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Abstract

Zero-shot image classification using auxiliary informa-

tion, such as attributes describing discriminative object

properties, requires time-consuming annotation by domain

experts. We instead propose a method that relies on hu-

man gaze as auxiliary information, exploiting that even non-

expert users have a natural ability to judge class member-

ship. We present a data collection paradigm that involves a

discrimination task to increase the information content ob-

tained from gaze data. Our method extracts discriminative

descriptors from the data and learns a compatibility function

between image and gaze using three novel gaze embeddings:

Gaze Histograms (GH), Gaze Features with Grid (GFG)

and Gaze Features with Sequence (GFS). We introduce two

new gaze-annotated datasets for fine-grained image clas-

sification and show that human gaze data is indeed class

discriminative, provides a competitive alternative to expert-

annotated attributes, and outperforms other baselines for

zero-shot image classification.

1. Introduction

Zero-shot learning is a challenging task given that some

classes are not present at training time [1, 28, 35, 41]. State-

of-the-art methods rely on auxiliary information to aid the

classification, such as object attributes [5, 6, 16]. While

image annotation using such attributes can be performed

by naı̈ve users, domain experts have to compile the initial

list of discriminative attributes for a fixed set of classes and

have to revise this list whenever new classes are added. Sev-

eral recent works therefore evaluated alternatives, such as

distributed text representations extracted from online text

corpora such as Wikipedia [23, 32], web-search data [35] or

object hierarchies, such as WordNet [24]. While such repre-

sentations can be extracted automatically and are therefore

less costly, they do not outperform attributes.
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Figure 1: We encode gaze points into vectors using three

different methods: gaze histogram (GH), gaze features with

grid (GFG), and gaze features with sequence (GFS).

We instead propose to exploit human gaze data as aux-

iliary information for zero-shot image classification. Gaze

has two advantages over attributes: 1) discrimination of ob-

jects from different classes can be performed by non-experts,

i.e. we do not require domain knowledge, and 2) data col-

lection only takes a few seconds per image and is implicit,

i.e. does not involve explicitly picking class attributes but

instead exploits our natural ability to tell objects apart based

on their appearance. We further propose a novel data col-

lection paradigm to encourage observers to focus on most

discriminative parts of an object and thereby maximise the

information content available for the classification task. The

paradigm involves observers to first inspect exemplars from

two different object classes shown to them side-by-side, and

subsequently take a binary decision for class membership

for another exemplar shown randomly from one of these

classes. While human gaze data has previously been used to

obtain bounding-box annotations for object detection [29]

or approximated by mouse clicks to guide image feature

extraction [4], this work is first to directly use human gaze

data as auxiliary information for zero-shot learning.

The contributions of our work are three-fold. First, we

propose human gaze data as auxiliary information for zero-

shot image classification, being the first work to tackle this

task using gaze. Second, we provide extensive human gaze
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data of multiple observers for two fine-grained subsets of

Caltech UCSD Birds 2010 (CUB) [48] and one subset of

Oxford Pets (PET) [31] datasets. Third, we propose three

novel class-discriminative gaze descriptors, namely Gaze

Histograms (GH), Gaze Features with Grid (GFG), and Gaze

Features with Sequence (GFS) and complement deep im-

age features in a structured joint embedding framework [3].

Through extensive evaluations on our datasets, we show that

human gaze of non-experts is indeed class-discriminative

and that the proposed gaze embedding methods improve

over several baselines and provide a competitive alternative

to expert-provided attributes for zero-shot learning.

2. Related Work

Our work is related to previous works on zero-shot learn-

ing and gaze-supported computer vision.

Zero-Shot Learning. Zero-shot learning [1, 28, 35, 41]

assumes disjoint sets of training and test classes. As no

labeled visual data is available for some classes during train-

ing, typically some form of auxiliary information is used

to associate different classes. Attributes [5, 6, 16] being

human-annotated discriminative visual properties of objects

are the most common type of auxiliary information. They

have been shown to perform well in several tasks such as

image classification [7, 30, 40, 46, 47], pedestrian detec-

tion [15, 20], and action recognition [19, 33, 51]. On the

model side, multi-modal joint embedding methods [1, 3, 50]

have been shown to provide a means to transfer knowledge

from images to classes and vice versa through attributes.

