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Abstract

Object detection in videos has drawn increasing atten-

tion recently with the introduction of the large-scale Im-

ageNet VID dataset. Different from object detection in

static images, temporal information in videos is vital for

object detection. To fully utilize temporal information,

state-of-the-art methods [15, 14] are based on spatiotem-

poral tubelets, which are essentially sequences of associ-

ated bounding boxes across time. However, the existing

methods have major limitations in generating tubelets in

terms of quality and efficiency. Motion-based [14] meth-

ods are able to obtain dense tubelets efficiently, but the

lengths are generally only several frames, which is not

optimal for incorporating long-term temporal information.

Appearance-based [15] methods, usually involving generic

object tracking, could generate long tubelets, but are usu-

ally computationally expensive. In this work, we propose

a framework for object detection in videos, which consists

of a novel tubelet proposal network to efficiently generate

spatiotemporal proposals, and a Long Short-term Mem-

ory (LSTM) network that incorporates temporal informa-

tion from tubelet proposals for achieving high object de-

tection accuracy in videos. Experiments on the large-scale

ImageNet VID dataset demonstrate the effectiveness of the

proposed framework for object detection in videos.

1. Introduction

The performance of object detection has been signifi-

cantly improved recently with the emergence of deep neu-

ral networks. Novel neural network structures, such as

GoogLeNet [29], VGG [27] and ResNet [8], were pro-

posed to improve the learning capability on large-scale

computer vision datasets for various computer vision tasks,

such as object detection [5, 24, 23, 21], semantic segmen-

tation [20, 2, 16], tracking [31, 1, 33], scene understanding

[25, 26, 19], person search [18, 32], etc. State-of-the-art
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Figure 1. Proposals methods for video object detection. (a) orig-

inal frames. (b) static proposals have no temporal association,

which is hard to incorporate temporal information for proposal

classification. (c) bounding box regression methods would focus

on the dominant object, lose proposal diversity and may also cause

recall drop since all proposals tend to aggregate on the dominant

objects. (d) the ideal proposals should have temporal association

and have the same motion patterns with the objects while keeping

their diversity.

object detection frameworks for static images are based on

these networks and consist of three main stages [6]. Bound-

ing box proposals are first generated from the input image

based on how likely each location contains an object of in-

terest. The appearance features are then extracted from each

box proposal to classify them as one of the object classes.

Such bounding boxes and their associated class scores are

refined by post-processing techniques (e.g., Non-Maximal

Suppression) to obtain the final detection results. Multiple

frameworks, such as Fast R-CNN [5] and Faster R-CNN

[24], followed this research direction and eventually for-

mulated the object detection problem as training end-to-end

deep neural networks.

Although great success has been achieved in detecting

objects on static images, video object detection remains

a challenging problem. Several factors contribute to the

difficulty of this problem, which include the drastic ap-

pearance and scale changes of the same object over time,

object-to-object occlusions, motion blur, and the mismatch
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between the static-image data and video data. The new

task of detecting objects in videos (VID) introduced by the

ImageNet challenge in 2015 provides a large-scale video

dataset, which requires labeling every object of 30 classes

in each frame of the videos. Driven by this new dataset,

multiple systems [7, 14, 15] were proposed to extend static-

image object detectors for videos.

Similar to the bounding box proposals in the static ob-

ject detection, the counterpart in videos are called tubelets,

which are essentially sequences of bounding boxes propos-

als. State-of-the-art algorithms for video object detection

utilize the tubelets to some extend to incorporate temporal

information for obtaining detection results. However, the

tubelet generation is usually based on the frame-by-frame

detection results, which is extremely time consuming. For

instance, the tracking algorithm used by [14, 15] needs 0.5
second to process each detection box in each frame, which

prevents the systems to generate enough tubelet proposals

for classification in an allowable amount of time, since the

video usually contains hundreds of frames with hundreds

of detection boxes on each frame. Motion-based methods,

such as optical-flow-guided propagation [14], can generate

dense tubelets efficiently, but the lengths are usually lim-

ited to only several frames (e.g., 7 frames in [14]) because

of their inconsistent performance for long-term tracking.

The ideal tubelets for video object detection should be long

enough to incorporate temporal information while diverse

enough to ensure high recall rates (Figure 1).

