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Abstract

This paper introduces a general setting for the con-

struction of data fidelity metrics between oriented or non-

oriented geometric shapes like curves, curve sets or sur-

faces. These metrics are based on the representation of

shapes as distributions of their local tangent or normal

vectors and the definition of reproducing kernels on these

spaces. The construction, that combines in one common

setting and extends the previous frameworks of currents

and varifolds, provides a very large class of kernel metrics

which can be easily computed without requiring any kind

of parametrization of shapes and which are smooth enough

to give robustness to certain imperfections that could result

e.g. from bad segmentation. We then give a sense, with syn-

thetic examples, of the versatility and potentialities of such

metrics when used in various problems like shape compari-

son, clustering and diffeomorphic registration.

1. Introduction

Context. Shape analysis has become one of the central

problem in many recent applications that ranges from au-

tomatic object recognition in computer vision and robotics

to the field of medical imaging where more and more ad-

vanced devices and protocols have enabled high resolution

acquisitions of a variety of anatomical structures with vary-

ing morphology across individuals or along time in longitu-

dinal studies.

The specific problems that are encountered obviously de-

pend on the nature of the applications and data. Yet, among

the issues that are most often involved in such studies, one

can mention in particular the quantification of shape dif-

ferences through adequate metrics, registration (i.e. esti-

mation transformations between two given shapes), or the

estimation of shape statistics like means, templates or gen-

erative models from an observed population of shapes. Nu-

merous methods have been proposed to address those ques-

tions for different shape modalities. Some of these methods,

[24, 7, 22, 21] to mention only a few, rely on the extraction

of a limited number of feature points (or landmarks). Other

methods like [12, 32, 4, 3, 36] instead consider shapes as

entire 2D or 3D images.

In many situations however, the more natural or com-

pact model for shapes is to work with curves or surfaces of

the ambient space which may have been obtained e.g. by

prior segmentation of images. This case involves particu-

lar challenges resulting from the complex nature of spaces

of curves and surfaces. The general goal of this paper is

to propose a fairly general construction of similarity met-

rics between a wide class of those objects that can be easily

used in multiple problems of shape analysis.

Relation to other works. Several frameworks have been

introduced in the past to define similarity metrics or mea-

sures between two given curves or surfaces. If metrics like

the Hausdorff or Gromov-Hausdorff distance [27] would

appear natural at first glance, they are however highly sensi-

tive to noise or topological irregularities and not necessarily

fitted for applications to inexact registration.

A class of approaches have attempted to go through

parametrization functions in order to represent and compare

shapes with for example square root velocity functions for

closed curves [35] or q-mappings for closed surfaces [25].

In both cases, enforcing parametrization-invariance is an es-

sential step that involves delicate and possibly costly opti-

mization over discrete reparametrizations.

The focus of this paper is rather on shape distances that

are directly invariant to parametrization. The approach we
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follow stems from the idea from geometric measure the-

ory of representing shapes as elements of a certain space

of distributions, which was first used for the definition of

shape similarity metrics in the seminal works of [17, 15].

These were based on the representations of oriented curves

or surfaces as mathematical currents. Later on, [11, 10] in-

troduced the alternative but orientation-invariant represen-

tation known as varifolds before the higher order model of

normal cycles was recently investigated in [31]. Since then,

all these different frameworks have found numerous appli-

cations to the morphological analysis of cortical surfaces

[26, 30], brain sulci [31], white matter fiber bundles [13, 18]

or registration of lung vessels [29]...

Contributions. The objectives of this paper are several.

We first propose to unify under one common and extended

framework currents and varifolds’ metrics for embedded

curves and surfaces. This is based on an adaptation of the

concept of oriented varifold; we show how this representa-

tion allows to construct a general class of shape similarity

metrics that applies to any type of curve or surface (open or

closed) or even reunions of multiple objects. Furthermore,

these (Hilbert) metrics have the advantages of being inde-

pendent to parametrization or to the sampling in the case of

discrete shapes, efficiently computable with a closed-form

expression and robust to small topological perturbations or

potential segmentation issues. Besides the particular cases

of currents and (unoriented) varifolds, we show that we can

easily obtain from our construction new metrics with in-

termediate properties. We make a thorough comparison of

the characteristics and behavior of a few distinct choices

of those similarity measures and illustrate various possible

uses. Our implementation is also freely available at [9].

