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Abstract

We propose a novel method for temporally pooling

frames in a video for the task of human action recogni-

tion. The method is motivated by the observation that there

are only a small number of frames which, together, con-

tain sufficient information to discriminate an action class

present in a video, from the rest. The proposed method

learns to pool such discriminative and informative frames,

while discarding a majority of the non-informative frames

in a single temporal scan of the video. Our algorithm does

so by continuously predicting the discriminative importance

of each video frame and subsequently pooling them in a

deep learning framework. We show the effectiveness of our

proposed pooling method on standard benchmarks where

it consistently improves on baseline pooling methods, with

both RGB and optical flow based Convolutional networks.

Further, in combination with complementary video repre-

sentations, we show results that are competitive with respect

to the state-of-the-art results on two challenging and pub-

licly available benchmark datasets.

1. Introduction

Rapid increase in the number of digital cameras, notably

in cellphones, and cheap internet with high data speeds, has

resulted in a massive increase in the number of videos up-

loaded onto the internet [3]. Most of such videos, e.g. on

social networking websites, have humans as their central

subjects. Automatically predicting the semantic content of

videos, e.g. the action the human is performing, thus, be-

comes highly relevant for searching and indexing in this fast

growing database. In order to perform action recognition in

such videos, algorithms are required that are both easy and

fast to train and, at the same time, are robust to noise, given

the real world nature of such videos.

A popular framework for performing human action

recognition in videos is using a temporal pooling opera-
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Figure 1: (Top) Illustration of proposed AdaScan . It

first extracts deep features for each frame in a video and

then passes them to the proposed Adaptive Pooling mod-

ule, which recursively pools them while taking into account

their discriminative importances—which are predicted in-

side the network. The final pooled vector is then used

for classification. (Bottom) Predicted discriminative impor-

tance for a video that was downloaded from the internet1and

ran through AdaScan trained on UCF101. The numbers

and bars on the bottom indicate the predicted importance

∈ [0, 1] and the timeline gives the relative frame position in

percentile (see Section 4.4).

tion to ‘squash’ the information from different frames in

a video into a summary vector. Mean and max pool-

ing, i.e. taking the average or the coordinatewise max of

the (features of the) frames, are popular choices, both

with classic ‘shallow’ as well as recent ‘deep’ methods

1Video downloaded from https://www.youtube.com/watch?

v=KnHUAc20WEU and cropped from 3–18 seconds

13376

https://www.youtube.com/watch?v=KnHUAc20WEU
https://www.youtube.com/watch?v=KnHUAc20WEU


[31, 40, 18, 43]. However, these pooling methods consider

all frames equally and are not robust to noise, i.e. to the

presence of video frames that do not correspond to the tar-

get action [22, 7, 1, 20, 48, 52]. This results in a loss in

performance as noted by many host algorithms, with both

shallow and deep pipelines e.g. [2, 7, 30, 20]. Several meth-

ods have proposed solutions to circumvent the limitations

of these pooling methods. Such solutions either use Latent

Variable Models [22, 36, 9, 30, 19], which require an ad-

ditional inference step during learning, or employ a variant

of Recurrent Neural Networks (RNN) [29, 50] which have

intermediate hidden states that are not immediately inter-

pretable. In this work we propose a novel video pooling al-

gorithm that learns to dynamically pool video frames for ac-

tion classification, in an end-to-end learnable manner, while

producing interpretable intermediate ‘states’. We name our

algorithm AdaScan since it is able to both adaptively pool

video frames, and make class predictions in a single tempo-

ral scan of the video. As shown in Figure 1, our algorithm

internally predicts the discriminative importance of each

frame in a video and uses these states for pooling. The pro-

posed algorithm is set in a weakly supervised setting for ac-

tion classification in videos, where labels are provided only

at video-level and not at frame-level [22, 52, 30, 20, 2]. This

problem is extremely relevant due to the difficulty and non-

scalability of obtaining frame-level labels. The problem is

also very challenging as potentially noisy and untrimmed

videos may contain distractive frames that do not belong to

the same action class as the overall video.