To mitigate the problems, we propose a framework for

object detection in videos. It consists of a Tubelet Proposal

Network (TPN) that simultaneously obtains hundreds of di-

verse tubelets starting from static proposals, and a Long

Short-Term Memory (LSTM) sub-network for estimating

object confidences based on temporal information from the

tubelets. Our TPN can efficiently generate tubelet propos-

als via feature map pooling. Given a static box proposal at

a starting frame, we pool features from the same box loca-

tions across multiple frames to train an efficient multi-frame

regression neural network as the TPN. It is able to learn

complex motion patterns of the foreground objects to gen-

erate robust tubelet proposals. Hundreds of proposals in a

video can be tracked simultaneously. Such tubelet proposals

are shown to be of better quality than the ones obtained on

each frame independently, which demonstrates the impor-

tance of temporal information in videos. The visual features

extracted from the tubelet boxes are automatically aligned

into feature sequences and are suitable for learning temporal

features with the following LSTM network, which is able

to capture long-term temporal dependency for accurate pro-

posal classification.

The contribution of this paper is that we propose a new

deep learning framework that combines tubelet proposal

generation and temporal classification with visual-temporal

features. An efficient tubelet proposal generation algo-

rithm is developed to generate tubelet proposals that cap-

ture spatiotemporal locations of objects in videos. A tempo-

ral LSTM model is adopted for classifying tubelet propos-

als with both visual features and temporal features. Such

high-level temporal features are generally ignored by exist-

ing detection systems but are crucial for object detection in

videos.

2. Related work

Object detection in static images. State-of-the-art ob-

ject detection systems are all based on deep CNNs. Girshick

et al. [6] proposed the R-CNN to decompose the object de-

tection problem into multiple stages including region pro-

posal generation, CNN finetuning, and region classification.

To accelerate the training process of R-CNN, Fast R-CNN

[5] was proposed to avoid time-consumingly feeding each

image patch from bounding box proposals into CNN to ob-

tain feature representations. Features of multiple bounding

boxes within the same image are warped from the same fea-

ture map efficiently via ROI pooling operations. To accel-

erate the generation of candidate bounding box proposals,

Faster R-CNN integrates a Region Proposal Network into

the Fast R-CNN framework, and is able to generate box pro-

posals directly with neural networks.

Object detection in videos. Since the introduction of

the VID task by the ImageNet challenge, there have been

multiple object detection systems for detecting objects in

videos. These methods focused on post-processing class

scores by static-image detectors to enforce temporal consis-

tency of the scores. Han et al. [7] associated initial detec-

tion results into sequences. Weaker class scores along the

sequences within the same video were boosted to improve

the initial frame-by-frame detection results. Kang et al. [15]

generated new tubelet proposals by applying tracking algo-

rithms to static-image bounding box proposals. The class

scores along the tubelet were first evaluated by the static-

image object detector and then re-scored by a 1D CNN

model. The same group [14] also tried a different strategy

for tubelet classification and re-scoring. In addition, initial

detection boxes were propagated to nearby frames accord-

ing to optical flows between frames, and the class scores

not belonging to the top classes were suppressed to enforce

temporal consistency of class scores.

Object localization in videos. There have been works

and datasets [3, 13, 22] on object localization in videos.

However, they have a simplified problem setting, where

each video is assumed to contain only one known or un-

known class and requires annotating only one of the objects

in each frame.

3. Tubelet proposal networks

Existing methods on object detection in videos gener-

ates tubelet proposals utilizing either generic single-object

tracker starting at a few key frames [15] or data associa-

tion methods (i.e. tracking-by-detection methods) on per-

frame object detection results [7]. These methods either

are too computationally expensive to generate enough dense
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Figure 2. The proposed object detection system, which consists

of two main parts. The first is a tubelet proposal network to effi-

ciently generating tubelet proposals. The tubelet proposal network

extracts multi-frame features within the spatial anchors, predicts

the object motion patterns relative to the spatial anchors and gen-

erates tubelet proposals. The gray box indicates the video clip

and different colors indicate proposal process of different spatial

anchors. The second part is an encoder-decoder CNN-LSTM net-

work to extract tubelet features and classify each proposal boxes

into different classes. The tubelet features are first fed into the en-

coder LSTM by a forward pass to capture the appearance features

of the entire sequence. Then the states are copied to the decoder

LSTM for a backward pass with the tubelet features. The encoder-

decoder LSTM processes the entire clip before outputting class

probabilities for each frame.

tublets, or are likely to drift and result in tracking fail-

ures. Even for an 100-fps single-object tracker, it might take

about 56 GPU days to generate tubelets with 300 bounding

boxes per frame for the large-scale ImageNet VID dataset.

We propose a Tubelet Proposal Network (TPN) which is

able to generate tubelet proposals efficiently for videos. As

shown in Figure 2, the Tubelet Proposal Network consists

of two main components, the first sub-network extracts vi-

sual features across time based on static region proposals at

a single frame. Our key observation is that, since the re-

ceptive fields (RF) of CNNs are generally large enough, we

can perform feature map pooling simply at the same bound-

ing box locations across time to extract the visual features

of moving objects. Based on the pooled visual features,

the second component is a regression layer for estimating

bounding boxes’ temporal displacements to generate tubelet

proposals.

