programs. Right: Catalog of basic functions used to build questions. See Section 3 for details.

ground-truth structures allow us to analyze models based

on, for example: question type, question topology (chain

vs. tree), question length, and various forms of relationships

between objects. Figure 2 gives a brief overview of the main

components of CLEVR, which we describe in detail below.

Objects and relationships. The CLEVR universe con-

tains three object shapes (cube, sphere, and cylinder) that

come in two absolute sizes (small and large), two materi-

als (shiny “metal” and matte “rubber”), and eight colors.

Objects are spatially related via four relationships: “left”,

“right”, “behind”, and “in front”. The semantics of these

prepositions are complex and depend not only on relative

object positions but also on camera viewpoint and context.

We found that generating questions that invoke spatial rela-

tionships with semantic accord was difficult. Instead we

rely on a simple and unambiguous definition: projecting

the camera viewpoint vector onto the ground plane defines

the “behind” vector, and one object is behind another if

its ground-plane position is further along the “behind” vec-

tor. The other relationships are similarly defined. Figure 2

(left) illustrates the objects, attributes, and spatial relation-

ships in CLEVR. The CLEVR universe also includes one

non-spatial relationship type that we refer to as the same-

attribute relation. Two objects are in this relationship if

they have equal attribute values for a specified attribute.

Scene representation. Scenes are represented as collec-

tions of objects annotated with shape, size, color, material,

and position on the ground-plane. A scene can also be rep-

resented by a scene graph [17, 21], where nodes are objects

annotated with attributes and edges connect spatially related

objects. A scene graph contains all ground-truth informa-

tion for an image and could be used to replace the vision

component of a VQA system with perfect sight.

Image generation. CLEVR images are generated by ran-

domly sampling a scene graph and rendering it using

Blender [6]. Every scene contains between three and ten

objects with random shapes, sizes, materials, colors, and

positions. When placing objects we ensure that no objects

intersect, that all objects are at least partially visible, and

that there are small horizontal and vertical margins between

the image-plane centers of each pair of objects; this helps

reduce ambiguity in spatial relationships. In each image the

positions of the lights and camera are randomly jittered.

Question representation. Each question in CLEVR is as-

sociated with a functional program that can be executed on

an image’s scene graph, yielding the answer to the question.

Functional programs are built from simple basic functions

that correspond to elementary operations of visual reason-

ing such as querying object attributes, counting sets of ob-

jects, or comparing values. As shown in Figure 2, complex

questions can be represented by compositions of these sim-

ple building blocks. Full details about each basic function

can be found in the supplementary material.

As we will see in Section 4, representing questions as

functional programs enables rich analysis that would be

impossible with natural-language questions. A question’s

functional program tells us exactly which reasoning abili-

ties are required to solve it, allowing us to compare perfor-

mance on questions requiring different types of reasoning.
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We categorize questions by question type, defined by the

outermost function in the question’s program; for example

the questions in Figure 2 have types query-color and exist.

Figure 3 shows the number of questions of each type.

Question families. We must overcome several key chal-

lenges to generate a VQA dataset using functional pro-

grams. Functional building blocks can be used to construct

an infinite number of possible functional programs, and we

must decide which program structures to consider. We also

need a method for converting functional programs to natu-

ral language in a way that minimizes question-conditional

bias. We solve these problems using question families.

A question family contains a template for constructing

functional programs and several text templates providing

multiple ways of expressing these programs in natural lan-

guage. For example, the question “How many red things

are there?” can be formed by instantiating the text tem-

plate “How many <C> <M> things are there?”, bind-

ing the parameters <C> and <M> (with types “color” and

“material”) to the values red and nil. The functional pro-

gram count(filter color(red, scene())) for this question can

be formed by instantiating the associated program template

count(filter color(<C>, filter material(<M>, scene())))

with the same values, using the convention that functions

taking a nil input are removed after instantiation.