Algorithms based on the Multiple Instance Learning

(MIL) framework try to solve this problem by alternating

between spotting relevant frames in videos and (re-)learning

the model. Despite obtaining promising results, MIL is (i)

prone to overfitting, and (ii) by design, fails to take into ac-

count the contributions of multiple frames together, as noted

recently [30, 19]. More recently, Long Short Term Memory

(LSTM) networks have also been used for video classifica-

tion. They encode videos using a recurrent operation and

produce hidden vectors as the final representations of the

videos [29, 50, 6]. Despite being able to model reasonably

long-term temporal dependencies, LSTMs are not very ro-

bust to noise and have been shown to benefit from explicit,

albeit automatic, removal of noisy frames [10, 52]. The pro-

posed algorithm does not require such external noisy frame

pruning as it does so by itself while optimizing the classifi-

cation performance in a holistic fashion.

In summary we make the following contributions. (1)

We propose a novel approach for human action classifica-

tion in videos that (i) is able to identify informative frames

in the video and only pool those, while discarding oth-

ers, (ii) is end-to-end trainable along with the representa-

tion of the images, with the final objective of discrimina-

tive classification, and (iii) works in an inductive setting,

i.e. given the training set it learns a parametrized function

to pool novel videos independently, without requiring the

whole training set, or any subset thereof, at test time. (2)

We validate the proposed method on two challenging pub-

licly available video benchmark datasets and show that (i) it

consistently outperforms relevant pooling baselines, and (ii)

obtains state-of-the-art performance when combined with

complimentary representations of videos. (3) We also ana-

lyze qualitative results to gain insights to the proposed al-

gorithm and show that our algorithm achieves high perfor-

mance while only pooling from a subset of the frames.

2. Related Work

Many earlier approaches relied on using a Bag of Words

(BoW) based pipeline. Such methods typically extracted

local spatio-temporal features and encoded them using a

dictionary [18, 41, 5, 28, 25, 40]. One of the first works

[18] described a video with BoW histograms that encoded

Histograms of Gradients (HoG) and Histograms of Flow

(HoF) features over 3D interest points. Later works im-

proved upon this pipeline in several ways [23, 47] by us-

ing dense sampling for feature extractions [41], describing

trajectories instead of 3D points [13, 39], and using bet-

ter pooling and encoding methods [47, 25, 23]. Improving

upon these methods Wang et al. [40] proposed the Improved

Dense Trajectories (iDT) approach that showed significant

improvement over previous methods by using a combina-

tion of motion stabilized dense trajectories, histogram based

features and Fisher Vector (FV) encodings with spatio-

temporal pyramids. Some recent methods have improved

upon this pipeline by either using multi-layer fisher vectors

[24] or stacking them at multiple temporal scales [17]. All

of these approaches rely on the use of various local features

combined with standard pooling operators.

Another class of methods have used latent structured

SVMs for modeling the temporal structure in human activ-

ities. These methods typically alternate between identify-

ing discriminative frames (or segments) in a video (infer-

ence step) and learning their model parameters. Niebles

et al. [22] modeled an activity as a composition of la-

tent temporal segments with anchor positions that were in-

ferred during the inference step. Tang et al. [36] improved

upon Niebles et al. by proposing a more flexible approach

using a variable duration HMM that factored each video

into latent states with variable durations. Other approaches

have also used MIL and its variants to model discrimina-

tive frames in a video, with or without a temporal struc-

ture [26, 30, 8, 51, 42, 20, 27]. Most related to our work

is the dynamic pooling appoach used by Li et al. [20] who

used a scoring function to identify discriminative frames in

a video and then pooled over only these frames. In con-

trast, our method does not solve an inference problem, and

instead explicitly predicts the discriminative importance of
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each frame and pools them in a single scan. Our work is

also inspired by an early work by Satkin et al. [27] who

identified the best temporal boundary of an action, defined

as the minimum number of frames required to classify this

action, and obtained a final representation by pooling over

these frames.

Despite the popularity of deep Convolutional Neural

Networks (CNN) in image classification, it is only recently

that deep methods have achieved performance comparable

to shallow methods for video action classification. Early

approaches used 3D convolutions for action recognition but

lacked any performance advantages [12, 14]. Simonyan et

al. [31] proposed the two-stream deep network that com-

bined a spatial network (trained on RGB frames) and a tem-

poral network (trained on stacked flow frames) for action

recognition. Ng et al. [50] highlighted a drawback in the

two-stream network that uses a standard image CNN in-

stead of a specialized network for training videos. This

results in the two-stream network not being able to cap-

ture long-term temporal information. They proposed two

deep networks for action classification by (i) adding stan-

dard temporal pooling operations in the network, and (ii)

using LSTMs for feature pooling. Recent methods have

also explored the use of LSTMs for both predicting action

classes [21, 29, 34, 21] and video caption generation [6, 49].