However as fine-grained objects [27, 48] are visually very

similar to each other, a large number of attributes are re-

quired which is costly to obtain. Therefore, several alterna-

tives have been proposed in the literature. Distributed text

representations such as Word2Vec [23] or GloVe [23] are

extracted automatically from online textual resources such

as Wikipedia. Hierarchical class embeddings provide an-

other alternative (e.g. using WordNet [24]) to learn semantic

similarities between classes. On the other hand, search for

alternative sources of auxiliary information has introduced

the concept of fine-grained visual descriptions [34] which in-

dicates that although novice users may not know the name of

a fine-grained object, they have a natural way of determining

discriminative properties of such objects.

Collecting labels from experts or attributes from novice

users requires asking many yes/no questions for each image.

We argue that, instead, it may be enough for them to look at

an image to identify fine-grained differences between object

classes. Although eye tracking equipment adds to the cost,

recent advances suggest that eye tracking will soon become

ubiquitous, e.g. in mobile phones [9]. Therefore, we propose

to extract class-discriminative representations of human gaze

and use them as auxiliary information for zero-shot learning.

Gaze-Supported Computer Vision. Gaze has been an in-

creasingly popular cue to support various computer vision

tasks. Gaze-tracking data has been used to perform weakly

supervised training of object detectors [13, 39, 52], estimat-

ing human pose [21], inferring scene semantics [42], detect-

ing actions [22], detecting salient objects in images [18] and

video [14], segmenting images [25], image captioning [43]

or predicting search targets during visual search [38]. Hu-

man gaze data is highly dependent on the task the annotators

have to complete. While [12, 52] collected gaze tracking

data for a free viewing task, [29] asked users to focus on

a visual search task and built POET dataset. On the other

hand, in [17] gaze has been used to evaluate saliency algo-

rithms on video sequences. [4] imitated human gaze data

with “bubbles” that they draw around mouse clicks where the

annotators find distinguishing image regions. Others used

saliency maps instead of real gaze data to improve object de-

tection performance [26, 36]. Maybe the most closely related

work to ours is [29], where fixations were used to generate

object bounding boxes and thereby reduce the bounding-

box annotation effort. On the other hand, to the best of our

knowledge, we are first to collect real eye tracking data to

extract class-discriminative representations and then in turn

to use them as auxiliary information for the specific task of

zero-shot image classification. Our technical novelty is in

our design of effective gaze representations that provide a

structure in class embedding space.

3. Gaze Tracking and Datasets

Here, we present our gaze data collection paradigm, detail

our gaze datasets and our gaze embeddings.

3.1. Gaze Data Collection

We collect the eye tracking data with the Tobii TX300

remote eye tracker that records binocular gaze data at 300

Hz. We implement a custom data collection software in

C# using the manufacturer-provided SDK which we will

make publicly available. Our software logs a timestamp,

users’ on-screen gaze location, their pupil diameter, as well

as a validity code for each eye that indicates the trackers

confidence in correctly identifying the eye. We use gaze-

points that are valid for both eyes. The participants are seated

67 cm from a 31.5 inch LCD screen. We use a chin rest to

reduce head movement and consequently improve the eye

tracking accuracy. The vertical extend of the image shown

on the screen is ≈ 15 cm, thus the visual angle1 is ≈ 25◦.

We record 5 participants for every image which leads to 5

gaze streams for each image of three datasets. Almost 50%
of our participants have impaired eye sight however, none of

them wear glasses during the data collection although 30%
of them wear contact lenses.

1Visual Angle = 2× arctan (Vertical Extend Stimuli / Distance)
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Comparison Classification

6 seconds 1 second max. 5 seconds

Figure 2: Participants first look at two images of two fine-

grained classes (6 sec), then at the center of the screen to

“reset” their gaze position (1 sec), finally they click the left

or right arrow on the keyboard (max 5 sec) to select the class

they think the image belongs to. We record their gaze only

on classification screen.

Our data collection paradigm is illustrated in Figure 2.

