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Abstract

We present a generative attribute controller (GAC), a

novel functionality for generating or editing an image while

intuitively controlling large variations of an attribute. This

controller is based on a novel generative model called the

conditional filtered generative adversarial network (CF-

GAN), which is an extension of the conventional conditional

GAN (CGAN) that incorporates a filtering architecture into

the generator input. Unlike the conventional CGAN, which

represents an attribute directly using an observable vari-

able (e.g., the binary indicator of attribute presence) so its

controllability is restricted to attribute labeling (e.g., re-

stricted to an ON or OFF control), the CFGAN has a fil-

tering architecture that associates an attribute with a multi-

dimensional latent variable, enabling latent variations of

the attribute to be represented. We also define the filtering

architecture and training scheme considering controllabil-

ity, enabling the variations of the attribute to be intuitively

controlled using typical controllers (radio buttons and slide

bars). We evaluated our CFGAN on MNIST, CUB, and

CelebA datasets and show that it enables large variations

of an attribute to be not only represented but also intuitively

controlled while retaining identity. We also show that the

learned latent space has enough expressive power to con-

duct attribute transfer and attribute-based image retrieval.

1. Introduction

In computer vision and machine learning, generative im-

age modeling has been actively investigated to explore the

“secret” behind images. In particular, an open issue has

been to learn a latent space that has low dimensionality but

is so expressive that we can extract realistic images from it.

However, recent studies on generative image modeling with

deep neural networks [12, 22, 40] have given us a clue to

a solution. These studies presented promising results, in-

dicating that their methods enable the learning of a latent

What types of glasses fit my face?

How can I modify the facial expression?

Figure 1. Practical examples of generative attribute controller. Our

goal is to develop functionality for generating or editing image

while intuitively controlling variations of attribute.

space from which we can randomly generate images with

high visual fidelity. However, it is not easy to extract a de-

sired image from this space because the variables are highly

entangled in the space, and the individual dimensions do not

correspond to specific semantic features.

To solve this problem, we aim to learn a latent space that

is not only expressive but also so controllable that a user can

intuitively find and obtain a desired image. In particular, we

focused on the controllability of attributes and developing a

generative attribute controller (GAC) with which a user can

generate or edit an image while intuitively controlling the

variations of an attribute. Figure 1 shows practical examples

of a GAC.

To develop a “good” GAC, we need to obtain a latent

space that is (1) disentangled, (2) expressive, and (3) con-

trollable. First, attributes and identity need to be disentan-

gled in the latent space to change the attributes indepen-

dently from the identity. For example, when modifying the

facial expression in a portrait, a user wants to do so with-

out compromising the person’s identity. Second, the la-
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tent space needs to be expressive enough on attributes as

to provide the attribute change that a user imagines. This

is a challenging task because an “attribute” (e.g., “glasses”)

has many variations (e.g., sunglasses, round glasses, and

thin glasses). Third, controllability is important because our

goal is to enable a user to intuitively control attributes.

To satisfy these three requirements, we propose a gen-

erative model called the conditional filtered generative ad-

versarial network (CFGAN), which is an extension of the

conditional GAN (CGAN) [11, 35] that incorporates a fil-

tering architecture into the generator input. The CFGAN

disentangles attributes and identity by learning an attribute-

conditional generator and discriminator in an adversarial

process. In fact, this learning scheme is the same as the

CGAN, but we introduce a simple but powerful modifica-

tion to the CGAN to obtain expressiveness and controlla-

bility. The CGAN represents each attribute using an ob-

servable variable (e.g., the binary indicator of attribute pres-

ence) so its controllability is restricted to attribute labeling

(e.g., restricted to an ON or OFF control). In contrast, the

CFGAN has a filtering architecture that associates each at-

tribute with a multi-dimensional latent variable. This al-

lows each attribute to be represented more expressively,

i.e., multi-dimensionally. To achieve controllability, we de-

veloped three types of filtering architectures that enable a

user to control attributes using typical controllers (radio but-

tons and slide bars). We evaluated our CFGAN on vari-

ous types of data, i.e., digits (MNIST), birds (CUB), and

faces (CelebA). These results show that our CFGAN can

not only represent large variations of an attribute but change

attributes while retaining identity. We also show that the

learned latent space has enough expressive power to con-

duct attribute transfer and attribute-based image retrieval.