CLEVR contains a total of 90 question families, each

with a single program template and an average of four text

templates. Text templates were generated by manually writ-

ing one or two templates per family and then crowdsourcing

question rewrites. To further increase language diversity we

use a set of synonyms for each shape, color, and material.

With up to 19 parameters per template, a small number of

families can generate a huge number of unique questions;

Figure 3 shows that of the nearly one million questions in

CLEVR, more than 853k are unique. CLEVR can easily be

extended by adding new question families.

Question generation. Generating a question for an im-

age is conceptually simple: we choose a question family,

select values for each of its template parameters, execute

the resulting program on the image’s scene graph to find the

answer, and use one of the text templates from the question

family to generate the final natural-language question.

However, many combinations of values give rise to ques-

tions which are either ill-posed or degenerate. The question

“What color is the cube to the right of the sphere?” would

be ill-posed if there were many cubes right of the sphere, or

degenerate if there were only one cube in the scene since the

reference to the sphere would then be unnecessary. Avoid-

ing such ill-posed and degenerate questions is critical to en-

sure the correctness and complexity of our questions.

A naı̈ve solution is to randomly sample combinations of

values and reject those which lead to ill-posed or degenerate

Unique Overlap

Split Images Questions questions with train

Total 100,000 999,968 853,554 -

Train 70,000 699,989 608,607 -

Val 15,000 149,991 140,448 17,338

Test 15,000 149,988 140,352 17,335
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Figure 3. Top: Statistics for CLEVR; the majority of questions

are unique and few questions from the val and test sets appear

in the training set. Bottom left: Comparison of question lengths

for different VQA datasets; CLEVR questions are generally much

longer. Bottom right: Distribution of question types in CLEVR.

questions. However, the number of possible configurations

for a question family is exponential in its number of param-

eters, and most of them are undesirable. This makes brute-

force search intractable for our complex question families.

Instead, we employ a depth-first search to find valid val-

ues for instantiating question families. At each step of

the search, we use ground-truth scene information to prune

large swaths of the search space which are guaranteed to

produce undesirable questions; for example we need not en-

tertain questions of the form “What color is the <S> to the

<R> of the sphere” for scenes that do not contain spheres.

Finally, we use rejection sampling to produce an approx-

imately uniform answer distribution for each question fam-

ily; this helps minimize question-conditional bias since all

questions from the same family share linguistic structure.

4. VQA Systems on CLEVR

4.1. Models

VQA models typically represent images with features

from pretrained CNNs and use word embeddings or re-

current networks to represent questions and/or answers.

Models may train recurrent networks for answer genera-

tion [10, 28, 41], multiclass classifiers over common an-

swers [4, 24, 25, 32, 48, 49], or binary classifiers on image-

question-answer triples [9, 16, 33]. Many methods incor-

porate attention over the image [9, 33, 44, 49, 43] or ques-

tion [24]. Some methods incorporate memory [42] or dy-

namic network architectures [2, 3].

Experimenting with all methods is logistically challeng-

ing, so we reproduced a representative subset of meth-

ods: baselines that do not look at the image (Q-type mode,

LSTM), a simple baseline (CNN+BoW) that performs near

state-of-the-art [16, 48], and more sophisticated methods
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using recurrent networks (CNN+LSTM), sophisticated fea-

ture pooling (CNN+LSTM+MCB), and spatial attention

(CNN+LSTM+SA).1 These are described in detail below.

Q-type mode: Similar to the “per Q-type prior” method

in [4], this baseline predicts the most frequent training-set

answer for each question’s type.

LSTM: Similar to “LSTM Q” in [4], the question is pro-

cessed with learned word embeddings followed by a word-

level LSTM [15]. The final LSTM hidden state is passed to

a multi-layer perceptron (MLP) that predicts a distribution

over answers. This method uses no image information so it

can only model question-conditional bias.