3.1. Preliminaries on ROI­pooling for regression

There are existing works that utilize feature map pool-

ing for object detection. The Fast R-CNN framework [5]

utilizes ROI-pooling on visual feature maps for object clas-

sification and bounding box regression. The input image is

fed into a CNN and forward propagated to generate visual

feature maps. Given different object proposals, their visual

features are directly ROI-pooled from the feature maps ac-

cording to the box coordinates. In this way, CNN only needs

to forward propagate once for each input image and saves

much computational time. Let bit = (xi
t, y

i
t, w

i
t, h

i
t) denote

the ith static box proposal at time t, where x, y, w and h
represent the two coordinates of the box center, width and

height of the box proposal. The ROI-pooling obtains visual

features rit ∈ R
f at box bit.

The ROI-pooled features r
i
t for each object bounding

box proposal can be used for object classification, and, more

interestingly, for bounding box regression, which indicates

that the visual features obtained by feature map pooling

contain necessary information describing objects’ locations.

Inspired by this technique, we propose to extract multi-

frame visual features via ROI-pooling, and use such fea-

tures for generating tubelet proposals via regression.

3.2. Static object proposals as spatial anchors

Static object proposals are class-free bounding boxes in-

dicating the possible locations of objects, which could be

efficiently obtained by different proposal methods such as

SelectiveSearch [30], Edge Boxes [34] and Region Proposal

Networks [24]. For object detection in videos, however,

we need both spatial and temporal locations of the objects,

which are crucial to incorporate temporal information for

accurate object proposal classification.

For general objects in videos, movements are usually

complex and difficult to predict. The static object propos-

als usually have high recall rates (e.g. >90%) at individual

frames, which is important because it is the upper bound

of object detection performance. Therefore, it is natural to

use static proposals as starting anchors for estimating their

movements at following frames to generate tubelet propos-

als. If their movements can be robustly estimated, high ob-

ject recall rate at the following times can be maintained.

Let bi1 denote a static proposal of interest at time t =
1. Particularly, to generate a tubelet proposal starting at

bi1, visual features within the w-frame temporal window

from frame 1 to w are pooled at the same location bi1 as

r
i
1, r

i
2, · · · , r

i
w in order to generate the tubelet proposal. We

call bi1 a “spatial anchor”. The pooled regression features

encode visual appearances of the objects. Recovering cor-

respondences between the visual features (ri1, r
i
2, · · · , r

i
w)

leads to accurate tubelet proposals, which is modeled by a

regression layer detailed in the next subsection.

The reason why we are able to pool multi-frame features

from the same spatial location for tubelet proposals is that

CNN feature maps at higher layers usually have large re-

ceptive fields. Even if visual features are pooled from a

small bounding box, its visual context is far greater than

the bounding box itself. Pooling at the same box locations

across time is therefore capable of capturing large possible

movements of objects. In Figure 2, we illustrate the “spa-

tial anchors” for tubelet proposal generation. The features

in the same locations are aligned to predict the movement

of the object.

We use a GoogLeNet with Batch Normalization (BN)

model [12] for the TPN. In our settings, the ROI-pooling

layer is connected to “inception 4d” of the BN model,

which has a receptive field of 363 pixels. Therefore, the
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network is able to handle up to 363-pixel movement when

ROI-pooling the same box locations across time, which is

more than enough to capture short-term object movements.

Each static proposal is regarded as an anchor point for fea-

ture extraction within a temporal window w.

3.3. Supervisions for tubelet proposal generation

Our goal is to generate tubelet proposals that have high

object recall rates at each frame and can accurately track ob-

jects. Based on the pooled visual features ri1, r
i
2, · · · , r

i
w at

box locations bit, we train a regression network R(·) that ef-

fectively estimates the relative movements w.r.t. the spatial

anchors,

mi
1,m

i
2, · · · ,m

i
w = R(ri1, r

i
2, · · · , r

i
w), (1)

where the relative movements mi
t =(∆xi

t,∆yit,∆wi
t,∆hi

t)
are calculated as

∆xi
t = (xi

t − xi
1)/w

i
1, ∆yit = (yit − yi1)/h

i
1, (2)

∆wi
t = log(wi

t/w
i
1), ∆hi

t = log(hi
t/h

i
1).

Once we obtain such relative movements, the actual box lo-

cations of the tubelet could be easily inferred. We adopt a

fully-connected layer that takes the concatenated visual fea-

tures [ri1, r
i
2, · · · , r

i
w]

T as the input, and outputs 4w move-

ment values of a tubelet proposal by

[mi
1, · · · ,m

i
w]

T = Ww[r
i
1, · · · , r

i
w]

T + bw, (3)

where Ww ∈ R
fw×4w and bw ∈ R

4w are the learnable

parameters of the layer.

