
Generative Attribute Controller with

Conditional Filtered Generative Adversarial Networks

Takuhiro Kaneko Kaoru Hiramatsu Kunio Kashino

NTT Communication Science Laboratories, NTT Corporation

{kaneko.takuhiro, hiramatsu.kaoru, kashino.kunio}@lab.ntt.co.jp

Abstract

We present a generative attribute controller (GAC), a

novel functionality for generating or editing an image while

intuitively controlling large variations of an attribute. This

controller is based on a novel generative model called the

conditional filtered generative adversarial network (CF-

GAN), which is an extension of the conventional conditional

GAN (CGAN) that incorporates a filtering architecture into

the generator input. Unlike the conventional CGAN, which

represents an attribute directly using an observable vari-

able (e.g., the binary indicator of attribute presence) so its

controllability is restricted to attribute labeling (e.g., re-

stricted to an ON or OFF control), the CFGAN has a fil-

tering architecture that associates an attribute with a multi-

dimensional latent variable, enabling latent variations of

the attribute to be represented. We also define the filtering

architecture and training scheme considering controllabil-

ity, enabling the variations of the attribute to be intuitively

controlled using typical controllers (radio buttons and slide

bars). We evaluated our CFGAN on MNIST, CUB, and

CelebA datasets and show that it enables large variations

of an attribute to be not only represented but also intuitively

controlled while retaining identity. We also show that the

learned latent space has enough expressive power to con-

duct attribute transfer and attribute-based image retrieval.

1. Introduction

In computer vision and machine learning, generative im-

age modeling has been actively investigated to explore the

“secret” behind images. In particular, an open issue has

been to learn a latent space that has low dimensionality but

is so expressive that we can extract realistic images from it.

However, recent studies on generative image modeling with

deep neural networks [12, 22, 40] have given us a clue to

a solution. These studies presented promising results, in-

dicating that their methods enable the learning of a latent

What types of glasses fit my face?

How can I modify the facial expression?

Figure 1. Practical examples of generative attribute controller. Our

goal is to develop functionality for generating or editing image

while intuitively controlling variations of attribute.

space from which we can randomly generate images with

high visual fidelity. However, it is not easy to extract a de-

sired image from this space because the variables are highly

entangled in the space, and the individual dimensions do not

correspond to specific semantic features.

To solve this problem, we aim to learn a latent space that

is not only expressive but also so controllable that a user can

intuitively find and obtain a desired image. In particular, we

focused on the controllability of attributes and developing a

generative attribute controller (GAC) with which a user can

generate or edit an image while intuitively controlling the

variations of an attribute. Figure 1 shows practical examples

of a GAC.

To develop a “good” GAC, we need to obtain a latent

space that is (1) disentangled, (2) expressive, and (3) con-

trollable. First, attributes and identity need to be disentan-

gled in the latent space to change the attributes indepen-

dently from the identity. For example, when modifying the

facial expression in a portrait, a user wants to do so with-

out compromising the person’s identity. Second, the la-

6089



tent space needs to be expressive enough on attributes as

to provide the attribute change that a user imagines. This

is a challenging task because an “attribute” (e.g., “glasses”)

has many variations (e.g., sunglasses, round glasses, and

thin glasses). Third, controllability is important because our

goal is to enable a user to intuitively control attributes.

To satisfy these three requirements, we propose a gen-

erative model called the conditional filtered generative ad-

versarial network (CFGAN), which is an extension of the

conditional GAN (CGAN) [11, 35] that incorporates a fil-

tering architecture into the generator input. The CFGAN

disentangles attributes and identity by learning an attribute-

conditional generator and discriminator in an adversarial

process. In fact, this learning scheme is the same as the

CGAN, but we introduce a simple but powerful modifica-

tion to the CGAN to obtain expressiveness and controlla-

bility. The CGAN represents each attribute using an ob-

servable variable (e.g., the binary indicator of attribute pres-

ence) so its controllability is restricted to attribute labeling

(e.g., restricted to an ON or OFF control). In contrast, the

CFGAN has a filtering architecture that associates each at-

tribute with a multi-dimensional latent variable. This al-

lows each attribute to be represented more expressively,

i.e., multi-dimensionally. To achieve controllability, we de-

veloped three types of filtering architectures that enable a

user to control attributes using typical controllers (radio but-

tons and slide bars). We evaluated our CFGAN on vari-

ous types of data, i.e., digits (MNIST), birds (CUB), and

faces (CelebA). These results show that our CFGAN can

not only represent large variations of an attribute but change

attributes while retaining identity. We also show that the

learned latent space has enough expressive power to con-

duct attribute transfer and attribute-based image retrieval.