2. Notation and preliminaries

In all the following, and although the framework we

present can be extended to any dimension or codimension,

we will restrict the exposition by considering shapes to be

smooth manifolds or reunion of smooth manifolds (possibly

with boundaries) of dimension 1 or 2 and embedded in the

ambient space Rn with n = 2 or n = 3. These include most

of the usual geometrical shapes in 2D or 3D like open and

closed planar curves, 3D curves, surfaces, curve bundles...

Any such individual submanifold X (curve or surface)

inherits the Riemannian metric and volume measure de-

noted vol induced from the embedding Euclidean space.

At each point x ∈ X , there exists a tangent space TxX
which is a linear subspace of Rn of dimension 1 or 2. An

orientation of X consists in giving an orientation to TxX
for all x ∈ X in which case each oriented tangent space

can be represented as an element of an oriented Grassman-

nian. With shapes of dimension or codimension 1, such ori-

ented Grassmannian can be in both cases identified to the

unit sphere S
n−1 and TxX represented by the unit oriented

tangent vector to the curve or unit oriented normal vector

to the surface at x that we shall write ~t(x). Note that the

choice of the opposite orientation for the tangent space will

change ~t(x) into −~t(x). A shape is said to be orientable in

the usual sense if there exists a smooth orientation applica-

tion x 7→ ~t(x) over the entire X .

3. Shape representation as oriented varifolds

3.1. Representation of smooth submanifolds

With the notation above, let X be a smooth submanifold

of Rn (curve or surface) with finite total volume vol(X) <
∞. In similar fashion as [16, 17, 11], we associate to X
an oriented varifold µX , i.e. a distribution on the space

R
n × S

n−1 of (position × tangent space orientation) and

defined as follows:

µX(ω) =

∫

X

ω(x,~t(x))dvol(x) (1)

for any smooth test function ω : R
n × S

n−1 → R. In the

distribution sense, we may write µX =
∫

X
δ(x,~t(x))dvol(x)

with the Dirac delta δ(x,~t(x))(ω)
.
= ω(x,~t(x)) and the iden-

tification X → µX gives indeed an injection from the set

of smooth submanifolds to the dual W ∗ of a certain space

W of test functions on R
n×S

n−1 provided this latter space

is large enough. Specific choices of spaces W will be dis-

cussed with more details below.

Remark 1. The distribution µX only depends on the shape

and not on any particular parametrization of X , but does

depend a priori on the choice of orientation given to each

tangent space through the vector ~t(x). In addition, the

oriented varifold representation is additive in the sense

that reunion of two distinct submanifolds X and Y satisfy

µX∪Y = µX + µY .

Remark 2. This general shape representation includes as

particular cases both the previous frameworks of currents

[16] and (unoriented) varifolds [11]. Each simply con-

sists in restricting to spaces of test functions with particular

forms as we will see hereafter.

3.2. Polyhedral shapes’ finite approximations

Oriented varifolds can be then further used to embed

within the same distribution space W ∗ discrete curves or

surfaces or reunions of those. Indeed, such discrete shapes

are typically polyhedral objects which we can write in gen-

eral as X =
⋃F

i=1 Xi where the cells Xi are either line

segments in the curve case or triangles in the case of 3D

triangulated surfaces and are distinct to each other (modulo

their boundaries).

Following Remark 1, we associate to such X =
⋃F

i=1 Xi

the oriented varifold µX =
∑F

i=1 µXi
where each µXi

is
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Approximation

Figure 1. Oriented varifold approximation of triangulated faces.

the oriented varifold associated to the flat cell Xi according

to eq. (1). As illustrated by Figure 1, we can make the

approximation:

µXi
(ω) ≈

∫

Xi

ω(xi, ~ti)dvol(x) = riω(xi, ~ti) (2)

where xi is the barycenter of all vertices defining Xi, ~ti ∈
S
n−1 the orientation vector directing the linear subspace

spanned by Xi and ri
.
= vol(Xi) the length (resp area)

of the segment (resp triangle). This leads to replace each

µXi
by a single weighted Dirac ri.δ(xi,~ti)