Participants first answer a short questionnaire on demograph-

ics, e.g. age, gender, eye sight, etc. and then we calibrate

the eye tracker using the standard 5-point calibration routine.

After calibration, participants follow a cycle of three steps,

namely comparison, fixation, and classification. During the

comparison step, we show two example images that we ran-

domly sample from two fine-grained classes for six seconds

where participants learn fine-grained differences between

two classes. In the fixation step, we ask the participants to

fixate on a dot in the center of the screen for one second to

“reset” the gaze position. In the classification step, we show

a new instance of one of the two classes which participants

need to classify by clicking on right/left arrow of the key-

board in max five seconds. This step terminates before five

seconds if the annotator decides earlier. A new cycle starts

until all the images are annotated by the same user.

Gaze Datasets. We collect gaze tracking data for images

of two publicly available datasets (See Table 1 for details).

Following [4] we collect gaze tracking data of 14 classes (7
classes of Vireos and 7 classes of Woodpeckers: CUB-VW)

for all the available 464 images. Each image is annotated

by 5 participants. In addition, CUB-VWSW includes two

more bird families of Sparrows and Warblers. CUB-VWSW

contains 11, 730 gaze tracks of five participants for every

image, i.e. 1882 images in total. Finally, we collect gaze

tracking data for the images of a 24-class subset of the Ox-

ford Pets dataset [31], where we take all 12 classes from

Cats and a subset of 12 classes from Dogs. Following CUB

setting, we collect 3, 600 gaze tracks of 720 images from five

participants and name this dataset PET. We collect gaze data

at the sub-species level, e.g. black-capped vireo vs red-eyed

vireo. We observe that comparing birds at a higher level,

e.g. woodpeckers vs vireos, is too easy and users take a

decision instantly, while comparing birds at the sub-species

level takes longer providing us more gaze points.

Duration Pupil DiameterLocation

+ x
y

Sequence

α

2

3

αd 1

Figure 3: Gaze features include gaze point location (x, y),

gaze point duration (d), angles to the previous and next gaze

points in the sequence (α1, α2), and the pupil diameter (R).

3.2. Gaze Embeddings

We propose Gaze Histograms (GH), Gaze Features with

Grid (GFG) and Gaze Features with Sequence (GFS) as three

gaze embedding methods.

Gaze Histogram (GH). Gaze points are encoded into a

m × n-dimensional vector using a spatial grid overlayed

over the image with m rows and n columns. The per-class

gaze histogram embedding is the mean gaze histogram of a

particular class. We encode gaze of each participant sepa-

rately to evaluate the annotator bias.

Figure 1 (top) shows how we construct a 9-dimensional

histogram using a spatial grid of 3× 3. For simplicity, we

show per-class histograms of seven vireos and seven wood-

peckers with darker colors indicating higher number of oc-

currences. High attention points for Vireos (top row) fall

in the middle of the image whereas for woodpeckers (bot-

tom row) the top of the image seems to be more important.

From visual inspection of the original images, we observe

that vireos in CUB often sit on horizontal tree branches with

their eyes being the most discriminative property. In contrast,

woodpeckers often climb on large tree trunks with their head

region being the most discriminative property. Gaze his-

tograms capture these spatial, i.e. horizontal versus vertical,

and class-specific differences.

Gaze Features (GFx). Counting the number of gaze

points that fall into a grid cell encodes the location in-

formation coarsely and does not encode any information

about the duration, sequence and the attention of the ob-

server. Therefore, we build 6-dimensional gaze features,

i.e. [x, y, d, α1, α2, R], as shown in Figure 3. Our gaze fea-

tures encode gaze location (x, y), gaze duration (d), angles

(α1, α2) between the previous and subsequent gaze point in

the scan path, and pupil diameter R that was shown to relate

to processing load [10] of the observer. We embed these

gaze features in two different ways, namely Gaze Features

with Grid (GFG) and Gaze Features with Sequence (GFS).

Gaze Features with Grid (GFG) uses a spatial grid similar

to gaze histograms (GH) to discretize the gaze space. Instead

of counting the number of gaze-points per cell, we average

the 6-dim gaze features of the points that fall in each cell.