The remaining problem is how to design proper super-

visions for learning the relative movements. Our key as-

sumption is that the tubelet proposals should have consis-

tent movement patterns with the ground-truth objects. How-

ever, given static object proposals as the starting boxes for

tubelet generation, they usually do not have a perfect 100%
Intersection-over-Union (IoU) ratio with the ground truth

object boxes. Therefore, we require static box proposals

that are close to ground truth boxes to follow the movement

patterns of the ground truth boxes. More specifically, if a

static object proposal bit has a greater-than-0.5 IoU value

with a ground truth box b̂it, and the IoU value is greater than

those of other ground truth boxes, our regression layer tries

to generate tubelet boxes following the same movement pat-

terns m̂i
t of the ground truth b̂it as much as possible. The

relative movement targets m̂i
t = (x̂i

t, ŷ
i
t, ŵ

i
t, ĥ

i
t) can be de-

fined w.r.t. the ground truth boxes at time 1, b̂1t , in the simi-

lar way as Eq. (2). It is trivial to see that m̂i
1 = (0, 0, 0, 0).

Therefore, we only need to predict m̂i
2 to m̂i

w. Note that by

learning relative movements w.r.t to the spatial anchors at

the first frame, we can avoid cumulative errors in conven-

tional tracking algorithms to some extend.

The movement targets are normalized by their mean mt

and standard deviation σt as the regression objectives,

m̃i
t = (m̂i

t −mt)/σt, for t = 1, . . . , w. (4)

To generate N tubelets that follow movement patterns of

their associated ground truth boxes, we minimize the fol-

lowing object function w.r.t. all xi
t, y

i
t, w

i
t, h

i
t,

L({M̃}, {M}) =
1

N

N
∑

i=1

w
∑

t=1

∑

k∈{x,y,w,h}

d(∆kit), (5)

where {M̃} and {M} are the sets of all normalized move-

ment targets and network outputs, and

d(x) =

{

0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(6)

is the smoothed L1 loss for robust box regression in [5].

The network outputs ṁi
t are mapped back to the real rel-

ative movements mi
t by

mi
t = (ṁi

t +mt) ∗ σt. (7)

By our definition, if a static object proposal covers some

area the object, it should cover the same portion of object in

the later frames (see Figure 1 (d) for examples).

3.4. Initialization for multi­frame regression layer

The size of the temporal window is also a key factor in

the TPN. The simplest model is a 2-frame model. For a

given frame, the features within the spatial anchors on cur-

rent frame and the next frames are extracted and concate-

nated, [ri1, r
i
2]

T , to estimate the movements of bi1 on the

next frames. However, since the 2-frame model only uti-

lizes minimal temporal information within a very short tem-

poral window, the generated tubelets may be non-smooth

and easy to drift. Increasing the temporal window utilizes

more temporal information so as to estimate more complex

movement patterns.

Given the temporal window size w, the dimension of the

extracted features are fw, where f is the dimension of vi-

sual features in a single frame within the spatial anchors

(e.g., 1024-dimensional “inception 5b” features from the

BN model in our settings). Therefore, the parameter size

of the regress layer is of Rfw×4w and grows quadratically

with the temporal window size w.

If the temporal window size is large, randomly initializ-

ing such a large matrix has difficulty in learning a good re-

gression layer. We propose a “block” initialization method

to use the learned features from 2-frame model to initialize

the multi-frame models.

In Figure 3, we show how to use a pre-trained 2-frame

model’s regression layer to initialize that of a 5-frame

model. Since the target m̂i
1 in Equation (2) is always

(0, 0, 0, 0) we only need to estimate movements for the later

frames. The parameter matrix W2 is of size R2f×4 since the

input features are concatenations of two frames and the bias

term b2 is of size R
4. For the 5-frame regression layer, the

parameter matrix W5 is of size R5f×(4×4) and the bias term
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Figure 3. Illustration of the “block” initialization method. The 2-

frame model’s regression layer has weights W2 and bias b2, the

W2 consists of two sub-matrices A and B corresponding to the

features of the first and second frames. Then a 5-frame model’s

regression layer can be initialized with the sub-matrices as shown

in the figure. The bias term b5 is a simple repetition of b2.

b5 is of R(4×4). Essentially, we utilize visual features from

frame 1 & 2 to estimate movements in frame 2, frame 1 & 3
for frame 3, and so on. The matrix W2 is therefore divided

into two sub-matrices A ∈ R
f×4 and B ∈ R

f×4 to fill the

corresponding entries of matrix W5. The bias term b5 is a

repetition of b2 for 4 times.

In our experiments, we first train a 2-frame model with

random initialization and then use the 2-frame model to ini-

tialize the multi-frame regression layer.