. Then, writing

µ̃X =
∑F

i=1 ri.δ(xi,~ti)
one has µX ≈ µ̃X with the follow-

ing approximation bound:

Proposition 1. If X is a shape contained inside the com-

pact K of Rn then for any C1 test function ω:

|µX(ω)− µ̃X(ω)| ≤ ‖∂xω‖∞,K .vol(X). max
1≤i≤F

diam(Xi)

Proof. For any cell Xi, since for all x ∈ Xi, ~t(x) = ~ti, we

have

|(µXi
− riδ(xi,~ti)

)(ω)| ≤

∫

Xi

|ω(x,~t(x))− ω(xi,~ti)|dvol

≤ vol(Xi)‖∂xω‖K,∞diam(Xi)

with ‖∂xω‖∞,K denoting the sup-norm over K of the

derivatives of ω with respect to the first variable and

diam(Xi) = maxx,y∈Xi
|x − y| the diameter of the cell.

The result follows by just summing over all cells.

Therefore, the finite sum of Diracs µ̃X provides an ac-

ceptable approximation of the polyhedral shape X in terms

of oriented varifolds as long as the size of cells remains

small enough.

Another interesting property of this oriented varifold set-

ting is that it provides consistency between discrete and

continuous shape representations in the sense that the se-

quence of discrete distributions obtained from more and

more refined polyhedral approximations of a given contin-

uous curve or surface will converge, under certain techni-

cal assumptions, to the oriented varifold of the continuous

shape. Precise conditions and proof could be generalized

from similar recent results on currents and varifolds that

have been derived in [28] and [1] but this would go beyond

the scope of this paper. Yet an important consequence is

that such representations are robust to discrete resampling.

4. Kernel spaces and metric properties

We will proceed in defining a class of metric structures

on spaces of oriented varifolds that will in turn induce met-

rics between shapes. These dual metrics on W ∗ are ob-

tained by introducing more specific Hilbert spaces for the

set of test functions W . For such spaces, Reproducing Ker-

nel Hilbert Spaces (RKHS) turn out to be particularly well

suited for practical computations on discrete shapes.

4.1. RKHS of oriented varifolds

We remind that a positive definite kernel on any set M
is a function k : M × M → R such that for any fam-

ily (x1, . . . , xp) ∈ Mp of distinct points in M the ma-

trix (k(xi, xj))i,j=1,...,p is symmetric positive semidefinite.

To any such kernel is associated, through Moore-Aronszajn

theorem [2], a Hilbert space of functions on M called the

RKHS of k. Reproducing kernels have been vastly used for

instance in machine learning [20].

In the present case, we wish to construct real kernels over

the product space Rn×S
n−1 and take the associated RKHS

as the test functions’ space W in the oriented varifold rep-

resentation. We consider, in this paper, a particular class of

separable kernels defined as follows:

Proposition 2. If kpos and kor are two positive definite ker-

nels of class C1 on R
n and S

n−1 then the tensor product

k = kpos⊗kor is a C1 positive definite kernel on R
n×S

n−1.

In addition, the RKHS of k is continuously embedded in

C1(Rn × S
n−1,R).

This is a consequence of classical results on the tensor

product of reproducing kernels (c.f [6] 1.4.6). The repro-

ducing kernel property implies in addition that all Diracs

δ(x,~t) belong to W ∗ and that the dual metric satisfies

〈δ(x1,~t1)
, δ(x2,~t2)

)〉W∗ = k((x1,~t1), (x2,~t2))

= kpos(x1, x2)kor(~t1,~t2) . (3)

Although this separable structure does not cover the entire

possible set of kernels on R
n × S

n−1, the tensor product

construction has the advantage of still providing a large

class of metrics through the various possible choices of kpos
and kor while being easy to interpret in terms of the com-

bination between spatial and orientation characteristics. In-

deed, kpos can be thought as the measure of proximity be-

tween point positions in the embedding space Rn while kor,
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on the other hand, quantifies the proximity between the as-

sociated tangent spaces represented by vectors on the unit

sphere.