We then concatenate gaze features that fall inside each grid

cell into a 6×m×n-dimensional vector with m and n being
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the number of rows and columns of the spatial grid. The per-

class GFG embedding is then the average of all GFG vectors

from the same class. By encoding the spatial ordering of the

gaze points, GFG captures information related to the typical

behavioral patterns of birds such as sitting on horizontal tree

branches vs climbing large tree trunks.

Gaze Features with Sequence (GFS) encodes the sequen-

tial order of gaze points. First we order gaze points with

respect to time, i.e. first occurring gaze point to the last, then

we sequentially select a fixed number (k) of gaze points from

each gaze sequence and embed them as a 6× k-dimensional

vector. Here, k is typically the minimum number of gaze

points extracted from the gaze-sequence of a certain observer.

The GFS encodes the time sequence of the gaze points in-

stead of focusing on their spatial layout. The per-class GFS

embedding is the average GFS embeddings of the same class.

Combining Gaze Embeddings. As participants gaze at dif-

ferent regions of the same image, we argue that their gaze

embeddings may contain complementary information. We

thus propose three different methods to combine their gaze

embeddings: First, we average the per-class gaze embed-

dings (φ(y)) of each participant abbreviated by AVG. Second,

we concatenate per-class gaze embedding of each participant

through early fusion, i.e. EARLY and learn one single model.

Third, we learn a model for each participant separately and

then we average their classification scores before making the

final prediction decision in the late fusion setting, i.e. LATE.

4. Gaze-Supported Zero-Shot Learning

In zero-shot learning, the set of training and test classes

are disjoint. During training, the models have access to only

the images and gaze embeddings of training classes but none

of the images or gaze embeddings of test classes. The lack

of labeled images from test classes is compensated by the

use of auxiliary information that defines a structure in the

label space [2, 3, 7, 49] and provides a means of associating

training and test classes. In the following, we provide the

details of the zero-shot learning model [3].

Zero-Shot Learning Model. Given image and class pairs

xn ∈ X and yn ∈ Y from a training set S = {(xn, yn), n =
1 . . . N}, we use the Structured Joint Embedding (SJE)

model [3] to learn a function f : X → Y by minimizing the

empirical risk

1

N

N∑

n=1

∆(yn, f(xn)) (1)

where ∆ : Y × Y → {0, 1} defines the cost of predicting

f(x) when the true label is y. The SJE model maximizes the

compatibility function F : X × Y → R as follows:

f(x;W ) = argmax
y∈Y

F (x, y;W ). (2)

Dataset # img / class Gaze Bubbles [4]

CUB-VW 464 / 14 2320 210

CUB-VWSW 2346 / 60 11730 900

PET 720 / 24 3600 –

Table 1: Statistics for CUB-VW, CUB-VWSW datasets (im-

ages selected from CUB [48]) and PET dataset (images

selected from Oxford PET [31]) w.r.t. number of images,

classes, number of gaze and bubble [4] tracks.

that has the following bi-linear form:

F (x, y;W ) = θ(x)⊤Wϕ(y). (3)

where the image embedding (θ(x)), i.e. image features ex-

tracted from a Deep Neural Network (DNN) and the class

embedding (ϕ(y)), i.e. gaze embeddings are provided as

a pre-processing step. W is learned through structured

SVM [45] by maximizing the ranking of the correct label:

max
y

(∆(yn, y) + F (xn, y;W ))− F (xn, yn;W ) (4)

and optimized through stochastic gradient descent (SGD).

At test time, we search for the test class whose per-class gaze

embedding yields the highest joint compatibility score.

5. Experiments

In this section, we first provide details on datasets, image

embeddings and parameter setting that we use for zero-shot

learning. We then present our detailed evaluation of gaze em-

beddings compared with various baselines both qualitatively

and quantitatively.

Datasets. As shown in Table 1, [4] provide mouse-click data,

i.e. bubble tracks, for 14 classes (7 classes of Vireos and 7
classes of Woodpeckers: CUB-VW) of CUB for a selection

of 210 images. They collected bubble tracks for every im-

age, however every annotator did not annotate every image.