CNN+BoW: Following [48], the question is encoded by

averaging word vectors for each word in the question and

the image is encoded using features from a convolutional

network (CNN). The question and image features are con-

catenated and passed to a MLP which predicts a distribution

over answers. We use word vectors trained on the Google-

News corpus [29]; these are not fine-tuned during training.

CNN+LSTM: Images and questions are encoded using

CNN features and final LSTM hidden states, respectively.

These features are concatenated and passed to an MLP that

predicts an answer distribution.

CNN+LSTM+MCB: Images and questions are encoded

as above, but instead of concatenation, their features are

pooled using compact multimodal pooling (MCB) [9, 11].

CNN+LSTM+SA: Again, the question and image are

encoded using a CNN and LSTM, respectively. Follow-

ing [44], these representations are combined using one or

more rounds of soft spatial attention and the final answer

distribution is predicted with an MLP.

Human: We used Mechanical Turk to collect human re-

sponses for 5500 random questions from the test set, taking

a majority vote among three workers for each question.

Implementation details. Our CNNs are ResNet-101

models pretrained on ImageNet [14] that are not finetuned;

images are resized to 224×224 prior to feature extraction.

1We performed initial experiments with dynamic module networks [2]

but its parsing heuristics did not generalize to the complex questions in

CLEVR so it did not work out-of-the-box; see supplementary material.

CNN+LSTM+SA extracts features from the last layer of the

conv4 stage, giving 14× 14× 1024-dimensional features.

All other methods extract features from the final average

pooling layer, giving 2048-dimensional features. LSTMs

use one or two layers with 512 or 1024 units per layer.

MLPs use ReLU functions and dropout [34]; they have one

or two hidden layers with between 1024 and 8192 units per

layer. All models are trained using Adam [20].

Experimental protocol. CLEVR is split into train, vali-

dation, and test sets (see Figure 3). We tuned hyperparam-

eters (learning rate, dropout, word vector size, number and

size of LSTM and MLP layers) independently per model

based on the validation error. All experiments were de-

signed on the validation set; after finalizing the design we

ran each model once on the test set. All experimental find-

ings generalized from the validation set to the test set.

4.2. Analysis by Question Type

We can use the program representation of questions to

analyze model performance on different forms of reason-

ing. We first evaluate performance on each question type,

defined as the outermost function in the program. Figure 4

shows results and detailed findings are discussed below.

Querying attributes: Query questions ask about an at-

tribute of a particular object (e.g. “What color is the thing

right of the red sphere?”). The CLEVR world has two

sizes, eight colors, two materials, and three shapes. On

questions asking about these different attributes, Q-type

mode and LSTM obtain accuracies close to 50%, 12.5%,

50%, and 33.3% respectively, showing that the dataset

has minimal question-conditional bias for these questions.

CNN+LSTM+SA substantially outperforms all other mod-

els on these questions; its attention mechanism may help it

focus on the target object and identify its attributes.

Comparing attributes: Attribute comparison questions

ask whether two objects have the same value for some at-

tribute (e.g. “Is the cube the same size as the sphere?”). The

only valid answers are “yes” and “no”. Q-Type mode and

LSTM achieve accuracies close to 50%, confirming there is

no dataset bias for these questions. Unlike attribute-query
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vs. a single same-attribute relationship. For query and count ques-

tions, models generally perform worse on questions with same-

attribute relationships. Results on exist questions are mixed.

questions, attribute-comparison questions require a limited

form of memory: models must identify the attributes of two

objects and keep them in memory to compare them. Inter-

estingly, none of the models are able to do so: all models

have an accuracy of approximately 50%. This is also true

for the CNN+LSTM+SA model, suggesting that its atten-

tion mechanism is not capable of attending to two objects at

once to compare them. This illustrates how CLEVR can re-

veal limitations of models and motivate follow-up research,

e.g., augmenting attention models with explicit memory.