An additional relevant property for the metric is the

equivariance to rigid motion, namely that for any affine

isometry x 7→ Ax + b one has for any two Diracs in W ∗

〈δ(Ax1+b,A~t1)
, δ(Ax2+b,A~t2)

〉W∗ = 〈δ(x1,~t1)
, δ(x2,~t2)

〉W∗ .

We have the following straightforward characterization:

Proposition 3. Within the previous class of separable ker-

nels, the metric W ∗ is equivariant to the action of rigid

transformations for kernels k of the form:

k((x1,~t1), (x2,~t2)) = kpos(x1, x2)kor(~t1,~t2)

= ρ(|x1 − x2|)γ(~t1 · ~t2) . (4)

Conversely, conditions on functions ρ and γ to obtain

positive definite kernels have also been more precisely ex-

amined. The results of [33] have shown that admissible ρ
can be defined as the Bessel transform of a finite positive

Borel measure on R+. Similarly, a necessary and sufficient

condition on γ (cf [37]) is that γ(u) =
∑∞

k=0 akP
(λ)
k (u)

with ak ≥ 0,
∑∞

k=0 akP
(λ)
k (1) < ∞ and P

(λ)
k the ultra-

spherical polynomials of order λ = (n − 1)/2. Note that

another possible (but not exhaustive) way of constructing

admissible γ is by restriction to the unit sphere of radial

kernels on R
n.

A particular subclass of the kernels of Proposition 3 are

the ones such that γ(u) = u and that correspond to the

framework of currents. Another subclass are the ones in-

variant to reorientation i.e. such that γ(−u) = γ(u) (or

ak = 0 for odd k in the decomposition with ultraspherical

polynomials) which results in metrics on W ∗ also indepen-

dent on the orientation: this precisely corresponds to the

framework of unoriented varifolds developed previously

in [11, 14], cf Section 4.3 for examples.

4.2. Metrics induced on shapes

We can now restrict the metric on W ∗ defined in 4.1 to

shapes through the identification of X as µX ∈ W ∗. How-

ever, this identification may not be injective if the space W
is too ’small’ which may only result in a pseudo-metric be-

tween shapes. A sufficient condition is the following:

Proposition 4. Let kpos and kor be two kernels as in Propo-

sition 2 such that in addition kpos is a C0-universal ker-

nel on R
n and for all ~t ∈ S

n−1, kor(~t,~t) > 0. Then

dW∗(X,Y ) = ‖µX − µY ‖W∗ defines a distance on the

set of shapes.

Proof. We only need to show that dW∗(X,Y ) = 0 ⇒
X = Y . Let’s write Wpos and Wor for the RKHS on

R
n and S

n−1 associated to kernels kpos and kor. The C0-

universality property of kpos precisely means that Wpos is

dense in the space of continuous functions on R
n vanish-

ing at ∞ [8]. Now, let’s assume that X and Y are both

smooth curves or surfaces (the case of reunions of those

can be treated similarly) such that dW∗(X,Y ) = 0 and

X 6= Y . Then there exist x0 ∈ X and r > 0 such

that B(x0, r) ∩ Y = ∅. Consider the function g de-

fined by g(·) = kor(~t(x0), ·) ∈ Wor. Since g(~t(x0)) =
kor(~t(x0),~t(x0)) > 0, g is continuous and X is smooth,

x 7→ g(~t(x)) is strictly positive on a certain ball B(x0, r
′)∩

X ⊂ B(x0, r). Now take h a continuous positive function

on R
n supported in B(x0, r

′) and strictly positive at x0. By

density, there exists a sequence (hn) ∈ (Wpos)
N converging

uniformly to h. Then

0 = (µX − µY )(hn ⊗ g)

=

∫

X

hn(x)g(~t(x))dvol(x)−

∫

Y

hn(y)g(~t(y))dvol(y)

n→∞
−−−−→

∫

X∩B(x0,r′)

h(x)g(~t(x))dvol(x) .

But since h and x 7→ g(~t(x)) are both strictly positive on

B(x0, r
′), we end up with a contradiction.