Therefore, unlike our 5 streams of gaze-tracks collected from

5 participants, there is only a single stream of bubble-tracks.

On CUB-VW bubble-tracks, we build per-class bubble rep-

resentations in three different ways, i.e. the same as gaze,

and found out that Bubble Features with Sequence (BFS),

encoding x, y location and radius of the bubble works the

best, therefore we use these as bubble representations in all

our experiments. We extensively evaluate our method on

CUB-VW in the following section. Note that we validate all

the gaze-data processing parameters on CUB-VW and use

the same parameters for other datasets. Our CUB-VWSW

dataset, i.e. including Vireos, Woodpeckers, Sparrows and

Warblers, comes with 312 expert-annotated attributes for

every class, i.e. embedded as 312-dimensional per-class

attribute vectors. [11] extended [4] by collecting bubble-

tracks for more bird species, therefore bubble-tracks of 900

4528



5 10 15 20 25 35 45 50
Max distance

0

20

40

60

80

100

T
op

-1
 A

cc
ur

ac
y 

(in
 %

)

1 5 10 25 50 75 100
Time window size

0

20

40

60

80

100

T
op

-1
 A

cc
ur

ac
y 

(in
 %

)

Figure 4: Raw gaze data processing: max distance between

gaze points and time window size.

images that [11] selected for CUB-VWSW dataset are also

available. The PET dataset neither contains attributes nor

bubble-tracks. For both our CUB-VWSV and PET datasets,

we further construct bag-of-words representations extracted

from Wikipedia articles that describe a specific class to build

per-class representations. Bag of words frequencies are pro-

duced by counting the occurrence of each vocabulary word

that appears within a document. To obtain fixed-sized de-

scriptors, we only consider the N-most frequent words across

all classes after removing stop-words and stemming.

Image Embeddings and Parameter Setting. As image

embeddings, we extract 1, 024-dim CNN features from an

ImageNet pre-trained GoogLeNet [44] model. We neither do

any task-specific image processing, such as image cropping,

nor fine-tune the pre-trained network on our task. We cross-

validate the zero-shot learning parameters, i.e. step size

in SGD and the number of epochs, on 10 different zero-

shot splits that construct by maintaining a ratio of 2/1/1 for

disjoint training, validation and test classes. We measure

accuracy as average per-class top-1 accuracy.

5.1. Gaze Embeddings on CUB­VW

In this section, we first show how we pre-process our raw

gaze data, and then extensively evaluate our gaze embed-

dings wrt. multiple criteria on the CUB-VW dataset.

Processing Raw Gaze Data. Raw gaze data is inherently

noisy due to inaccuracies of the eye tracker. We reduce this

noise using a dispersion-based method [37] which calcu-

lates the dispersion of gaze points using a sliding window

approach with window size ws and applies a threshold ts
on this dispersion value. All gaze points within the window

are then set to the mean of all points below the threshold.

In order to disentangle this raw-data pre-processing step

from our end task of zero-shot learning, we train standard

one-vs-rest SVM classifiers on stacked gaze features as train-

ing samples, and image label as supervision signal. We

use [x, y, d, α1, α2, R] as gaze features, GFS as gaze feature

encoding and evaluate 10 random train and test splits.

Figure 4 (left) shows that the highest accuracy is obtained

using ws = 25 degrees (among ws = 5...50). Time-window
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Figure 5: Comparing Gaze Histogram (GH), Gaze Fea-

tures with Grid (GFG) and Gaze Features with Sequence

(GFS). We evaluate 5 participants separately as well as their

various combinations: Averaging each participant’s gaze

embeddings (AVG), Combining them through early fusion

(EARLY) and through late fusion (LATE).

size (ts) depends on how long the annotator needs to view

the image before making a decision. As our users have

significantly shorter viewing duration (≈ 0.5sec) compared

to eye tracking studies that requires long viewing times, e.g.

reading a textual document, we fix time window size on our

data. By keeping ws = 25, we evaluate ts = 1...100 and

observe that ts = 10ms works the best (Figure 4, right).