Contributions: Our contributions are summarized as fol-

lows. (1) We present a novel functionality called a GAC

with which a user can generate and edit an image while

intuitively controlling large variations of an attribute. (2)

To learn a disentangled, expressive, and controllable latent

space, we propose a deep generative model called the CF-

GAN. (3) The experimental evaluation indicates the con-

trollability and disentanglement in attribute-based image

generation and editing as well as the expressiveness in at-

tribute transfer and attribute-based image retrieval.

2. Related Work

Image Editing: Image editing has been actively investi-

gated in computer graphics, and various tasks have been

tackled, e.g., from color modification (e.g., color transfer

[39] and colorization [29]) to content modification (e.g.,

missing data interpolation [2] and image warping [1, 15]).

There are two major approaches of attribute-based image

editing: example-based [14, 30, 42, 48] and model-based

[15, 20]. An example-based approach extracts an attribute-

related patch from a reference image and transfers it to a

target one. This enables attributes to be modified in var-

ious ways by using various reference images, but it re-

quires images under special conditions (e.g., frontal faces

[30], lightly made-up faces [14, 42], and reference images

of the same persons [48]). A model-based approach con-

structs a model and modifies an image on the basis of the

model. Model-based approaches handling unconstrained

images have recently been proposed [15, 20], but they are

task-specific and cannot be applied to arbitrary attributes.

The reason these previous studies were limited is that they

only obtained low-level information of images. In contrast,

we use a deep generative model to obtain high-level infor-

mation. Few studies [51, 4] have been conducted to attempt

to edit an image using deep generative models. For these

studies, user interaction in a low-level space (e.g., sketching

in a photo) was assumed, but we assume this in a high-level

space (e.g., controlling the value in the latent space).

Deep Generative Models: A large body of work exists on

representation learning with deep generative models. Early

studies were conducted to attempt to learn representation in

a unsupervised fashion by using restricted Boltzmann ma-

chines or stacked auto-encoders [16, 17, 41, 44] and more

recently stochastic neural networks [3, 13, 22, 40], adversar-

ial networks [6, 12, 38], and autoregressive models [43]. In

contrast, several studies were conducted to attempt to learn

disentangled representation in a supervised fashion. Most

studies used supervised data directly as input or output of

the network [8, 11, 21, 34, 35, 47, 49, 52]. To the best of

our knowledge, few studies [24, 33] have used supervised

data to learn the latent variations of these data. Deep con-

volutional inverse graphics networks (DC-IGNs) [24] use

a clamping technique to learn variations of graphics codes.

They provide promising results, but their technique is dif-

ficult to apply to natural images because they use a graph-

ics engine to obtain the training data. Adversarial autoen-

coders (AAEs) [33] incorporate supervised data in adversar-

ial training to shape the distribution of the latent variables.

The results showed that AAEs enable complicated distri-

butions to be imposed, but applicable data are limited (e.g.

gray scale or small images) because the training procedure

was still not well established. In contrast, the CFGAN is a

natural extension of a GAN and can be applied to compli-

cated datasets based on recent progress in this area [5, 38].

Attribute Representation: In computer vision, how to

represent attributes has been actively discussed. Early stud-

ies represented an attribute as a binary value indicating the

presence or absence of the attribute [10, 25, 26]. However,

for large variations of an attribute, this binary representa-

tion is not only restrictive but unnatural. To overcome this

problem, a relative attribute indicating the strength of an at-

tribute in an image with respect to others was developed
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(c) CFGAN

Generator Discriminator

(b) CGAN

Generator Discriminator

(a) GAN

Generator Discriminator

Figure 2. Differences in network architectures. Dark gray indicates latent variables, while light gray indicates observable variables. Vari-

ables surrounded with green lines can be used to control attribute. (a) In GAN, attribute is not explicitly represented, so its generator cannot

be controlled on it. (b) In CGAN, attribute is represented using observable conditional variable y (e.g., binary indicator of attribute pres-

ence), so its controllability is restricted to attribute labeling (e.g., restricted to ON or OFF control). (c) In CFGAN, attribute is represented

using multi-dimensional conditional latent variable z′a, so its generator can be controlled more expressively, i.e., multi-dimensionally.