Some of these techniques have also combined attention with

LSTM to focus on specific parts of a video (generally spa-

tially) during state transitions [21, 29, 49]. Our work bears

similarity to these attention based frameworks in predict-

ing the relevance of different parts of the data. However it

differs in several aspects: (i) The attention or disriminative

importance utilized in our work is defined over temporal

dimension vs. the usual spatial dimension, (ii) we predict

this importance score in an online fashion, for each frame,

based on the current frame and already pooled features, in-

stead of predicting them together for all the frames [49], and

(iii) ours is a simple formulation that combines the predic-

tion with standard mean pooling operation to dynamically

pool frame-wise video features. Our work is also related

to LSTMs through its recursive formulation but differs in

producing a clearly interpretable intermediate state along

with the importance of each frame vs. LSTM’s generally

non-interpretable hidden states. It is also worth mentioning

the work on Rank Pooling and Dynamic Image Networks

that use a ranking function to pool a video [1, 7]. How-

ever, compared to current methods their approach entails a

non-trivial intermediate step that requires solving a ranking

formulation for pooling each vector.

3. Approach

We now describe the proposed approach, that we call

AdaScan (Adaptive Scan Pooling Network), in detail. We

denote a video as X = [x1, . . . , xT ], xt ∈ R
224×224×K ,

with each frame xt either represented as RGB images (K =
3), or as a stack of optical flow images of neighbouring

frames [31] (K = 20 in our experiments). We work in a

supervised classification setting with a training set

X = {(Xi, yi)}
N
i=1 ⊂ R

224×224×K×T × {1, . . . , C}, (1)

where Xi is a training video and yi is its class label (from

one of the C possible classes). In the following, we drop

the subscript i, wherever it is not required, for brevity.

AdaScan is a deep CNN augmented with an special-

ized pooling module (referred to as ‘Adaptive Pooling’) that

scans a video and dynamically pools the features of se-

lect frames to generate a final pooled vector for the video,

adapted to the given task of action classification. As shown

in Figure 1, our model consists of three modules that are

connected to each other sequentially. These three modules

serve the following purposes, respectively: (i) feature ex-

traction, (ii) adaptive pooling, and (iii) label prediction. The

feature extractor module comprises of all the convolutional

layers along with the first fully connected (FC-6) layer of

the VGG-16 network of Simonyan et al. [32]. This mod-

ule is responsible for extracting deep features from each

frame xt of a video, resulting in a fixed dimensional vec-

tor, denoted as φ(xt) ∈ R
4096. The purpose of the Adap-

tive Pooling module is to selectively pool the frame features

by aggregating information from only those frames that are

discriminative for the final task, while ignoring the rest. It

does so by recursively predicting a score that quantifies the

discriminative importance of the current frame, based on (i)

the features of the current frame, and (ii) the pooled vector

so far. It then uses this score to update the pooled vector

(described formally in the next section). This way it ag-

gregates discriminative information only by pooling select

frames, whose indices might differ for different videos, to

generate the final dynamically pooled vector for the video.

This final vector is then normalized using an ℓ2 normal-

ization layer and the class labels are predicted using a FC

layer with softmax function. We now describe the adaptive

pooling module of AdaScan in more detail and thereafter

provide details regarding the loss function and learning pro-

cedure.

3.1. Adaptive Pooling

This is the key module of the approach which dynami-

cally pools the features of the frames of a video. It does a

temporal scan over the video and pools the frames by in-

ferring the discriminative importance of the current frame

feature given the feature vector and the pooled video vector

so far. In the context of video classification, we want the

predicted discriminative importance of a frame to be high if

the frame contains information positively correlated to the

class of the video, and possibly negatively correlated to the

rest of the classes, and low if the frame is either redundant,
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w.r.t. already pooled frames, or does not contain any useful

information for the classification task. We note that this def-

inition of importance is similar to the notion of discrimina-

tiveness of a particular part of the data as used in prior MIL

based methods. However, contrary to MIL based methods,

which effectively weight the frames with a one-hot vector,

our algorithm is naturally able to focus on more than one

frame in a video, if required, while explicitly outputting the

importances of all the frames in an online fashion.