Contributions: Our contributions are summarized as fol-

lows. (1) We present a novel functionality called a GAC

with which a user can generate and edit an image while

intuitively controlling large variations of an attribute. (2)

To learn a disentangled, expressive, and controllable latent

space, we propose a deep generative model called the CF-

GAN. (3) The experimental evaluation indicates the con-

trollability and disentanglement in attribute-based image

generation and editing as well as the expressiveness in at-

tribute transfer and attribute-based image retrieval.

2. Related Work

Image Editing: Image editing has been actively investi-

gated in computer graphics, and various tasks have been

tackled, e.g., from color modification (e.g., color transfer

[39] and colorization [29]) to content modification (e.g.,

missing data interpolation [2] and image warping [1, 15]).

There are two major approaches of attribute-based image

editing: example-based [14, 30, 42, 48] and model-based

[15, 20]. An example-based approach extracts an attribute-

related patch from a reference image and transfers it to a

target one. This enables attributes to be modified in var-

ious ways by using various reference images, but it re-

quires images under special conditions (e.g., frontal faces

[30], lightly made-up faces [14, 42], and reference images

of the same persons [48]). A model-based approach con-

structs a model and modifies an image on the basis of the

model. Model-based approaches handling unconstrained

images have recently been proposed [15, 20], but they are

task-specific and cannot be applied to arbitrary attributes.

The reason these previous studies were limited is that they

only obtained low-level information of images. In contrast,

we use a deep generative model to obtain high-level infor-

mation. Few studies [51, 4] have been conducted to attempt

to edit an image using deep generative models. For these

studies, user interaction in a low-level space (e.g., sketching

in a photo) was assumed, but we assume this in a high-level

space (e.g., controlling the value in the latent space).

Deep Generative Models: A large body of work exists on

representation learning with deep generative models. Early

studies were conducted to attempt to learn representation in

a unsupervised fashion by using restricted Boltzmann ma-

chines or stacked auto-encoders [16, 17, 41, 44] and more

recently stochastic neural networks [3, 13, 22, 40], adversar-

ial networks [6, 12, 38], and autoregressive models [43]. In

contrast, several studies were conducted to attempt to learn

disentangled representation in a supervised fashion. Most

studies used supervised data directly as input or output of

the network [8, 11, 21, 34, 35, 47, 49, 52]. To the best of

our knowledge, few studies [24, 33] have used supervised

data to learn the latent variations of these data. Deep con-

volutional inverse graphics networks (DC-IGNs) [24] use

a clamping technique to learn variations of graphics codes.

They provide promising results, but their technique is dif-

ficult to apply to natural images because they use a graph-

ics engine to obtain the training data. Adversarial autoen-

coders (AAEs) [33] incorporate supervised data in adversar-

ial training to shape the distribution of the latent variables.

The results showed that AAEs enable complicated distri-

butions to be imposed, but applicable data are limited (e.g.

gray scale or small images) because the training procedure

was still not well established. In contrast, the CFGAN is a

natural extension of a GAN and can be applied to compli-

cated datasets based on recent progress in this area [5, 38].