[37]. Considering the fact that some differences cannot

be defined by the relative order, a representation indicating

whether a given pair is distinguishable or not was recently

proposed [50]. These previous studies suggested the com-

plexity of attributes and the difficulty in defining a rule for

organizing them. We expect our study to provide a clue to a

solution since we enable interpretable latent variables repre-

senting large variations of an attribute to be learned without

a detailed description of the attribute, i.e., only using the

binary indicator of attribute presence.

3. Approach

In this section, we describe our CFGAN. We first de-

scribe the CGAN [11, 35], which is the basis of the CFGAN

and then explain the formulation of the CFGAN, which in-

tegrates a filtering architecture into the CGAN.

3.1. Conditional Generative Adversarial Networks

The CGAN [11, 35] is an extension of a GAN [12] for

conditional settings. We begin by briefly reviewing a GAN,

followed by the formulation of the CGAN.

A GAN is a framework for training a generative model

using a minmax game. It is composed of two networks: a

generator G that maps a noise variable z ∼ Pz(z) to data

space x = G(z) and a discriminator D that assigns a prob-

ability p = D(x) ∈ [0, 1] when x is a real training sample

and assigns a probability 1 − p when x is generated by G.

The Pz(z) is a prior on z, and a uniform [−1, 1] distribution

is typically chosen. A minmax objective is used to train

both networks together:

min
G

max
D

Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1−D(G(z)))]. (1)

This encourages D to find the binary classifier providing

the best possible discrimination between real and generated

data and simultaneously encourages G to fit the true data

distribution. Both G and D can be trained with backprop-

agation. In this model, an attribute is not explicitly repre-

sented, so the generator output cannot be controlled on it as

shown in Figure 2 (a).

The CGAN is an extension of a GAN, where G and D

receive an additional variable y as input. The CGAN objec-

tive function can be rewritten as

min
G

max
D

Ex,y∼Pdata(x,y)[logD(x, y)]

+Ez∼Pz(z),y∼Py(y)[log(1−D(G(z, y), y))]. (2)

This model allows the generator output to be controlled by

y, as shown in Figure 2 (b).

3.2. Conditional Filtered Generative Adversarial
Networks

The conventional CGAN [11, 35] uses the additional

variable y directly as input; therefore, the controllability of

the generator is strongly restricted by the definition of y.

For example, if y is a binary indicator of the presence of

an attribute, the controllability is restricted to select ON or

OFF. If we obtained detailed supervision of large variations

of an attribute, we would be able to obtain the detailed con-

trollability even using this model. However, it is difficult to

do so since not only does it incur large annotation cost but

the definition of attributes is not trivial [37, 50].

To solve this problem, our CFGAN integrates a filtering

architecture into the CGAN. The CFGAN uses y to make a

noise variable za ∼ Pza(za) conditioned on it.

z′a = fy(za), (3)

where fy is a filter function that maps za depending on y,

and z′a is a conditional latent variable that is fed to the gen-

erator input. The objective function thus becomes

min
G

max
D

Ex,y∼Pdata(x,y)[logD(x, y)]

+Ezi∼Pzi
(zi),za∼Pza (za),y∼Py(y)