Existence: Existence questions ask whether a certain

type of object is present (e.g., “Are there any cubes to

the right of the red thing?”). The 50% accuracy of Q-

Type mode shows that both answers are a priori equally

likely, but the LSTM result of 60% does suggest a question-

conditional bias. There may be correlations between ques-

tion length and answer: questions with more filtering oper-

ations (e.g., “large red cube” vs. “red cube”) may be more

likely to have “no” as the answer. Such biases may be

present even with uniform answer distributions per question

family, since questions from the same family may have dif-

ferent numbers of filtering functions. CNN+LSTM(+SA)

outperforms LSTM, but its performance is still quite low.

Counting: Counting questions ask for the number of ob-

jects fulfilling some conditions (e.g. “How many red cubes

are there?”); valid answers range from zero to ten. Im-

ages have three and ten objects and counting questions re-

fer to subsets of objects, so ensuring a uniform answer dis-

tribution is very challenging; our rejection sampler there-

fore pushes towards a uniform distribution for these ques-

tions rather than enforcing it as a hard constraint. This

results in a question-conditional bias, reflected in the 35%

and 42% accuracies achieved by Q-type mode and LSTM.

CNN+LSTM(+MCB) performs on par with LSTM, sug-

gesting that CNN features contain little information relevant

to counting. CNN+LSTM+SA performs slightly better, but

at 52% its absolute performance is low.

Integer comparison: Integer comparison questions ask

which of two object sets is larger (e.g. “Are there fewer

cubes than red things?”); this requires counting, memory,
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Figure 6. Accuracy on questions with two spatial relationships,

broken down by question topology: chain-structured questions vs.

tree-structured questions joined with a logical AND operator.

and comparing integer quantities. The answer distribution

is unbiased (see Q-Type mode) but a set’s size may corre-

late with the length of its description, explaining the gap

between LSTM and Q-type mode. CNN+BoW performs

no better than chance: BoW mixes the words describing

each set, making it impossible for the learner to discrimi-

nate between them. CNN+LSTM+SA outperforms LSTM

on “less” and “more” questions, but no model outperforms

LSTM on “equal” questions. Most models perform better

on “less” than “more” due to asymmetric question families.

4.3. Analysis by Relationship Type

CLEVR questions contain two types of relationships:

spatial and same-attribute (see Section 3). We can com-

pare the relative difficulty of these two types by comparing

model performance on questions with a single spatial rela-

tionship and questions with a single same-attribute relation-

ship; results are shown in Figure 5. On query-attribute and

counting questions we see that same-attribute questions are

generally more difficult; the gap between CNN+LSTM+SA

on spatial and same-relate query questions is particularly

large (93% vs. 78%). Same-attribute relationships may re-

quire a model to keep attributes of one object “in memory”

for comparison, suggesting again that models augmented

with explicit memory may perform better on these ques-

tions.

4.4. Analysis by Question Topology

We next evaluate model performance on different

question topologies: chain-structured questions vs. tree-

structured questions with two branches joined by a logical

AND (see Figure 2). In Figure 6, we compare performance

on chain-structured questions with two spatial relationships

vs. tree-structured questions with one relationship along

each branch. On query questions, CNN+LSTM+SA shows

a large gap between chain and tree questions (92% vs. 74%);

on count questions, CNN+LSTM+SA slightly outperforms

LSTM on chain questions (55% vs. 49%) but no method

outperforms LSTM on tree questions. Tree questions may

be more difficult since they require models to perform two

subtasks in parallel before fusing their results.
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Question: There is a large object

that is on the left side of the large

blue cylinder in front of the rubber

cylinder on the right side of the pur-

ple shiny thing; what is its shape?

Effective Question: What shape is

a large object left of a cylinder?

4 6 8 10 12 14 16 18 20
Actual question size

20

40

60

80

100

A
cc

ur
ac

y

Query Attribute

2 4 6 8 10 12 14 16
Effective question size

20

40

60

80

100

A
cc

ur
ac

y

Query Attribute

Figure 7. Top: Many questions can be answered correctly with-

out correctly solving all subtasks. For a given question and scene

we can prune functions from the question’s program to generate

an effective question which is shorter but gives the same answer.