Thanks to both eq. (1) and the reproducing kernel prop-

erty of eq. (3), for any two submanifolds X and Y , we have

the following simple and explicit expression for the metric:

〈µX , µY 〉W∗

=

∫∫

X×Y

kpos(x, y)kor(~t(x),~t(y))dvolX(x)dvolY (y) .

(5)

Note that the induced distance dW∗ inherits the equiv-

ariance to rigid motion for kernels chosen as in Propo-

sition 3, i.e. that for any affine isometry S, one has

dW∗(S(X), S(Y )) = dW∗(X,Y ).
Similarly, with the discrete approximations of polyhedral

shapes described in Section 3.2, we obtain a finite equiva-

lent of (5) that writes:

〈µ̃X , µ̃Y 〉W∗ =

FX

∑

i=1

FY

∑

j=1

kpos(xi, yj)kor(~t
X
i ,~tYj )r

X
i rYj

(6)

for the two discretizations µ̃X =
∑FX

i=1 r
X
i δ(xi,~tXi ) and

µ̃Y =
∑FY

j=1 r
Y
j δ(yj ,~tYj ). Note that thanks to the C1 reg-

ularity of both kernels, it is straightforward to deduce from

Proposition 1 a similar bound on the approximation error

for the W ∗ metric, i.e. that ‖µX − µ̃X‖W∗ is again con-

trolled by the max diameter of all cells in X . A second

consequence of the regularity is that the metric of (6) is dif-

ferentiable with respect to the positions of shapes’ vertices

and the gradient is easily computed by chain rule differen-

tiation.
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4.3. Choosing kernels

From now on, we focus the discussion on kernels of the

form given by (4). The particularly simple form of this fam-

ily of metrics makes it very convenient for an implementa-

tion that preserves the flexibility in the choices of kernels.

For the radial kernel kpos, typical choices are the

widely used Gaussian kpos(x, y) = e−
|x−y|2

σ2 or Cauchy

kpos(x, y) = 1
1+|x−y|2/σ2 kernels in which parameter σ

gives the spatial scale at which the metric is sensitive. Both

satisfy the C0-universality assumption of Proposition 4, cf

[8]. We shall be mostly experimenting with Gaussian ker-

nels in the simulations of next section. Our implementation

also includes sums of arbitrary number of Gaussians with

different scales as an attempt to allow multiscale strategies.

The equivariant spherical kernel kor on the other hand

has deep influence on the fundamental properties of the re-

sulting metrics. Below, we examine several distinctive ex-

amples for γ, some of which retrieve, as special cases, pre-

viously introduced shape dissimilarity terms:

• γ(u) = 1 (distributions): gives metrics that discard

the orientation vector information to only evaluate the

relative positions between points in the two shapes.

Those metrics can be equivalently obtained from the

representation of shapes as standard distributions on

R
n, which was the initial approach of [16].

• γ(u) = u (currents): kor is the restriction of the linear

kernel on S
n−1. Because of linearity, µX can be inter-

preted as an element of the dual of the space of vector

fields or in other words as a current and the family

of metrics (5) recovers exactly the framework intro-

duced in [17, 15]. Such metrics are only well-suited

for orientable shapes. Given a surface or curve X , we

denote X̌ the same surface or curve but oppositely ori-

ented. The linearity of the kernel implies in that case

that µX̌ = −µX .

• γ(u) = u2 (unoriented varifolds): corresponds to the

Binet kernel on S
n−1, invariant to orientation. This

is the simplest example of unoriented varifold metrics

used in [14]. Other orientation-invariant kernels have

also been proposed and studied in [11].

• γ(u) = e
2u

σ2
s (oriented varifolds): in that case, kor is

the extrinsic Gaussian kernel on the sphere (the restric-

tion of the Gaussian kernel of Rn to S
n−1). The shapes

need to be orientable and the kernel is sensitive to the

orientation but non-linear, the scale σs enforces the

angular sensitivity of the metric. Many other kernels

with similar properties can be used, in particular the

intrinsic heat kernels on S
n−1 although its expression

involves decomposition into the ultraspherical polyno-

mial basis which is thus more numerically intensive.