We observe that performance does vary across experiments,

albeit not significantly. Therefore, at least for the datasets

investigated in this work, gaze data can be processed in

a generic fashion, i.e. does not have to be tailored for a

particular user or object class.

Comparing Different Gaze Embeddings. We now com-

pare the performance of Gaze Histograms (GH), Gaze Fea-

tures with Grid (GFG) and Gaze Features with Sequence

(GFS). We build GFx, i.e. GFG and GFS, with all gaze fea-

tures, i.e. [x, y, d, α,R] for consistency. We first consider the

gaze embeddings of our 5 participants separately and then

combine the gaze embeddings of each participant by aver-

aging them (AVG), concatenating them through early fusion

(EARLY), and combining the classification scores obtained

by each participant’s gaze data through late fusion (LATE).

We repeat these experiments on 10 different zero-shot splits

to show a robustness estimate.

As shown in Figure 5, GFS embeddings outperform GH

and GFG embeddings. This implies that the sequence in-

formation is more helpful than the spatial discretization by

using the grid. Therefore, we argue that in fine-grained zero-
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Figure 6: Effect of gaze features: Location (x, y), Duration

(d), Sequence (α1, α2), Pupil diameter (R). We start with

x, y and concatenate d, α1, α2 and R cumulatively.

shot learning task, the sequence of gaze points is important

to obtain best performance. Our second observation is that

indeed each participant’s gaze embedding lead to different

results, therefore considering the annotator bias is important.

For GH, the best performing participant is the first, while for

GFG it is the fifth and for GFS it is the second. We argue

that gaze embeddings of each participant is complementary,

therefore we propose to combine gaze embeddings of differ-

ent participants. We obtain 56.6% using AVG, 69.8% using

EARLY and 69.6% with LATE. These results support our

intuition that there is complementary information between

gaze embeddings of different participants.

Analyzing Gaze Features. We evaluate the effects of en-

coding gaze location (x, y), duration (d), sequence (α1, α2)

and the annotator’s pupil diameter (R) that measures con-

centration. We build gaze features cumulatively by starting

with the parameter x, y, followed by d, α1, α2 and R se-

quentially in this order. Being the best performing method

from Figure 5, we evaluate the effect of gaze features with

respect to participants combined GFS with AVG, EARLY

and LATE. We observe from Figure 6 that EARLY achieves

the highest 73.9% accuracy when we use [x, y, d, α1, α2]
features. The [x, y] features already achieves high accuracy,

adding duration, i.e. d slightly improves results and adding

the sequence information, i.e. α, adds further improvement.

However, the pupil diameter parameter does not bring further

improvements. As our annotators go through all the images

which requires a total of one hour of constant concentration.

Although they take a break after half an hour, their concen-

tration drops towards the end of the task while they become

familiar with the fine-grained bird species.

Comparing Gaze and Baselines. Table 2 shows a perfor-

mance comparison of our gaze embeddings with several

Method Accuracy

Baselines

Saliency histogram 35.8

Random points in the image 39.5

Central gaze point 41.5

Bubbles [4] 43.2

Bag-of-Words from Wiki 55.2

SoA Human annotated attributes 72.9

Ours
Gaze embeddings 73.9

Attributes + Gaze 78.2

Table 2: Comparing random points, mean gaze point,

saliency histogram using [8], bubbles [4], Bag of Words and

expert annotated attributes on CUB-VW.

Method Accuracy

Gaze 73.9

Gaze: same images as bubbles 69.7

Gaze: same location as bubbles 64.0

Gaze: same number as bubbles (avg) 55.0

Gaze: same number as bubbles (rnd) 49.2

Bubbles (mouse-clicks) 43.2

Table 3: Ablation from gaze to bubbles: using our full gaze

data with GFS EARLY embedding, using same images as

bubbles, concatenating gaze points located inside bubbles,

averaging those gaze points and using one among those gaze

points vs bubbles.

baselines. Saliency histogram (35.8%) is a discretization of

a saliency map [8] using a spatial grid over the image. As

a second baseline, we randomly sample points in the im-

age and obtain 39.5% accuracy. Another baseline is taking

the location of the central point as an embedding, which

leads to 41.5%, indicating a certain center bias in CUB-

VW images. Bubbles [4], mouse-click locations of visually

distinguishing object properties, are the closest alternative

to our gaze data. Bubbles achieve 43.2% accuracy, which

supports the hypothesis that non-expert users are able to de-

termine distinguishing properties of fine-grained objects. As

the final baseline, we evaluate class embeddings extracted

from Wikipedia articles (55.2%). Our best performing gaze

embeddings, i.e. GFS EARLYwith [x, y, d, α] from Figure 6,

achieve 73.9% accuracy and outperform all these baselines.