[log(1−D(G(zi, za, y), y))], (4)

where zi is an unconditional latent variable that has the

same role as z in the CGAN. This model allows the gen-

erator output to be controlled by z′a. For example, when
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(a) CGAN (b) CFGAN + RB (c) CFGAN + SB-I (d) CFGAN + SB-II

y = 0 y = 1 y = 0 y = 1

y = 1 y = 0 y = 1 y = 0

Figure 3. Examples of attribute control using different models. We assume situation in which attribute “4” (y = 1, surrounded by blue

lines) is added to non-attribute state “9” (y = 0, surrounded by red lines). In (a) and (b), row shows sample images generated from same

z and zi, respectively. In (b), column in y = 1 contains five samples from same category in za. These results indicate that CFGAN + RB

allows user to select attribute while retaining style close to non-attribute state. In (c) and (d), left figures show sample data points in z′a, and

right figures show sample images generated from fixed zi and varying z′a. In (c), non-attribute state is centered and attribute is controlled

on basis of it. In (d), attribute and non-attribute are controlled continuously.

we represent z′a with a multi-dimensional variable, we can

control the attribute multi-dimensionally. Figure 2 illus-

trates the differences in network architectures of the GAN,

CGAN, and CFGAN. As shown in (b) and (c), the CFGAN

uses the same observable variable as the CGAN, i.e., the

CFGAN does not require additional supervision in training,

but it can represent an attribute more expressively using z′a.

4. Design & Training for Controller

4.1. Designing Controller

To use our CFGAN for a GAC, z′a must be not only ex-

pressive but so controllable that a user can modify it intu-

itively. This controllability depends on the design of fy and

za. In this paper, we developed three architectures that al-

low a user to control attributes using typical controllers, i.e.,

radio buttons and slide bars.

Radio-Button Controller: A radio-button controller en-

ables a user to select one from several choices. Each op-

tion is represented by one radio button, and a user can se-

lect only one in a radio-button group. In our case, a radio-

button controller can be used to control the variations of

an attribute categorically. For example, when a user wants

to add glasses to a portrait photo, a radio-button controller

allows him/her to select his/her favorite from several candi-

dates such as sunglasses or transparent glasses. We model

a radio-button controller (RB) using fy that passes za when

an attribute exists (y = 1) and za that follows categorical

distribution.

fy(za) =

{

za (y = 1)
0 (y = 0)

, za ∼ Cat

(

K = k, p =
1

k

)

,

(5)

where k is the number of choices.

Slide-Bar Controller: A slide-bar controller enables a

user to control values continuously. It consists of a scale

and a “thumb” indicating the current value. In our case, a

slide-bar controller can be used to control the variations of

an attribute continuously. For example, when a user mod-

ifies the facial expression in a portrait photo, a slide-bar

controller enables him/her to continuously modify it (e.g.,

from a slight smile to a broad smile). We model a slide-

bar controller in two ways. We model one (SB-I) with fy
that passes za when an attribute exists (y = 1) and za that

follows continuous uniform distribution.

fy(za) =

{

za (y = 1)
0 (y = 0)

, za ∼ Unif (−1, 1) . (6)

The center of this slide bar indicates the non-attribute state

and allows the variations of an attribute to be controlled on

the basis of this state.

The other way (SB-II) is with fy that projects za into the

positive field when an attribute exists (y = 1) and projects

za into the negative field when an attribute does not exist

(y = 0).

fy(za) =

{

|za| (y = 1)
−|za| (y = 0)

, za ∼ Unif (−1, 1) . (7)

The negative field of this slide bar indicates the non-

attribute state, and its positive field indicates the attribute

state.

Figure 3 shows examples of attribute control with the

CGAN, CFGAN + RB, CFGAN + SB-I, and CFGAN +

SB-II. We used the two types of digits “4” (attribute) and

“9” (non-attribute) in the MNIST dataset. The experimen-

tal setup is described in detail in Sec. 6.

Relationship between CGAN and CFGAN: We can see

the CGAN as a special case of the CFGAN. When we use

the CFGAN + RB where the number of choices k = 1 (i.e.,

the variations of an attribute are not selectable), it has the

same architecture as the CGAN. Thus, the CFGAN can be

seen as a natural extension of the CGAN.