Figure 2. Behavior of the different metrics. On left, a shape with

thin elongated components in red. On right, a plot of the ratios be-

tween the norm of the red part with the norm of the entire shape for

increasing scales σ for the Gaussian function ρ. Note the rapid de-

crease in the case of currents, due to the cancellation of oppositely

oriented pieces ’close’ to each other with respect to σ.

With both varifold representations, the non-linearity of kor
prevents cancellations of thin structures when compared to

currents, see Figure 2. Conversely, this linearity property

enforces more regularity in some specific registration prob-

lems to model shape growth [23].

5. Experiments

We now give several illustrations of the respective inter-

ests and drawbacks of these different metrics, in particular

the novel oriented varifolds’ metric, on a few problems re-

lated to shape analysis and processing. We use the specific

kernels described in Section 4.3 for currents, unoriented and

oriented varifolds.

5.1. Shape clustering

In this section, we present the experimental results for

object retrieval on the standard shape dataset Kimia-216. It

consists in 18 classes with 12 objects in each. The contour

of each shape is extracted from its smoothed image. We do

not control the final sample of each contour. Curves have

between 100 and 305 points. To address the question of

scale invariance, we fix an oriented varifold’s metric in ac-

cordance with the average scale of the data set and we apply

a scaling to all the shapes such that, in fine, they all have the

same norm. From the previous equivariant metrics on W ∗,

we then obtain a rigid-invariant metrics on shapes by solv-

ing the rigid registration problem:

dinv(X,Y ) = inf
S rigid

dW∗(X,S(Y )) . (7)

The top 11 closest matches, obtained with the rigid-

invariant current, oriented and unoriented varifolds’ met-

rics, are shown in Table 5.1. The metrics are defined with

a Gaussian radial kernel for kpos, which depends on the

scale parameter σ and the three scalar functions γ intro-

duced in Section 4.2, the last of which depends on an addi-

tional parameter σs. We tested the classification for a small

set of different parameters. The optimal results were ob-
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Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th Total

Shape context [5] 214 209 205 197 191 178 161 144 131 101 78 76.13

Shock graph [34] 216 216 216 215 210 210 207 204 200 187 163 94.44

Chordal axis transform [38] 216 216 216 214 215 212 213 208 204 195 168 95.83

Current 214 211 205 202 200 203 197 197 189 160 150 89.56

Unoriented varifold 214 216 212 210 210 207 202 201 191 171 150 91.92

Oriented varifold 215 214 214 213 212 206 206 202 192 185 161 93.43

Table 1. Top 11 closest matching shapes for Kimia-216. The oriented varifold representation outperforms the current and unoriented

varifold representations, with a total retrieval result of 93.43% in the nearest 11 matches.

Method Retrieval accuracy

Current 96.30

Unoriented varifold 96.57

Oriented varifold 97.92

Table 2. Bull Eye Score (retrieval rate among the 24 nearest neigh-

bors, query included) of proposed methods for Kimia-216.

Figure 3. Least accurate top 12 retrieval of a query shape.

tained with σ = 1.5 and σs = .5 for oriented varifolds,

σ = 1.5 for unoriented varifolds and σ = 1 for currents.

The final score of the classification is significantly re-

duced by few queries with a particularly low retrieval score

as displayed in Figure 3.

5.2. Diffeomorphic registration

5.2.1 The deformation model

As a second class of applications, we turn to the use of

the previous metrics as data fidelity terms for diffeomorphic

registration algorithms of curves and surfaces. The frame-

work we propose is sufficiently flexible to be embedded in

a variety of inexact registration methods; in this paper, we

focus on the Large Deformation Diffeomorphic Metric

Mapping (LDDMM) model described in [4, 39].