4. Overall detection framework with tubelet
generation and tubelet classification

Based on the Tubelet Proposal Networks, we propose a

framework that is efficient for object detection in videos.

Compared with state-of-the-art single object tracker, It only

takes our TPN 9 GPU days to generate dense tubelet pro-

posals on the ImageNet VID dataset. It is also capable of

utilizing useful temporal information from tubelet propos-

als to increase detection accuracy. As shown in Figure 2,

the framework consists of two networks, the first one is the

TPN for generating candidate object tubelets, and the sec-

ond network is a CNN-LSTM classification network that

classifies each bounding box on the tubelets into different

object categories.

4.1. Efficient tubelet proposal generation

The TPN is able to estimate movements of each static

object proposal within a temporal window w. For object

detection in videos in large-scale datasets, we need to not

only efficiently generate tubelets for hundreds of spatial an-

chors in parallel, but also generate tubelets with sufficient

lengths to incorporate enough temporal information.

To generate tubelets with length of l, (see illustration

in Figure 4 (a)), we utilize static object proposals on the

first frame as spatial anchors, and then iteratively apply

TPN with temporal window w until the tubelets cover all

l frames. The last estimated locations of the previous itera-

Iter 1

Iter 2
Iter 3

Iter 4

Iter 5

l

(a)

(b)

Figure 4. Efficiently generating tubelet proposals. (a) the TPN

generates the tubelet proposal of temporal window w and uses the

last-frame output of the proposal as static anchors for the next iter-

ation. This process iterates until the whole track length is covered.

(b) multiple static anchors in a frame are fed to the Fast R-CNN

network with a single forward pass for simultaneously generating

multiple tubelet proposals. Different colors indicate different spa-

tial anchors

tion are used as spatial anchors for the next iteration. This

process can iterate to generate tubelet proposals of arbitrary

lengths.

For N static object proposals in the same starting frame,

the bottom CNN only needs to conduct an one-time forward

propagation to obtain the visual feature maps, and thus en-

ables efficient generation of hundreds of tubelet proposals

(see Figure 4 (b)).

Compared to previous methods that adopt generic sin-

gle object trackers, our proposed methods is dramatically

faster for generating a large number of tubelets. The track-

ing method used in [15] has reported 0.5 fps running speed

for a single object. For a typical frame with 300 spatial an-

chors, it takes 150s for each frame. Our method has an av-

erage speed of 0.488s for each frame, which is about 300×
faster. Even compared to the recent 100 fps single object

tracker in [9], our method is about 6.14× faster.

4.2. Encoder­decoder LSTM (ED­LSTM) for tem­
poral classification

After generating the length-l tubelet proposal, visual fea-

tures u
1
t , · · · ,u

i
t, · · · ,u

i
l can be pooled from tubelet box

locations for object classification with temporal informa-

tion. Existing methods [15, 7, 14] mainly use temporal in-

formation in post processing, either propagating detections

to neighboring frames or temporally smoothing detection

scores. The temporal consistency of detection results is im-

portant, but to capture the complex appearance changes in

the tubelets, we need to learn discriminative spatiotemporal

features at the tubelet box locations.

As shown in Figure 2, the proposed classification sub-

network contains a CNN that processes input images to ob-

tain feature maps. Classification features ROI-pooled from

each tubelet proposal across time are then fed into a one-

layer Long Short-Term Memory (LSTM) network [11] for
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tubelet classification. It is a special type of recurrent neural

network (RNN) and is widely investigated for learning spa-

tiotemporal features in recent years. Each LSTM unit has

a memory unit that conveys visual information across the

time for incorporating temporal information.

The input for each time step t of the LSTM for the ith
tubelet are the cell state cit−1, hidden state hi

t−1 of the pre-

vious frame, and the classification features ui
t pooled at the

current time t. The starting state (ci0, h
i
0) of the LSTM

is set to zeros. The output is the hidden states hi
t, which

is connected to a fully-connected layer for predicting class

confidences and another FC layer for box regression. One

problem with the vanilla LSTM is that the initial state may

dramatically influence the classification of the first several

frames. Inspired by sequence-to-sequence LSTM in [28],

we propose an encoder-decoder LSTM model for object de-

tection in videos as shown in Figure 2. The input features

are first fed into an encoder LSTM to encode the appearance

features of the entire tubelet into the memory. The mem-

ory and hidden states are then fed into the decoder LSTM,

which then classifies the tubelet in the reverse order with the

reversed inputs from the last frame back to the first frame.

In this way, better classification accuracy can be achieved

by utilizing both past and future information. The low pre-

diction confidences caused by the all-zero initial memory

states can be avoided.