4.2. Training for Controller

Analogous with the CGAN, the CFGAN can disentangle

latent variables into a conditional one, z′a, and unconditional

6092



one, zi, by training the generator with the adversarial con-

ditional discriminator. However, the CFGAN formulation

in Eqn. 4 imposes no restrictions on the relationship of the

elements of z′a. Thus, it is possible that z′a will be used by

the generator in a highly entangled manner. This property

is undesirable for using z′a for a controller.

To avoid this, we extend an information-theoretic reg-

ularization [5] to the conditional setting and optimize the

CFGAN objective with it. This regularization imposes a

restriction on each element of z′a to represent a different

semantic feature of an attribute. In particular, we maxi-

mize the conditional mutual information between z′a and

G(zi, za, y): I(z′a;G(zi, za, y)|y). In practice, this infor-

mation is difficult to maximize directly because doing so

requires calculation of the intractable posterior P (z′a|x, y).
Following the study of Chen et al. [5], we instead calculate

its lower bound with an auxiliary distribution Q(z′a|x, y) ap-

proximating P (z′a|x, y):

I(z′a;G(zi, za, y)|y)

=H(z′a|y)−H(z′a|G(zi, za, y), y)

=H(z′a|y) + Ex∼G(zi,za,y)[Eẑ′

a∼P (z′

a|x,y)
[logP (ẑ′a|x, y)]]

=H(z′a|y) + Ex∼G(zi,za,y)[DKL(P (·|x, y)||Q(·|x, y)

+ Eẑ′

a∼P (z′

a|x,y)
[logQ(ẑ′a|x, y)]]

≧H(z′a|y) + Ex∼G(zi,za,y)[Eẑ′

a∼P (z′

a|x,y)
[logQ(ẑ′a|x, y)]]

=H(z′a|y) + Ez′

a∼P (z′

a|y),x∼G(zi,z′

a)
[logQ(z′a|x, y)]. (8)

In the last term, we rewrite G(zi, za, y) as G(zi, z
′
a) for ease

of understanding. In this paper, for simplicity, we fix the

latent variable distribution, i.e., treat H(z′a|y) as a constant.

In training the CFGAN, we maximize the last term of Eqn. 8

with Eqn. 4.

Difference between CFGAN and InfoCGAN: In fact,

an information-theoretic regularization similar to the above

can be integrated into the CGAN (we call this model InfoC-

GAN). Figure 4 (a) shows the network architecture of this

model. Its generator input is composed of an incontrollable

variable zi, controllable variable zc, and conditional vari-

able y, and an information-theoretic regularization is im-

posed on zc. This enables the generator output to be con-

trolled multi-dimensionally using zc, like with the CFGAN,

but the difference between the InfoCGAN and CFGAN is

whether the controllable variable (z′a in the CFGAN and

zc in the InfoCGAN) is conditioned on y. In the CFGAN,

z′a is conditioned on y using the filtering architecture, en-

abling the attribute-dependent features (e.g., sub-categories

of glasses in the case of Figure 4 (b-ii)) to be obtained.

In the InfoCGAN, however, the controllable variable zc is

independent from y, so the attribute-independent features

(e.g., hair style and poses in the case of Figure 4 (b-i)) are

obtained. The controllability of the InfoCGAN on attributes

depends on not zc but y and is similar to that of the CGAN.

(a) InfoCGAN

Generator

(b) Example results

(i) InfoCGAN + RB

(ii) CFGAN + RB

Attribute    : Glasses

Figure 4. Network architecture of InfoCGAN (see Figure 2 for

comparison) and example results from using InfoCGAN and CF-

GANs. In (b-i), sample images are generated from same zi, same

y = 1, and varying zc using InfoCGAN with ten-categorical RB.

In (b-ii), sample images are generated from same zi and varying

z′a using CFGAN with ten-categorical RB.

5. Use of Controller

5.1. Latent Variable Estimation

In the CFGAN, attribute control is conducted in the la-

tent space. Therefore, to edit the attributes of a given photo

x using the CFGAN, we need to estimate the latent variables

zi and z′a from x. To solve this problem, we first estimate y

from x, next estimate z′a from x and y, and finally estimate

zi from z′a and x.