In this model, diffeomorphisms are constructed as flows

of time-dependent velocity fields t ∈ [0, 1] 7→ vt, each vt
belonging to a predefined Hilbert space V of smooth vector

fields. If X0 denotes the template shape and X1 the target,

then the registration of X0 to X1 is written as the minimiza-

tion problem:

min
v∈L2([0,1],V )

{
∫ 1

0

‖vt‖
2
V dt+ λ‖µφv

1
(X0) − µX1

‖2W∗

}

(8)

where φv
1(X0) is the deformed template by φv

1 obtained by

Current Unor varifold Or varifold
Figure 4. Diffeomorphic registration using the different metrics of

a template horse (blue dotted curve) to the target (in red). The

estimated deformed template is shown in blue together with defor-

mation grid. Kernel kpos is in each case a Gaussian with spatial

scale σ = 15.

the flow equation ∂tφ
v
t = vt ◦ φ

v
t with φv

0 = Id and λ > 0
is a weight parameter between the regularization and data

fidelity terms. This problem is numerically solved for dis-

crete shapes through a geodesic shooting procedure that in-

volves the computation of both oriented varifold distances

and their gradient with respect to vertex positions.

5.2.2 Registration of closed curves

We first compare registration results on (oriented) closed

curves for current, unoriented and oriented varifolds. Fig-

ure 4 shows the template, target and registered shape as

well as the final deformation grid in each case. With cur-

rents, notice the apparition of degenerate structures as well

as the fact that the two humps are not well recovered: this is

another manifestation of the cancellation effect previously

mentioned. These effects are totally avoided in the two

other cases. However, unoriented varifolds, by being in-

sensitive to the orientation, tend to have more difficulties

in reproducing the convoluted double hump by instead cre-

ating a single ’average’ hump. Oriented varifolds achieve

very accurate registration in that case.

5.2.3 Registration of set of curves

We consider now a simple example involving disconnected

’bags’ of curves instead of the previous single connected

shapes. These were obtained by extracting sketches from

two images of faces using the Line Segment Detector al-
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Figure 5. Registration between two face sketches using unoriented

varifolds.

gorithm of [19]. In this situation, orienting consistently

each separate segment is obviously a very cumbersome is-

sue. Yet the unoriented varifold metric allows to compare

those objects without requiring that orientation step.

5.2.4 Registration of noisy shapes

Data are often observed with an additive noise. In that sit-

uation, the cancellation property of currents can be used

advantageously to suppress the effects of noise in the es-

timated deformation as shown in Figure 6 and 7. This

holds for kernel sizes σ chosen sufficiently large compared

to noise induced oscillations. On the other hand, the ori-

ented and unoriented varifold approaches are consistently

much more affected by noise. Note, however, that if both

the template and the target present similar type and level

of noise, all three approaches will generally lead to good

registrations.

Current Unoriented Oriented Noisy

varifold varifold template
Figure 6. Registration with noisy target. Note that non-linear ker-

nels (oriented or not) are much more sensitive to noise as opposed

to currents. In the last experiment, noise is also added to the tem-

plate and the results are similar for the three metrics.

5.2.5 Registration of multi-objects

Multi-modal data analysis is a common problem in medi-

cal imaging. We present therefore in Figure 8 an example

of registration involving multi-shapes that mix objects of

various types. The source and target shapes contain each a

surface (a hand with 5000 and 5055 triangles respectively)

Smooth surface Noisy version

Deformation: t = 0 t = 0.3 t = 0.6

t=1 Overlap with noise-free surface
Figure 7. Registration of a sphere (2560 vertices) on a noisy sur-

face (1165 vertices) using currents. The template shape evolution

along the deformation is shown as well as the comparison of the

registered shape and the initial noise-free surface.

and a bundle of curves (50 and 53 curves respectively con-

taining 9 points each). To fix the notation, X = (X1, X2)
denotes the source multi-shape and Y = (Y 1, Y 2) denotes

the target multi-shape where the first object corresponds to

the surface part and the second one to the curve part.

To register two of these multi-shapes, we consider a vari-

ant of the optimization problem of (8) that writes

min
v∈L2([0,1],V )

{
∫ 1

0

‖vt‖
2
V dt+ λ1‖µφv

1
(X1) − µY1

‖2W∗
1

+ λ2‖µφv
1
(X2) − µY2

‖2W∗
2

}

,

where λ1, λ2 > 0 are weighting parameters. It is important

to properly calibrate the λi’s as the order of magnitude of

the two varifold data attachment terms may be very differ-

ent. Finally note that the deformation φv
1 is common to the

two sub-shapes, whereas the data attachment term is spe-

cific to each sub-shape.