Bottom: Accuracy on query questions vs. actual and effective

question size. Accuracy decreases with effective question size but

not with actual size. Shaded area shows a 95% confidence interval.

4.5. Effect of Question Size

Intuitively, longer questions should be harder since they

involve more reasoning steps. We define a question’s size to

be the number of functions in its program, and in Figure 7

(bottom left) we show accuracy on query-attribute questions

as a function of question size.2 Surprisingly accuracy ap-

pears unrelated to question size.

However, many questions can be correctly answered

even when some subtasks are not solved correctly. For ex-

ample, the question in Figure 7 (top) can be answered cor-

rectly without identifying the correct large blue cylinder, be-

cause all large objects left of a cylinder are cylinders.

To quantify this effect, we define the effective question of

an image-question pair: we prune functions from the ques-

tion’s program to find the smallest program that, when ex-

ecuted on the scene graph for the question’s image, gives

the same answer as the original question.3 A question’s ef-

fective size is the size of its effective question. Questions

whose effective size is smaller than their actual size need

not be degenerate. The question in Figure 7 is not degener-

ate because the entire question is needed to resolve its ob-

ject references (there are two blue cylinders and two rubber

cylinders), but it has a small effective size since it can be

correctly answered without resolving those references.

In Figure 7 (bottom), we show accuracy on query ques-

tions as a function of effective question size. The error rate

of all models increases with effective question size, suggest-

ing that models struggle with long reasoning chains.

2We exclude questions with same-attribute relations since their max

size is 10, introducing unwanted correlations between size and difficulty.

Excluded questions show the same trends (see supplementary material).
3Pruned questions may be ill-posed (Section 3) so they are executed

with modified semantics; see supplementary material for details.

Question: There is a purple cube

that is in front of the yellow metal

sphere; what material is it?

Absolute question: There is a

purple cube in the front half of

the image; what material is it?
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Figure 8. Top: Some questions can be correctly answered using

absolute definitions for spatial relationships; for example in this

image there is only one purple cube in the bottom half of the im-

age. Bottom: Accuracy of each model on chain-structured ques-

tions as a function of the number of spatial relationships in the

question, separated by question type. Top row shows all chain-

structured questions; bottom row excludes questions that can be

correctly answered using absolute spatial reasoning.

4.6. Spatial Reasoning

We expect that questions with more spatial relationships

should be more challenging since they require longer chains

of reasoning. The top set of plots in Figure 8 shows ac-

curacy on chain-structured questions with different num-

bers of relationships.4 Across all three question types,

CNN+LSTM+SA shows a significant drop in accuracy for

questions with one or more spatial relationship; other mod-

els are largely unaffected by spatial relationships.

Spatial relationships force models to reason about ob-

jects’ relative positions. However, as shown in Figure 8,

some questions can be answered using absolute spatial rea-

soning. In this question the purple cube can be found by

simply looking in the bottom half of the image; reasoning

about its position relative to the metal sphere is unnecessary.

Questions only requiring absolute spatial reasoning can

be identified by modifying the semantics of spatial relation-

ship functions in their programs: instead of returning sets

of objects related to the input object, they ignore their in-

put object and return the set of objects in the half of the

image corresponding to the relationship. A question only

requires absolute spatial reasoning if executing its program

with these modified semantics does not change its answer.

The bottommost plots of Figure 8 show accuracy on

chain-structured questions with different number of re-

lationships, excluding questions that can be answered

4We restrict to chain-structured questions to avoid unwanted correla-

tions between question topology and number of relationships.
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Figure 9. In Condition A all cubes are gray, blue, brown, or yel-

low and all cylinders are red, green, purple, or cyan; in Condition

B color palettes are swapped. We train models in Condition A and

test in both conditions to assess their generalization performance.