If obtaining x and y, we can estimate z′a using the ap-

proximate posterior Q(z′a|x, y) in Eqn. 8; therefore, we first

estimate y from x as follows:

y∗ = arg max
y

P (y|x). (9)

This stands for a standard classification task. Thus, we train

the classifier C(x) to predict the conditional distribution

P (y|x) using the pair training data x and y that are also

used to train the CFGAN. We then estimate z′a from x and

y using Q(z′a|x, y).
We next estimate zi from z′a and x using the manifold

projection method [51]:

z∗i = arg min
zi

L(G(zi, z
′
a), x), (10)

where L(x1, x2) is the distance metric between two images

and we rewrite G(zi, za, y) as G(zi, z
′
a) for ease of under-

standing. Following the recent success in perceptual losses

[7, 19], we define L(x1, x2) using the distance in the fea-

tures consisting of raw pixels and those extracted from the

discriminator. Following previous research [51], we opti-

mize Eqn. 10 in a two-stage manner. In fact, this func-

tion consists of differentiable neural networks, so we can

directly optimize it using the gradient method. However, it

is a non-convex problem; therefore, the reconstruction qual-

ity depends on the initialization of zi. To obtain a “good”

initialization, we train an encoder E(x) that directly pre-

dicts zi from x. We optimize it by minimizing the objective
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1. Original
2. Reconstructed

with Enc
4. Modified 5. Post-processed

3. Reconstructed
with GD

α

σ
(a) Process of image editing

(b) Post-processing with different masks Ms

Masks Ms

Figure 5. Examples of image editing. (a) Given original image

(step 1), it is first reconstructed with encoder (Enc) (step 2). It

is used as initialization for gradient descent (GD)-based optimiza-

tion (step 3). Its attribute (bangs) is modified with CFGAN (step

4). Post-processing is applied to it to remove small reconstruction

error (step 5). (b) Post-processing with masks Ms where α and σ

are different.

function L(G(E(x), z′a), x). Given a novel image, we first

estimate zi using E(x) then use it as the initialization for the

gradient descent-based optimization. This not only reduces

the reconstruction error but makes it fast enough to reach

the optimum. Figure 5 (a) shows example images: original,

reconstructed with the encoder, and reconstructed with the

gradient descent. Two-step optimization slightly improves

visual quality (e.g., eyebrows are recovered).

5.2. Post­processing

In the above reconstruction process, the image infor-

mation is once abstracted into the low-dimensional space.

This makes it difficult to reconstruct such an image that has

pixel-wise perfect accuracy. This property is undesirable

for using our CFGAN as an image editor.

To alleviate this effect, we conduct post-processing. We

extend a masking technique [4] to apply to our CFGAN:

x̃ = xrec +M∆+ (1−M)∆′

∆ = xmod − xrec,∆
′ = x− xrec, (11)

where x is the original image, xrec is the reconstructed im-

age, and xmod is the modified and reconstructed image.

The mask M switches between ∆ and ∆′ depending on the

channel-wise mean of the absolute value of ∆. In previ-

ous study [4], it was smoothed with a standard Gaussian

filter and truncated between 0 and 1. From intense trials,

we found in our case that smoothing with a scaled Gaussian

filter α · g(·) works well:

M =min(α · g(|∆|;σ), 1), (12)

where α is a scale parameter, indicating the degree of how

small change is captured, and σ is the standard deviation for

a Gaussian kernel, indicating the degree of how smoothly

attribute and non-attribute states are mixed. Since this post-

processing is simple, a user can control the parameters in-

teractively. Figure 5 shows images post-processed with

masks Ms where α and σ are different. Note that this post-

processing technique is simple but not restricted to the CF-

GAN and can be used for general generative models.

6. Experiments

We first describe the experimental setup then four main

applications: attribute-based image generation, attribute-

based image editing, attribute transfer, and attribute-based

image retrieval. Please refer to the supplementary material

for more results and comparisons.