Let us denote the adaptive pooled vector till the initial t

frames for a video X as ψ(X, t). The aim is now to com-

pute the vector after pooling all the T frames in a video

i.e. ψ(X,T ). The Adaptive Pooling module implements the

pooling by recursively computing two operations. The first

operation, denoted as fimp, predicts the discriminative im-

portance, γt+1 ∈ [0, 1], for the next i.e. (t+1)th frame given

its CNN feature, φ(xt+1), and the pooled features till time

t, ψ(X, t). We denote the importance scores of the frames

of a video as a sequence of reals Γ = {γ1, . . . , γT } ∈ [0, 1].
The second operation is a weighted mean pooling operation

that calculates the new pooled featuresψ(X, t+1) by aggre-

gating the previously pooled features with the features from

current frame and its predicted importance. The operations

are formulated as:

γt+1 = fimp(ψ(X, t), φ(xt+1)) (2)

ψ(X, t+ 1) =
1

γ̂t+1

(γ̂tψ(X, t) + γt+1φ(xt+1)) (3)

where, γ̂p =

p
∑

k=1

γk (4)

Effectively, at tth step the above operation does a

weighted mean pooling of all the frames of a video, with

the weights of the frame features being the predicted dis-

criminative importance scores γ1, . . . , γt.

We implement the attention prediction function fimp(·)
as a Multilayer Perceptron (MLP) with three layers. As the

underlying operations for fimp(·) rely only on standard lin-

ear and non-linear operations, they are both fast to compute

and can be incorporated easily inside a CNN network for

end-to-end learning. In order for fimp(·) to consider both

the importance and non-redundancy of a frame we feed the

difference between the current pooled features and features

from the next frame to the Adaptive Pooling module. We

found this simple modification, of feeding the difference,

to not only help reject redundant frames but also improve

generalization. We believe this is due to the fact that the

residual might be allowing the Adaptive Pooling module to

explicitly focus on unseen features while making a decision

on whether to pool them (additively) or not.

Owing to its design, our algorithm is able to maintain the

simplicity of a mean pooling operation while predicting and

adapting to the content of each incoming frame. Moreover

at every timestep we can easily interpret both the discrimi-

native importance and the pooled vector for a video, leading

to an immediate extension to an online/streaming setting,

which is not the case for most recent methods.

3.2. Loss Function and Learning

We formulate the loss function using a standard cross

entropy loss LCE between the predicted and true labels. In

order to direct the model towards selecting few frames from

a video, we add an entropy based regularizer LE over the

predicted scores, making the full objective as

L(X, y) = LCE(X, y) + λLE(Γ) (5)

LE(Γ) = −
∑

k

eγk

N
log

(

eγk

N

)

(6)

γk, λ ≥ 0, N =
∑

t

eγt (7)

The regularizer minimizes the entropy over the normalized

(using softmax) discriminative scores. Such a regularizer

encourages a peaky distribution of the importances, i.e. it

helps select only the discriminative frames and discard the

non discriminative ones when used with a discriminative

loss. We also experimented with the popular sparsity pro-

moting ℓ1 regularizer, but found it to be too aggressive as

it led to selection of very few frames, which adversely af-

fected the performance. The parameter λ is a trade-off

parameter which balances between a sparse selection of

frames and better minimization of the cross entropy clas-

sification loss term. If we set λ to relatively high values we

expect fewer number of frames being selected, which would

make the classification task harder e.g. single frame per

video would make it same as image classification. While, if

the value of λ is relatively low, the model is expected to se-

lect larger number of frames and also possibly overfit. We

show empirical results with varying λ in the experimental

Section 4.2.3.

4. Experimental Results

We empirically evaluate our approach on two challeng-

ing publicly available human action classification datasets.

We first briefly describe these datasets, along with their ex-

perimental protocol and evaluation metrics. We then pro-

vide information regarding implementation of our work.

Thereafter we compare our algorithm with popular com-

petetive baseline methods. We also study the effect of the

regularization used in AdaScan and compare our approach

with previous state-of-the-art methods on the two datasets.