Moreover, they outperform expert annotated attributes with

72.9% being the current state-of-the-art. This result shows

that human gaze data is indeed class discriminative while

being more efficient than attributes to collect. Finally, we

combine our gaze embeddings with attributes and show by

obtaining 78.2% accuracy that human gaze data contains

complementary information to attributes.

Ablation from Gaze to Bubbles. As we observed a large
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CUB

Method Side-Info VW VWSW PET

Random points Image 39.5 9.0 21.0

Bubbles Novice 43.2 10.3 N/A

Bag of Words Wikipedia 55.2 24.0 33.5

Human Gaze Novice 73.9 26.0 46.6

Attributes Expert 72.9 42.7 N/A

Table 4: Comparing random points, bubbles [4], bag of

words, attributes, and our gaze embeddings (GFS EARLY),

on CUB-VW = CUB with Vireos and Woodpeckers, CUB-

VWSW = CUB with Vireos, Warblers, Sparrows, Woodpeck-

ers and PET=Oxford Pets with Cats and Dogs.

accuracy gap between gaze and bubble embeddings previ-

ously, we now investigate the reason for this gap through

an ablation study. We gradually decrease the information

content of gaze embeddings in the following way. We first

use the same images as bubbles and observe from Table 3

that the accuracy decreases from 73.9% to 69.7%. We then

concatenate the gaze features of the gaze points that fall in-

side the bubbles, i.e. use gaze points at the same location as

bubbles, and observe the accuracy decline to 64.0%. Instead

of concatenating, averaging the gaze points or taking one ran-

dom point inside bubbles decreases the accuracy to 55.0%
and 49.2% respectively. We attribute the accuracy difference

between 49.2% and 43.2 (bubbles) to the gaze features, i.e.

[x, y, d, α,R]. We conclude from this experiment that the

images that the annotators viewed while we recorded their

gaze as well as their attention and the quantity, the location,

the duration of the gaze-tracks are all important to obtain

good zero-shot learning results.

5.2. Gaze Embeddings on Other Datasets

In this section, we first evaluate gaze embeddings on

CUB with 60 species of Vireos, Woodpeckers, Sparrows and

Warblers (CUB-VWSW) [48]. To show the generalizability

of our idea to other domains, we also evaluate results on

Oxford PET [31] dataset with 24 types of cats and dogs

(PET). Note that we set the parameters based on experiments

on CUB-VW and used those across all datasets.

Experiments on CUB-VWSW dataset. We use GFS-

EARLY embedding for being the best performing method

in our previous evaluation. We compare it with random

points, bubbles, bag-of-words and attributes. Results on

CUB-VWSW dataset show that gaze performs significantly

better than random points that come from the image itself,

bubble embeddings extracted from mouse-click locations,

and BOW embeddings extracted from Wikipedia articles.

On the other hand, expert annotated attributes outperform

non-expert annotated gaze data. This is expected since our

novice annotators did not compare different vireo, wood-

pecker, sparrow and warbler species and especially vireos,

sparrows and warblers looks very similar to each other, i.e.

having similar size, shape and colors. On the other hand,

the fact that gaze embeddings perform better than BoW by

itself is an interesting result. We suspect that allowing the

annotators to explore differences between bird species at

sub-species level and also super-species level, e.g. our anno-

tators never compared woodpeckers and vireos but only two

different woodpecker species, or annotating images using

bird expert opinion would improve our results. Addition-

ally, an improved zero-shot learning model that takes into

account the hierarchical relationships between classes may

lead to better results. We will explore these options in future

work. Finally, fine-tuning the parameters of gaze embedding,

which we intentionally avoid, may improve results.