5.2.6 Registration onto an incomplete shapes

Kernel-based oriented varifold distances coupled with the

LDDMM framework introduced Section 5.2.1 can be read-

ily used even when the mesh of the data at hand has missing

parts.

In our experiments, we assume that the source shape is

complete whereas the target shape has a proportion (1− p)
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t = 0 t = 1/5 t = 2/5

t = 3/5 t = 4/6 t = 1
Figure 8. Registration, with unoriented varifolds, of multi-shapes

containing each a surface and a set of curves. Target shape is in

red.

t = 0 t = 1/3 t = 2/3 t = 1
Figure 9. Registration of an ellipsoid on a dolphin with 70% miss-

ing triangles, using oriented varifold data attachment term.

of missing triangles. For instance, in Figure 9 the target

dolphin mesh contains p = 30% of triangles of the complete

mesh (originally containing 14207 triangles). The removed

faces were picked uniformly at random. The source shape

is an ellipsoid containing 20000 triangles. To give some

perspective on the numerical cost, computing the oriented

varifold distance between the source and the complete target

typically takes 0.1 second with our CUDA implementation

on a Nvidia Geforce GTX 780 Ti.

In order to get a coherent registration on such an incom-

plete target, it is, however, necessary to adjust for the de-

ficiency in total area of the target. The orientation varifold

representation allows to do so very conveniently by simply

re weighting the target oriented varifold with a single con-

stant equal to an estimation of the proportion of missing

triangles. Then the registration problem is replaced by:

min
v∈L2([0,1],V )

{
∫ 1

0

‖vt‖
2
V dt+ λ‖µφv

1
(X) −

µY

p ‖2W∗

}

where (1 − p) is the proportion of missing triangles in the

target shape Y . Figure 10 shows some experiments where

the proportion p is known. Registration results look glob-

ally good even for small p and seem almost perfect for any

p greater than 30%. Below this value, the registration start

p = 100% p = 30% p = 5%
Figure 10. Three registrations onto a target with various ratios of

missing faces. The proportion (1 − p) of missing triangles is

known. Corresponding target shapes are on the first row. De-

formed ellipsoids are plotted on the second row. Comparison be-

tween the deformed ellipsoid and the complete target are shown

on the third row.

p = 1 p = 0.7 p = 0.5 target
Figure 11. Registered ellipsoid onto a dolphin with missing trian-

gles as in Figure 9. The true proportion of triangles of the target

is p∗ = 0.6. When p > p∗ (resp. p < p∗) the resulting matching

looks thinner (resp. bulgy) due to the difference in total area.

to slightly deteriorate and spurious deformations may af-

fect the mesh in area with complex geometries. If the true

proportion p∗ is unknown, the quality of the registration is

affected by the value of the chosen p as shown in Figure 11.

6. Conclusion

In this paper, we have proposed a general framework

for 2D and 3D shape similarity measures, invariant to

parametrization and equivariant to rigid transformations. In

this simple and efficient framework that encompasses cur-

rents and unoriented varifolds, the choice of the metric re-

duces to scalar functions with only one or two scale parame-

ters that parametrize families of kernels. A numerical tool-

box is freely available at [9]. It includes all the functions

introduced in this paper and allows to readily define new

customized kernel metrics.

We illustrated through numerous examples that these

shape representations and associated metrics are well-suited

for large classes of data structures and highlighted the spe-

cific features for different sub-categories of those metrics.

Beyond the use as fidelity terms for registration, we wanted

to emphasize how such a framework could be also directly

applied in shape clustering or classification problems.
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[11] N. Charon and A. Trouvé. The varifold representation of

non-oriented shapes for diffeomorphic registration. SIAM

journal of Imaging Sciences, 6(4):2547–2580, 2013. 2, 4, 5

[12] P. Dupuis, U. Grenander, and M. I. Miller. Variational

problems on flows of diffeomorphisms for image matching.

Quarterly of applied mathematics, 56(3):587, 1998. 1

[13] S. Durrleman, P. Fillard, X. Pennec, A. Trouvé, and N. Ay-
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