5. Experiments

5.1. Datasets and evaluation metrics

The proposed framework is evaluated on the ImageNet

object detection from video (VID) dataset introduced in the

ILSVRC 2015 challenge. There are 30 object classes in the

dataset. The dataset is split into three subsets: the training

set that contains 3862 videos, the validation set that contains

555 videos, and the test set that contains 937 videos. Ob-

jects of the 30 classes are labeled with ground truth bound-

ing boxes on all the video frames. Since the ground truth

labels for the test set are not publicly available, we report

all results on the validation set as a common practice on

the ImageNet detection tasks. The mean average precision

(Mean AP) of 30 classes is used as the evaluation metric.

In addition, we also evaluate our system on the

YouTubeObjects (YTO) [22] dataset for the object localiza-

tion task. The YTO dataset has 10 object classes, which are

a subset of the ImageNet VID dataset. The YTO dataset is

weakly annotated with only one object of one ground truth

class in the video. We only use this dataset for evaluation

and the evaluation metric is CorLoc performance measure

used in [3], i.e., the recall rate of ground-truth boxes with

IoU above 0.5.

5.2. Base CNN model training

We choose GoogLeNet with Batch Normalization (BN)

[12] as our base CNN models for both our TPN and CNN-

LSTM models without sharing weights between them. The

BN model is pre-trained with the ImageNet classification

data and fine-tuned on the ImageNet VID dataset. The static

object proposals are generated by a RPN network trained on

the ImageNet VID dataset. The recall rate of the per-frame

RPN proposals on the VID validation set is 95.92 with 300
boxes on each frame.

To integrate with Fast RCNN framework, we placed the

ROI-pooling layer after “inception 4d” rather than the last

inception module (“inception 5b”), because “inception 5b”

has 32× down-sampling with a receptive field of 715 pix-

els, which is too large for ROI-pooling to generate discrim-

inative features. The output size of ROI-pooling is 14× 14
and we keep the later inception modules and the final global

pooling after “inception 5b”. We then add one more FC

layer for different tasks including tubelet proposal, classifi-

cation or bounding box regression.

The BN model is trained on 4 Titan X GPUs for 200, 000
iterations, with 32 RoIs from 2 images on each card in every

iteration. The initial learning rate is 5×10−4 and decreases

to 1/10 of its previous value for every 60, 000 iterations.

All BN layers are frozen during the fine-tuning. After fine-

tuning on DET data, the BN model achieves 50.3% mean

AP on the ImageNet DET data. After fine-tuning the BN

model on the VID data with the same hyper-parameter set-

ting for 90, 000 iterations, it achieves 63.0% mean AP on

the VID validation set.

5.3. TPN training and evaluation

With the fine-tuned BN model, we first train a 2-frame

model on the ImageNet VID dataset. Since the TPN needs

to estimate the movement of the object proposals according

ground-truth objects’ movements, we only select static pro-

posals that have greater-than-0.5 IoU overlaps with ground-

truth annotations as spatial anchors following Section 3.3.

For those proposals that do not have greater-than-0.5 over-

laps with ground-truth boxes, they are not used for training

the TPN. During the test stage, however, all static object

proposals in every 20 frames are used as spatial anchors for

tubelet proposal generation. All tubelets are 20-frame long.

The ones starting from negative static proposals are likely

to stay in the background regions, or track the foreground

objects when they appear in their nearby regions.

We investigate different temporal window sizes w and

initialization methods described in Section 3.4. Since the

ground truth movements m̂i
t can be obtained from the

ground truth annotations, each positive static proposal has

an “ideal” tubelet proposal in comply with its associated

ground-truth’s movements. Three metrics are used to eval-

uate the accuracy of generated tubelets by different mod-

els (Table 1). One is the mean absolute pixel differ-

ence (MAD) of the predicted coordinates and their ground

truth. The second one is the mean relative pixel differ-

ence (MRD) with x differences normalized by widths and

y differences normalized by heights. The third metric is

the mean intersection-over-union (IOU) between predicted
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Method Window MAD MRD Mean IOU

MoveTubelets Random 2 15.50 0.0730 0.7966

MoveTubelets Random 5 26.00 0.1319 0.6972

MoveTubelets RNN 5 13.87 0.0683 0.8060

MoveTubelets Block 5 12.98 0.0616 0.8244

MoveTubelets Block 11 15.20 0.0761 0.8017

MoveTubelets Block 20 18.03 0.0874 0.7731

Table 1. Evaluation of tubelet proposals obtained with varying

window sizes and different initialization methods. As the param-

eter size grows quadratically with the temporal window. The 5-

frame model with random initialization has much worse accuracy

compared to the proposed transformation initialization. As the

temporal window grows, the motion pattern becomes more com-

plex and the movement displacement may also exceed the recep-

tive field, which also causes accuracy decreases.

boxes and target boxes. From the table, we can see that

the 2-frame baseline model has a MAD of 15.50, MRD of

0.0730 and Mean IOU of 0.7966. For the 5-frame model, if

we initialize the fully-connected regression layer randomly

without using the initialization technique (other layers are

still initialized by the finetuned BN model), the perfor-

mance drops significantly compared to that of the 2-frame

model. The reason might be that the parameter size of the 5-

frame model increases by 10 times (as shown in Figure 3),

which makes it more difficult to train without a good initial

point. However, with the proposed technique, the multi-

frame regression layer with the 2-frame model, the gener-

ated tubelets have better accuracy than the 2-frame model

because of the larger temporal context.