We show accuracy on “query color” and “query material” ques-

tions, separating questions by shape of the object being queried.

with absolute spatial reasoning. On query questions,

CNN+LSTM+SA performs significantly worse when abso-

lute spatial reasoning is excluded; on count questions no

model outperforms LSTM, and on exist questions no model

outperforms Q-type mode. These results suggest that mod-

els have not learned the semantics of spatial relationships.

4.7. Compositional Generalization

Practical VQA systems should perform well on images

and questions that contain novel combinations of attributes

not seen during training. To do so models might need to

learn disentangled representations for attributes, for exam-

ple learning separate representations for color and shape in-

stead of memorizing all possible color/shape combinations.

We created the CLEVR Compositional Generalization

Test (CoGenT) to test models for this ability. CLEVR-

CoGenT contains two conditions: in Condition A all cubes

are gray, blue, brown, or yellow and all cylinders are red,

green, purple, or cyan; in Condition B these shapes swap

color palettes. Both conditions have spheres of all colors.

We retrain models on Condition A and compare their

performance when testing on Condition A (A → A) and

testing on Condition B (A → B). In Figure 9 we show accu-

racy on query-color and query-material questions, separat-

ing questions asking about spheres (which are the same in

A and B) and cubes/cylinders (which change from A to B).

Between A→A and A→B, all models perform about the

same when asked about the color of spheres, but perform

much worse when asked about the color of cubes or cylin-

ders; CNN+LSTM+SA drops from 85% to 51%. Models

seem to learn strong biases about the colors of objects and

cannot overcome these biases when conditions change.

When asked about the material of cubes and cylinders,

CNN+LSTM+SA shows a smaller gap between A→A and

A→B (90% vs 81%); other models show no gap. Hav-

ing seen metal cubes and red metal objects during training,

models can understand the material of red metal cubes.

5. Discussion and Future Work

This paper has introduced CLEVR, a dataset designed

to aid in diagnostic evaluation of visual question answering

(VQA) systems by minimizing dataset bias and providing

rich ground-truth representations for both images and ques-

tions. Our experiments demonstrate that CLEVR facilitates

in-depth analysis not possible with other VQA datasets: our

question representations allow us to slice the dataset along

different axes (question type, relationship type, question

topology, etc.), and comparing performance along these dif-

ferent axes allows us to better understand the reasoning ca-

pabilities of VQA systems. Our analysis has revealed sev-

eral key shortcomings of current VQA systems:

• Short-term memory: All systems we tested per-

formed poorly in situations requiring short-term mem-

ory, including attribute comparison and integer equal-

ity questions (Section 4.2), same-attribute relation-

ships (Section 4.3), and tree-structured questions (Sec-

tion 4.4). Attribute comparison questions are of par-

ticular interest, since models can successfully identity

attributes of objects but struggle to compare attributes.

• Long reasoning chains: Systems struggle to answer

questions requiring long chains of nontrivial reason-

ing, including questions with large effective sizes (Sec-

tion 4.5) and count and existence questions with many

spatial relationships (Section 4.6).

• Spatial Relationships: Models fail to learn the true

semantics of spatial relationships, instead relying on

absolute image position (Section 4.6).

• Disentangled Representations: By training and test-

ing models on different data distributions (Section 4.7)

we argue that models do not learn representations that

properly disentangle object attributes; they seem to

learn strong biases from the training data and cannot

overcome these biases when conditions change.

Our study also shows cases where current VQA systems

are successful. In particular, spatial attention [44] allows

models to focus on objects and identify their attributes even

on questions requiring multiple steps of reasoning.

These observations present clear avenues for future work

on VQA. We plan to use CLEVR to study models with ex-

plicit short-term memory, facilitating comparisons between

values [13, 18, 39, 42]; explore approaches that encourage

learning disentangled representations [5]; and investigate

methods that compile custom network architectures for dif-

ferent patterns of reasoning [2, 3]. We hope that diagnos-

tic datasets like CLEVR will help guide future research in

VQA and enable rapid progress on this important task.
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