We finally discuss qualitative results to provide important

insights to the proposed method.
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HMDB512 [16] dataset contains around 6800 video clips

from 51 action classes. These action classes cover wide

range of actions – facial actions, facial action with object

manipulations, general body movement, and general body

movements with human interactions. This dataset is chal-

lenging as it contains many poor quality video with signif-

icant camera motions and also the number of samples are

not enough to effectively train a deep network [31, 44]. We

report classification accuracy for 51 classes across 3 splits

provided by the authors [16].

UCF1013 [33] dataset contains 13320 videos from 101 ac-

tion classes that are divided into 5 categories- human-object

interaction, body-movement only, human-human interac-

tion, playing musical instruments and sports. Action classi-

fication in this datasets is challenging owing to variations in

pose, camera motion, viewpoint and spatio-temporal extent

of an action. Owing to these challenges and higher number

of samples this dataset is often used for evaluation in previ-

ous works. We report classification accuracy for 101 classes

across the 3 train/test splits provided by the authors [33].

4.1. Implementation Details

To implement AdaScan , we follow Simonyan et al.

[31], and use a two-stream network that consists of a spatial

and a temporal 16 layer VGG network [32]. We generate a

20 channel optical flow input, for the temporal network, by

stacking both X and Y direction optical flows from 5 neigh-

bouring frames in both directions [31, 44]. We extract the

optical flow using the tool4 provided by Wang et al. [44],

that uses TV-L1 algorithm and discretizes the optical flow

fields in the range of [0, 255] by a linear transformation. As

described in Section 3 our network trains on a input video

containing multiple frames instead of a single frame as was

done in the two-stream network [31]. Since videos vary in

the number of frames and fitting an entire video on a stan-

dard GPU is not possible in all cases, we prepare our input

by uniformly sampling 25 frames from each video. We aug-

ment our training data by following the multiscale cropping

technique suggested by [44]. For testing, we use 5 random

samples of 25 frames extracted from the video, and use 5
crops of 224 × 224 along with their flipped versions. We

take the mean of these predictions for the final prediction

for a sample.

We implement the Adaptive Pooling layer’s fimp(·)
function, as described in Section 3, using a three layer MLP

with tanh non linearities and sigmoid activation at the fi-

nal layer. We set the initial state of the pooled vector to be

same as the features of the first frame. We found this ini-

tialization to be stable as compared to initialization with a

2http://serre-lab.clps.brown.edu/resource/

hmdb-a-large-human-motion-database/
3http://crcv.ucf.edu/data/UCF101.php
4https://github.com/wanglimin/dense_flow

random vector. We initialize the components of the Adap-

tive Pooling module using initialization proposed by Glorot

et al. [11]. We also found using the residual of the pooled

and current frame vector as input to the Adaptive Pooling

module to work better than their concatenation.

We initialize the spatial network for training UCF101

from VGG-16 model [32] trained on ImageNet [4]. For

training the temporal network on UCF101, we initialize its

convolutional layers with the 16000 iteration snapshot pro-

vided by Wang et al. [44]. For training HMDB51 we ini-

tialize both the spatial and temporal network by borrowing

the convolutional layer weights from the corresponding net-

work trained on UCF101. During experiments we observed

that reinitializing the Adaptive Pooling module randomly

performed better than initializing with the weights from

the network trained on UCF101. We also tried initializ-

ing the network trained on HMDB51 with the snapshot pro-

vided by [44] and with an ImageNet pre-trained model but

found their performance to be worse. Interestingly, from the

two other trials, the model initialized with ImageNet per-

formed better, showing that training on individual frames

for video classification might lead to less generic features

due to the noise injected by the irrelevant frames for an ac-

tion class. We found it extremely important to use sepa-

rate learning rates for training the Adaptive Pooling module

and fine-tuning the Convolutional layers. We use the Adam

solver[15] with learning rates set to 1e− 3 for the Adaptive

Pooling module and 1e−6 for the Convolutional layers. We

use dropout with high (drop) probabilities (= 0.8) both after

the FC-6 layer and the Adaptive Pooling module and found

it essential for training. We run the training for 6 epochs

for the spatial network on both datasets. We train the tem-

poral network, for 2 epochs on UCF101 and 6 epochs on

HMDB51. We implement our network using the tensorflow

toolkit5.