If the temporal window continues to increase, even with

the proposed initialization techniques, the performance de-

creases. This might be because if the temporal window is

too large, the movement of the objects might be too com-

plex for the TPN to recover the visual correspondences be-

tween far-away frames. In the later experiments, we use the

5-frame TPN to generate 20-frame-long tubelet proposals.

In comparison with our proposed method, an RNN base-

line with is implemented by replacing the tubelet regression

layer with an RNN layer of 1024 hidden neurons and a re-

gression layer to predict 4 motion targets. As shown in Ta-

ble 1, the RNN baseline performs worse than our method.

5.4. LSTM Training

After generating the tubelet proposals, the proposed

CNN-LSTM models extract classification features u
i
t at

tubelet box locations with the finetuned BN model. The

dimension of the features at each time step is 1024.

The LSTM has 1024 cell units and 1024 hidden outputs.

For each iteration, 128 tubelets from 4 videos are randomly

chosen to form a mini-batch. The CNN-LSTM is trained

using stochastic gradient descent (SGD) optimization with

momentum of 0.9 for 20000 iterations. The parameters are

initialized with standard deviation of 0.0002 and the initial

learning rate is 0.1. For every 2, 000 iteration, the learning

rate decreases by a factor of 0.5.

5.5. Results

Baseline methods. The most basic baseline method is

Fast R-CNN static detector [5] (denoted as “Static”), which

needs static proposals on every frame and does not involve

any temporal information. This baseline uses static propos-

als from the same RPN we use and the Fast R-CNN model

is the same as our base BN model. To validate the effective-

ness of the tubelet regression targets, we change them into

the precise locations of the ground truth on each frame and

also generate tubelet proposals (see Figure 1 (c)). Then we

apply a vanilla LSTM on these tubelet proposals and denote

the results as “LocTubelets+LSTM”. Our tubelet proposal

method is denoted as “MoveTubelets”. We also compare

with a state-of-the-art single-object tracking method [10]

denoted as “KCF”. As for the CNN-LSTM classification

part, the baseline methods are the vanilla LSTM (denoted

as “LSTM”), and our proposed encoder-decoder LSTM is

denoted as “ED-LSTM”.

Results on ImageNet VID dataset. The quantitative re-

sults on the ImageNet VID dataset are shown in Table 2

and 3. As a convention of detection tasks on the ImageNet

dataset, we report the results on the validation set. The per-

formance of the baseline Fast R-CNN detector finetuned on

the ImageNet VID dataset has a Mean AP of 0.630 (denoted

as “Static”). Compare to the best single model performance

in [14], which has a Mean AP of 0.615 using only the VID

data, the baseline detector has an 1.5% performance gain.

Directly applying the baseline static detector on the TPN

tubelets with temporal window of 5 results in a Mean AP of

0.623 (denoted as “MoveTubelets+Fast RCNN”). In com-

parison, a state-of-the-art tracker [10] with the baseline

static detector (“KCF+Fast RCNN”) has a Mean AP of only

0.567. In addition, although the KCF tracker runs at 50 fps

for single object tracking, it takes 6 seconds to process one

frame with 300 proposals. Our method is 12× faster.

Applying the vanilla LSTM on the tubelet propos-

als increases the Mean AP to 0.678 (denoted as “Move-

Tubelets+LSTM”), which has 5.5% performance gain over

the tubelet results and 4.8% increase over the static base-

line results. This shows that the LSTM is able to learn ap-

pearance and temporal features from the tubelet proposals

to improve the classification accuracy. Especially for class

of “whale”, the AP has over 25% improvement since whales

constantly emerge from the water and submerge. A detector

has to observe the whole process to classify them correctly.