Experiments on PET dataset. Here, as attributes and bub-

bles are not available, we use random points in the images

and bag-of-words extracted from Wikipedia articles as base-

lines. The random chance is 16% as we sample 6 test classes,

we repeat our experiments on 10 different zero-shot splits

and report the average in the last column of Table 4. We

observe that Wikipedia articles of PET classes include more

information than random points in the image (21.0% vs

33.5% with bag of words). Whereas our gaze embeddings

obtain 46.6% accuracy that significantly outperforms the re-

sults obtained with bag-of-words. As all the images show cat

and dog breeds, our annotators are more familiar with these

classes which makes this dataset less challenging than CUB.

Note that by fine-tuning raw-gaze processing or gaze embed-

ding parameters such as gaze features, gaze embedding type,

etc. on this dataset, these results may potentially get higher.

We conclude from PET results that our proposed gaze em-

beddings indeed capture class discriminative information

and they can be generalized to other domains.

5.3. Qualitative Results

Qualitative results of birds, cats and dogs on Figure 7

shows five highest ranked images for three different test

classes comparing gaze embeddings with competing meth-

ods. We additionally visualize the gaze heatmaps extracted

from gaze tracks corresponding to that particular test image.

Although we do not use the gaze embeddings for these test

classes while training, we include these visualizations as

give an intuition of how gaze-tracks look like.

For birds, we compare gaze with both human annotated

attributes and bag-of-words. Gaze ranks “Black capped

Vireo” images correctly in the first three positions whereas

attributes and bow makes mistakes. The misclassified “Black

capped Vireo” is a “White eyed Vireo” which also has its

distinguishing property on the head region. The misclassified

image in expert annotated attributes belongs to “Blue headed

Vireo” whose embedding is similar to “Black capped Vireo”.
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Gaze 

Black capped Vireo Yellow throated VireoRed headed Woodpecker

Att

BoW

Russian blue

Gaze 

BoW

Chihuahua

Gaze 

BoW

Birman

Pomeranian

British shorthair

Beagle

Figure 7: Qualitative Results: Five highest ranked images for unseen classes of birds, cats and dogs. We compare gaze with

attributes (when available) and with bag of word representations and show gaze heat-maps of selected images.

On the other hand, the word ’head’ is highly frequent in

both Wikipedia articles which makes the BoW embedding

for these two classes similar and thus, it leads to a mismatch.

For other examples, gaze embedding ranks correct images

the highest. These results also illustrate the difficulty of the

annotation on fine-grained datasets.

For cats and dogs, we observe that qualitative results fol-

low a similar trend as quantitative results. Qualitatively, gaze

performs better than bag-of-words representations. Compar-

ing gaze and bag-of-words results shows that gaze never

confuses cats and dogs whereas such confusion occurs for

bag-of-words. As a failure case of gaze embeddings, gaze

retrieves “Abyssinian Cat” images for “Russian blue” query

as these two cats have a similar form but can be distinguished

only with color information, not encoded with gaze.

6. Conclusion

In this work, we proposed to use gaze data as auxiliary

information to learn a compatibility between image and label

space for zero-shot learning. In addition to a novel eye track-

ing data collection that captures humans’ natural ability to

distinguish between two objects we proposed three gaze em-

bedding methods that 1) use spatial layout of the gaze points

and employ first order statistics, 2) integrate location, dura-

tion, sequential ordering and user’s concentration features

to spatial ordering information, and 3) sequentially sample

gaze features. Through extensive quantitative and qualitative

experiments on the CUB-VW dataset we showed that human

gaze is indeed class-discriminative and improves over both

expert-annotated attributes and mouse-click data (bubbles).

Our qualitative and quantitative results on the PET dataset

showed that gaze can be generalized to other domains. On

the other hand, our results on larger fine-grained datasets, e.g.

CUB-VWSW might indicate that the results would benefit

from alternative data collection paradigms that allow annota-

tors to view super-species as well as sub-species. In future

work we will investigate the gaze behavior by focusing on

over two fine-grained images.
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