Baselines and complementary features. For a fair com-

parison with standard pooling approaches, we implement

three baselines methods using the same deep network as

AdaScan with end-to-end learning. We implement mean

and max pooling by replacing the Adaptive Pooling mod-

ule with mean and max operations. For implementing MIL,

we first compute classwise scores for each frame in a video

and then take a max over the classwise scores across all

the frames prior to the softmax layer. For complimentary

features we compute results with improved dense trajecto-

ries (iDT) [40] and 3D convolutional (C3D) features [37]

and report performance using weighted late fusion. We ex-

tract the iDT features using the executables provided by the

authors [40] and use human bounding boxes for HMDB51

but not for UCF101. We extract FV for both datasets using

the implementation provided by Chen et al. [35]. For each

5https://www.tensorflow.org
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Network Max Pool MIL Mean Pool AdaScan

Spatial 77.2 76.7 78.0 79.1

Temporal 80.3 79.1 80.8 81.7

Table 1: Comparison with baselines on UCF101 - Split 1 in

terms of multiclass classification accuracies.

low-level feature6, their implementation first uses Principal

Component Analysis (PCA) to reduce the dimensionality to

half and then trains a Gaussian Mixture Models (GMM).

The GMM dictionaries, of size 512, are used to extract FV

by using the vlfeat library [38]. The final FV is formed

by applying both power normalization and ℓ2 normaliza-

tion to per features FV and concatenating them. Although

Chen et al. have only provided the GMMs and PCA matri-

ces for UCF101, we also use them for extracting FVs for

HMDB51. For computing C3D features we use the Caffe

implementation provided by Tran et al. [37] and extract fea-

tures from the FC-6 layer over a 16 frame window. We

compute final feature for each video by max pooling all the

features followed by ℓ2 normalization.

4.2. Quantitative Results

4.2.1 Comparison with Pooling Methods

Table 1 gives the performances of AdaScan along with

three other commonly used pooling methods as baselines

i.e. max pooling (coordinate-wise max), MIL (multiple in-

stance learning) and mean pooling, on the Split 1 of the

UCF101 dataset. MIL is the weakest, followed by max

pooling and then mean pooling (76.7, 77.2, 78.0 resp. for

spatial network and 79.1, 80.3, 80.8 for the temporal one),

while the proposed AdaScan does the best (79.1 and 81.7
for spatial and temporal networks resp.). The trends ob-

served here were typical — we observed that, with our

implementations, among the three baselines, mean pool-

ing was consistently performing better on different settings.

This could be the case since MIL is known to overfit as a re-

sult on focussing only on a single frame in a video [30, 19],

while max pooling seems to fail to summarize relevant parts

of an actions (and thus overfit) [7]. Hence, in the following

experiments we mainly compare with mean pooling.

4.2.2 Detailed Comparison with Mean Pooling

Table 2 gives the detailed comparison between the best

baseline of mean pooling with the proposed AdaScan ,

on the two datasets UCF101 and HMDB51, as well as, the

two networks, spatial and temporal. We observe that the

proposed AdaScan consistently performs better in all but

one case out of the 12 cases. In the only case where it

does not improve, it does not deteriorate either. The per-

formance improvement is more with the UCF101 dataset,

i.e. 77.6 to 78.6 for the spatial network and 82.4 to 83.4 for

6Trajectory, HOG, HOF, Motion Boundary Histograms (X and Y)

Spatial network Temporal network

Split Mean Pool AdaScan Mean Pool AdaScan

1 78.0 79.1 80.8 82.3

2 77.2 78.2 82.7 84.1

3 77.4 78.4 83.7 83.7
Avg 77.6 78.6 82.4 83.4

UCF101 [33]

Spatial network Temporal network

Split Mean Pool AdaScan Mean Pool AdaScan

1 41.3 41.8 48.8 49.3

2 40.3 41.0 48.8 49.8

3 41.3 41.4 48.3 48.5

Avg 40.9 41.4 48.6 49.2

HMDB51 [16]

Table 2: Comparison of AdaScan with mean pooling. We

report multiclass classification accuracies.