Datasets: We evaluated our CFGAN on various image

datasets: digits (MNIST [28]), birds (CUB [45]), and faces

(CelebA [31]). The MNIST dataset consists of photos of

handwritten digits, containing 60,000 training and 10,000

test samples. We used this dataset to clarify the basic char-

acteristics of our CFGAN. The CUB dataset consists of

photos of 200 bird species, containing 6,000 training and

6,000 test samples. We used the cropped version [47] and

rescaled the images to 64 × 64. The CelebA dataset is

an image dataset with photos of faces, containing 180,000

training and 20,000 test samples. We used the aligned

and cropped version and scaled and cropped the images to

64 × 64. To avoid overfitting, we augmented the training

data in CUB and CelebA with common operations [9, 23].

Implementation Details: To stabilize CFGAN training,

we designed the two network architectures (D and G) on

the basis of current techniques in the DCGAN [38] and In-

foGAN [5]. The CFGAN mainly builds on multiple convo-

lution and deconvolution layers, uses ReLU activation [36]

and leaky ReLU activation [32, 46] in the generator and

discriminator, respectively, and batch normalization [18] in

both networks. Following the InfoGAN [5], we parame-

terized the auxiliary distribution Q in Eqn. 8 as a neural

network. In particular, we made D and Q share all convolu-

tional layers to reduce calculation cost. For a radio-button

controller (RB), we represent Q(z′a|x, y) as softmax non-

linearity. For a slide-bar controller (SB-I and SB-II), we

represent Q(z′a|x, y) as a factored Gaussian. We modeled

the classifier C and encoder E as the same architecture as

D except for the last layer. In particular, we made C and

E share all convolutional layers. We describe the detailed

experimental setup in the supplementary material.

Baseline: To clarify the characteristics of the CFGAN, we

compared it with a GAN, which has no controllability on

attributes, and the CGAN, which has only one-dimensional

controllability. There are other deep generative models such

as CVAE [47] and VAE/GAN + visual attribute vectors [27],

but they represent an attribute as a one-dimensional vec-

tor, so their controllability is similar to that of the CGAN.
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Figure 6. Example results of blue-bird generator. In (c) and (d), row contains samples generated from same attribute-independent variables

z and zi, respectively; column shows generated images for same attribute-dependent variables y and z′a, respectively.
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Figure 7. Example results of face-attribute generator. In (a), row contains samples generated from same z while varying y. In (b), row

contains samples generated from same zi while varying z′a.

As discussed in Sec. 4.2, InfoCGAN also represents an at-

tribute as a one-dimensional vector, but to further clarify the

difference between the CFGAN and InfoCGAN, we provide

an extended analysis in the supplementary material.

6.1. Attribute­based Image Generation

Control between Two Digits: To clarify the basic charac-

teristics of the CFGAN, we used the subsets of the MNIST

dataset. We selected two types of digits and regarded one as

an attribute (y = 1) and the other as a non-attribute (y = 0).

Example results are shown in Figure 3, where we regarded

“4” as the attribute and “9” as the non-attribute. These

results indicate that the CFGAN not only represents large

variations of an attribute but enables a user to control the

variations in various ways by using the different controllers.

Blue-Bird Generator: As shown in Figure 6 (a), “blue

bird” covers many variations, and it is challenging to model

them. We evaluated whether the CFGAN can learn varia-

tions of an attribute even in such a difficult situation. We

selected the attributes with “blue” in the name (e.g., blue

wing, blue eye, and blue leg) from 312 attributes, summa-

rized all as blue bird, and used them as the supervised data,

i.e., regard “blue” as the attribute (y = 1) and “not blue”

as the non-attribute (y = 0). Figure 6 shows example re-

sults. We used the CFGAN with the combination of a five-

categorical RB and a one-dimensional SB-I. The CGAN

could give color to a non-attribute image (i.e., not-blue bird)

by switching y but could not control how to colorize it. In

contrast, the CFGAN could give color in various ways by

varying z′a categorically and continuously.