Attribute Representation: In computer vision, how to

represent attributes has been actively discussed. Early stud-

ies represented an attribute as a binary value indicating the

presence or absence of the attribute [10, 25, 26]. However,

for large variations of an attribute, this binary representa-

tion is not only restrictive but unnatural. To overcome this

problem, a relative attribute indicating the strength of an at-

tribute in an image with respect to others was developed

6090



(c) CFGAN

Generator Discriminator

(b) CGAN

Generator Discriminator

(a) GAN

Generator Discriminator

Figure 2. Differences in network architectures. Dark gray indicates latent variables, while light gray indicates observable variables. Vari-

ables surrounded with green lines can be used to control attribute. (a) In GAN, attribute is not explicitly represented, so its generator cannot

be controlled on it. (b) In CGAN, attribute is represented using observable conditional variable y (e.g., binary indicator of attribute pres-

ence), so its controllability is restricted to attribute labeling (e.g., restricted to ON or OFF control). (c) In CFGAN, attribute is represented

using multi-dimensional conditional latent variable z′a, so its generator can be controlled more expressively, i.e., multi-dimensionally.

[37]. Considering the fact that some differences cannot

be defined by the relative order, a representation indicating

whether a given pair is distinguishable or not was recently

proposed [50]. These previous studies suggested the com-

plexity of attributes and the difficulty in defining a rule for

organizing them. We expect our study to provide a clue to a

solution since we enable interpretable latent variables repre-

senting large variations of an attribute to be learned without

a detailed description of the attribute, i.e., only using the

binary indicator of attribute presence.

3. Approach

In this section, we describe our CFGAN. We first de-

scribe the CGAN [11, 35], which is the basis of the CFGAN

and then explain the formulation of the CFGAN, which in-

tegrates a filtering architecture into the CGAN.

3.1. Conditional Generative Adversarial Networks

The CGAN [11, 35] is an extension of a GAN [12] for

conditional settings. We begin by briefly reviewing a GAN,

followed by the formulation of the CGAN.

A GAN is a framework for training a generative model

using a minmax game. It is composed of two networks: a

generator G that maps a noise variable z ∼ Pz(z) to data

space x = G(z) and a discriminator D that assigns a prob-

ability p = D(x) ∈ [0, 1] when x is a real training sample

and assigns a probability 1 − p when x is generated by G.

The Pz(z) is a prior on z, and a uniform [−1, 1] distribution

is typically chosen. A minmax objective is used to train

both networks together:

min
G

max
D

Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1−D(G(z)))]. (1)

This encourages D to find the binary classifier providing

the best possible discrimination between real and generated

data and simultaneously encourages G to fit the true data

distribution. Both G and D can be trained with backprop-

agation. In this model, an attribute is not explicitly repre-

sented, so the generator output cannot be controlled on it as

shown in Figure 2 (a).

The CGAN is an extension of a GAN, where G and D

receive an additional variable y as input. The CGAN objec-

tive function can be rewritten as

min
G

max
D

Ex,y∼Pdata(x,y)[logD(x, y)]

+Ez∼Pz(z),y∼Py(y)[log(1−D(G(z, y), y))]. (2)

This model allows the generator output to be controlled by

y, as shown in Figure 2 (b).

3.2. Conditional Filtered Generative Adversarial
Networks

The conventional CGAN [11, 35] uses the additional

variable y directly as input; therefore, the controllability of

the generator is strongly restricted by the definition of y.

For example, if y is a binary indicator of the presence of

an attribute, the controllability is restricted to select ON or

OFF. If we obtained detailed supervision of large variations

of an attribute, we would be able to obtain the detailed con-

trollability even using this model. However, it is difficult to

do so since not only does it incur large annotation cost but

the definition of attributes is not trivial [37, 50].

To solve this problem, our CFGAN integrates a filtering

architecture into the CGAN. The CFGAN uses y to make a

noise variable za ∼ Pza(za) conditioned on it.

z′a = fy(za), (3)

where fy is a filter function that maps za depending on y,

and z′a is a conditional latent variable that is fed to the gen-

erator input. The objective function thus becomes

min
G

max
D

Ex,y∼Pdata(x,y)[logD(x, y)]

+Ezi∼Pzi
(zi),za∼Pza (za),y∼Py(y)

[log(1−D(G(zi, za, y), y))], (4)

where zi is an unconditional latent variable that has the

same role as z in the CGAN. This model allows the gen-

erator output to be controlled by z′a. For example, when

6091
