the temporal network, on average for the three splits of the

datasets. The improvements for the HMDB51 dataset are

relatively modest, i.e. 40.9 to 41.4 and 48.6 to 49.2 respec-

tively. Such difference in improvement is to be somewhat

expected. Firstly HMDB51 has fewer samples compared

to UCF101 for training AdaScan . Also, while UCF101

dataset has actions related to sports, the HMDB51 dataset

has actions from movies. Hence, while UCF101 actions are

expected to have smaller sets of discriminative frames, e.g.

throwing a basketball vs. just standing for it, compared to

the full videos, HMDB51 classes are expected to have the

discriminative information spread more evenly over all the

frames. We could thus expect more improvements in the

former case, as observed, by eliminating non-discriminative

frames cf. the later where there is not much to discard. A

similar trend can be seen in the classes that perform better

with AdaScan cf. mean pooling and vice-versa (Figure 2).

Classes such as “throw discuss” and “balance beam”, which

are expected to have the discriminative information concen-

trated on a few frames, do better with AdaScan while oth-

ers such as “juggling balls” and “jump rope”, where the ac-

tion is continuously evolving or even periodic and the in-

formation is spread out in the whole of the video, do better

with mean pooling.

4.2.3 Effect of Regularization Strength

As discussed in the Section 3.2 above, we have a hyper-

parameter λ ∈ R
+ which controls the trade-off between

noisy frame pruning and model fitting. We now discuss

the effect of the λ hyperparameter. To study its effect we

trained our spatial network with different λ values on the

HMDB51 dataset for 3 epochs to produce the shown re-

sults. We see in Figure 3 that for very low regularization

(1e2 to 1e4), the model gives an importance (i.e. value of
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Two- Very Add.

Method stream deep LSTM Attn Opti. UCF101 HMDB51

Simonyan et al. [31] X 88.0 59.4
Wang et al. [44] X 88.0 59.4
Yue et al. [50] X X 88.2 –

Yue et al. [50] X X X 88.6 –

Wang et al. [43] X X 90.3 63.2
Sharma et al. [29] X X X 77.0∗ 41.3
Li et al. [21] X X X X 89.2 56.4
Bilen et al. [1] X 89.1 65.2
Wang et al. [46] X X X 92.4 62.0
Zhu et al. [52] X X X 93.1 63.3
Wang et al. [45] X X 94.2 69.4

Tran et al. [37] 3D convolutional filters 83.4 53.9
iDT [40] shallow 84.3 58.4
MIFS [17] shallow 88.5 63.8
AdaScan X X 89.4 54.9
+ iDT late fusion 91.3 61.0
+ iDT + C3D late fusion 93.2 66.9

Table 3: Comparison with existing methods (Attn. – Spatial Attention, Add. Opti.

– Additional Optimization). (∗ Results are as reported by [21])

0 5 10 15 20
difference in accuracy
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longjump
fieldhockeypenalty

cliffdiving
volleyballspiking

cleanandjerk
javelinthrow
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jumprope

jugglingballs
trampolinejumping

Figure 2: Comparison of AdaScan with

mean pooling – example classes where

mean pooling is better (blue, top four)

and vice-versa (red, all but top four).
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Figure 3: Effect of regularization parameter λ

the coordinate corresponding to the frame in the normalized

vector Γ of weights) of greater than 0.5 to only about 50%
of frames, showing that the architecture in itself holds the

capability to filter out frames, probably due to the residual

nature of the input to the Adaptive Pooling module. As we

increase regularization strength from 1e6 to 1e7 we see that

we can achieve a drastic increase in sparsity by allowing

only a small drop in performance. Subsequently, there is a

constant increase in sparsity and corresponding drop in per-

formance. The change in sparsity and performance reduces

after 1e7 because we clip gradients over a fixed norm, thus

disallowing very high regularization gradients to flow back

through the network. The λ hyperparameter therefore al-

lows us to control the effective number of selected frames

based on the importances predicted by the model.

4.3. Comparison with State-of-the-Art

Our model achieves performance competitive with the

current state-of-the-art methods (Table 3) when combined

with complementary video features on both UCF101 and

HMDB51 datasets. We see that AdaScan itself either out-

performs or is competitive w.r.t. other methods employing

recurrent architectures (LSTMs) with only a single straight-

forward recurrent operation, without having to employ spa-

tial attention, e.g. (on UCF101) 89.4 for AdaScan vs.