Face-Attribute Generator: To clarify the difference in

controllers for various attributes, we implemented three

controllers (a ten-categorical RB, three-dimensional SB-I,

and three-dimensional SB-II) for six attributes (bangs, eye-

glasses, heavy makeup, male, smiling, and young). Due to

space limitations, we discuss some cases here and provide

others in the supplementary material. Figure 7 shows ex-

ample results. In the CGAN, an attribute was modified in

one way, while the CFGAN enabled it to be controlled in

various ways.

6.2. Attribute­based Image Editing

To evaluate the effectiveness of the CFGAN for editing

an existing image, we applied the same face-attribute gen-

erators described in Sec. 6.1 to the image-editing task. Fig-

ure 8 shows example results. We discuss the images where

the post-processing was applied. In both the CGAN and

CFGAN, the attributes could be changed while retaining

identities, but the controllability was different.

6.3. Attribute Transfer

By taking the advantage of the disentangled and expres-

sive latent space of the CFGAN, we applied it to the at-

tribute transfer and attribute-based image retrieval tasks.

We describe these tasks in this and the next section, re-

spectively. To conduct attribute-based image transfer, we

first extracted zi and z′a from the target and the reference

images, respectively. We then generated a modified image
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Figure 8. Example results of attribute-based image editing. View of figure is similar to that in Figure 7, except that latent variables are

extracted from given images.

Target

Reference

Figure 9. Example results of attribute transfer. Images are gener-

ated from zi extracted from first-column images and z′a extracted

from first-row images.

Query Query

(a) Eyeglasses-based retrieval (b) Bangs-based retrieval

Figure 10. Example results of attribute-based image retrieval. First

row shows query images. Other rows show top three retrievals.

From top to bottom, we measured distance in x, zi, y, and z′a.

from them. Figure 9 shows example results. We used the

CFGAN with a three-dimensional SB-I for this task. In

these results, the types of smiles (e.g., how to open the

mouth) were transferred from the reference images to the

target ones regardless of gender, age, and pose. Note that

previous studies [27, 38] required multiple samples to do

attribute transfer because their latent variables are highly

entangled and they need to take the average to know the “se-

cret” of the attribute, but we can do “one-shot” transfer by

exchanging only z′a because our latent variables are disen-

tangled into attribute-dependent and attribute-independent.

6.4. Attribute­based Image Retrieval

For image retrieval, we searched for the image close to

the query image in terms of Euclidian distance. For com-

parison, we measured the distance in the low-level image

space x, attribute-label space y, attribute-independent la-

tent variable space zi, and attribute-dependent latent vari-

able space z′a. We predicted y, zi, and z′a using C, E, and

Q, respectively. Figure 10 shows example results. We used

the CFGAN with a three-dimensional SB-I for this task.

When an image was searched based on x or zi, the im-

ages that were globally similar to the query, including the

background, were retrieved. When an image was searched

based on y or z′a, the images that had the same attribute as

the query were retrieved. In particular, when an image was

searched based on z′a, the images that had the “same” type

of attribute (e.g., thin glasses in (a) and left parted hair in

(b)) were retrieved. Note that we used only the supervised

data indicating the presence or absence of the attribute and

learned the type of attribute in an unsupervised fashion.

7. Discussion and Conclusion

We introduced a GAC, a novel functionality for gener-

ating or editing an image while intuitively controlling large

variations of an attribute. To develop it, we proposed the

CFGAN and we defined the design and training scheme to

use it for a controller. We obtained promising results, indi-

cating that the learned latent space is disentangled, control-

lable, and expressive. One limitation is that it is impossible

to name each dimension of z′a in advance since it is learned

in an unsupervised fashion. However, the visual-attribute

change is consistent for the same z′a, so it can be named

after learning. Moreover, when there are so many latent

variations that experts cannot name them all, the CFGAN

is expected to propose a new explanation without detailed

supervision. Possible extensions to this study include de-

veloping a filtering architecture representing other types of

controllers, applying our filtering technique to other gener-

ative models, and using the CFGAN as a latent variation-

discovery tool for high-dimensional data.
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