Compared to bounding box regression tubelet proposal

baseline, our tubelet proposal model has 2.5% improve-

ment which shows that our tubelet proposals have more di-

versity to incorporate temporal information. Changing to

the encoder-decoder LSTM model has a Mean AP of 0.684
(denoted as “MoveTubelets+ED-LSTM”) with a 0.6% per-

formance gain over the vanilla LSTM model with perfor-

mance increases on over half of the classes. One thing to

notice is that our encoder-decoder LSTM model performs

better than or equal to the tubelet baseline results on all
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Static (Fast RCNN) 0.821 0.784 0.665 0.656 0.661 0.772 0.523 0.491 0.571 0.720 0.681 0.768 0.718 0.897 0.651 0.201
MoveTubelets+Fast RCNN 0.776 0.778 0.663 0.654 0.649 0.766 0.514 0.493 0.559 0.724 0.684 0.775 0.710 0.900 0.642 0.208

LocTubelets+LSTM 0.759 0.783 0.660 0.646 0.682 0.813 0.538 0.528 0.605 0.722 0.698 0.782 0.724 0.901 0.664 0.212
MoveTubelets+LSTM 0.839 0.794 0.715 0.652 0.683 0.794 0.533 0.615 0.608 0.765 0.705 0.839 0.769 0.916 0.661 0.158
MoveTubelets+ED-LSTM 0.846 0.781 0.720 0.672 0.680 0.801 0.547 0.612 0.616 0.789 0.716 0.832 0.781 0.915 0.668 0.216
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A

P

Static (Fast RCNN) 0.638 0.347 0.741 0.457 0.558 0.541 0.572 0.298 0.815 0.720 0.744 0.557 0.432 0.894 0.630
MoveTubelets+Fast RCNN 0.646 0.320 0.691 0.454 0.582 0.540 0.567 0.286 0.806 0.730 0.737 0.543 0.414 0.885 0.623

LocTubelets+LSTM 0.743 0.334 0.727 0.513 0.555 0.613 0.688 0.422 0.813 0.781 0.760 0.609 0.429 0.874 0.653
MoveTubelets+LSTM 0.746 0.347 0.771 0.525 0.710 0.609 0.637 0.406 0.845 0.786 0.774 0.602 0.637 0.890 0.678
MoveTubelets+ED-LSTM 0.744 0.366 0.763 0.514 0.706 0.642 0.612 0.423 0.848 0.781 0.772 0.615 0.669 0.885 0.684

Table 2. AP list on ImageNet VID validation set by the proposed method and compared methods.

Static (Fast RCNN) 0.630

TCNN [14] 0.615

Seq-NMS [7] 0.522

Closed-loop [4] 0.500

KCF Tracker [10] + Fast R-CNN 0.567

MoveTubelets + Fast R-CNN 0.623

MoveTubelets+LSTM 0.678

MoveTubelets+ED-LSTM (proposed) 0.684

Table 3. Mean AP for baseline models and proposed methods.

Figure 5. Qualitative results on the ImageNet VID dataset. The

bounding boxes are tight and stably concentrate on the objects

since the RoIs for each frame are based on the predicted locations

on the previous frame. The last 3 rows show the robustness to

handle scenes with multiple objects.)

the classes, which means that learning the temporal features

consistently improves the detection results.

The qualitative results on the ImageNet VID dataset are

shown in Figure 5. The bounding boxes are tight to the ob-

jects and we able to track and detect multiple objects during

long periods of time.

Localization on the YouTubeObjects dataset. In addition

to the object detection in video task on the ImageNet VID

dataset. We also evaluate our system on video object local-

ization task with the YouTubeObjects (YTO) dataset.

For each test video, we generate tubelet proposals and

apply the encoder-decoder LSTM model to classify the

tubelet proposals. For each test class, we select the tubelet

box with the maximum detection score on the test frames,

if the box has over 0.5 IOU overlap with one of the ground

truth boxes, this frame is accurately localized. The system

is trained on the ImageNet VID dataset and is directly ap-

plied for testing without any finetuning on the YTO dataset.

We compare with several state-of-the-art results on the YTO

Method aero bird boat car cat cow dog horse mbike train Avg.

Prest et al. [22] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5

Joulin et al. [13] 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 31.0

Kwak et al. [17] 56.5 66.4 58.0 76.8 39.9 69.3 50.4 56.3 53.0 31.0 55.7

Kang et al. [15] 94.1 69.7 88.2 79.3 76.6 18.6 89.6 89.0 87.3 75.3 76.8

MoveTubelets+ED-LSTM 91.2 99.4 93.1 94.8 94.3 99.3 90.2 87.8 89.7 84.2 92.4

Table 4. Localization results on the YouTubeObjects dataset. Our

model outperforms previous method with large margin.

dataset, and our system outperforms them with a large mar-

gin. Compared to the second best results in [15], our system

has 15.6% improvement.

6. Conclusion

In this work, we propose a system for object detection

in videos. The system consists of a novel tubelet proposal

network that efficiently generates tubelet proposals and an

encoder-decoder CNN-LSTM model to learn temporal fea-

tures from the tubelets. Our system is evaluated on the Im-

ageNet VID dataset for object detection in videos and the

YTO dataset for object localization. Experiments demon-

strate the effectiveness of our proposed framework.
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