89.2, 77.0 for [21, 29], or deep recurrent architectures with

significant extra pre-training, like 88.6 for [50], demon-

strating the effectiveness of the idea. We also show im-

provements over traditional shallow features, i.e. iDT [43]

and MIFS [17], which is in tune with the recent trends in

computer vision. Combined with complementary iDT fea-

tures the performance of AdaScan increases to 91.3, 61.0
from 89.4, 54.9, which further goes up to 93.2, 66.9 for the

UCF101 and HMDB51 datasets respectively when com-

bined with C3D features. These are competitive with the

existing state-of-the-art results [45, 52] on these datasets.

4.4. Qualitative Results

Figure 4 shows some typical cases (four test videos from

split 1 of UCF101) visualized with the output from the pro-

posed AdaScan algorithm. Each frame in these videos

is shown with the discriminative importance (value of the

γt ∈ [0, 1]) predicted by AdaScan as a red bar on the bot-

tom of the frame along with the relative (percentile) loca-

tion of the frame in the whole video. In the “basketball”

example we observe that AdaScan selects the right tem-

poral boundaries of the action by assigning higher scores

to frames containing the action. In the “tennis–swing” ex-

ample, AdaScan selects around three segments in the clip

that seem to correspond to (i) movement to reach the ball,

(ii) hitting the shot and (iii) returning back to center of the

court. We also see a similar trend in the “floor–gymnastics”
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16 28 40 48 68 80 88 100

0.80 0.04 0.89 0.33 0.96 0.0 0.01 0.38

tennis_swing

8 20 28 40 52 70 72 100

0.88 0.99 0.99 0.99 0.99 0.00 0.00 0.00

basketball

16 28 40 48 72 84 92 100

0.360.99 0.00 0.2 0.00 0.99 0.99 0.99

floor gymnastics

16 32 40 52 68 80 96 100

0.00 0.01 0.09 0.00 0.75 0.09 0.71 0.00

punch

Figure 4: Visualizations of AdaScan frame selection. The numbers and red bars below the frames indicate the importance

weights. The timeline gives the position of the frame in percentile of total number of frames in the video (best seen in colour).

example, where AdaScan selects the temporal parts corre-

sponding to (i) initial preparation, (ii) running and (iii) the

final gymnastic act. Such frame selections resonate with

previous works that have highlighted the presence of gener-

ally 3 atomic actions (or actoms) in actions classes that can

be temporally decomposed into finer actions [8]. We also

see an interesting property in the “punch” example, where

AdaScan assigns higher scores to frames where the boxers

punch each other. Moreover, it assigns a low score of 0.09
to the frame (40) where a boxer makes a failed punch at-

tempt. We have also shown outputs on a video (in Figure 1)

that contains “hammer throw” action and was downloaded

from the internet. These visualizations strengthen our claim

that AdaScan is able to adaptively pool frames in a video,

by predicting discriminativeness of each frame, while re-

moving frames that are redundant or non-discriminative.

We further observe from these visualizations that AdaScan

also implicitly learns to decompose actions from certain

classes into simpler sub-events.

5. Conclusion

We presented an adaptive temporal pooling method,

called AdaScan , for the task of human action recogni-

tion in videos. This was motivated by the observation that

many frames are irrelevant for the recognition task as they

are either redundant or non-discriminative. The proposed

method addressed this, by learning to dynamically pool dif-

ferent frames for different videos. It does a single temporal

scan of the video and pools frames in an online fashion. The

formulation was based on predicting importance weights of

the frames which determine their contributions to the final

pooled descriptor. The weight distribution was also regular-

ized with an entropy based regularizer which allowed us to

control the sparsity of the pooling operation which in turn

helped control the overfitting of the model. We validated

the method on two challenging publicly available datasets

of human actions, i.e. UCF101 [33] and HMDB51 [16].

We showed that the method outperformed baseline pool-

ing methods of max pooling and mean pooling. It was also

found to be better than Multiple Instance Learning (MIL)

based deep networks. We also showed that the intuitions for

the design of the methods were largely validated by quali-

tative results. Finally, in combination with complementary

features, we also showed near state-of-the-art results with

the proposed method.
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