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Abstract

We approach the problem of fast detection and recog-

nition of a large number (thousands) of object categories

while training on a very limited amount of examples, usu-

ally one per category. Examples of this task include: (i)

detection of retail products, where we have only one studio

image of each product available for training; (ii) detection

of brand logos; and (iii) detection of 3D objects and their

respective poses within a static 2D image, where only a

sparse subset of (partial) object views is available for train-

ing, with a single example for each view. Building a detector

based on so few examples presents a significant challenge

for the current top-performing (deep) learning based tech-

niques, which require large amounts of data to train. Our

approach for this task is based on a non-parametric prob-

abilistic model for initial detection, CNN-based refinement

and temporal integration where applicable. We successfully

demonstrate its usefulness in a variety of experiments on

both existing and our own benchmarks achieving state-of-

the-art performance.

1. Introduction

Most of the current top-performing learning-based ap-

proaches, especially deep learning methods, rely on large

amounts of annotated data for training. This poses a sig-

nificant challenge in situations when we need to recognize

many thousands of visually similar (fine-grained) categories

for which only a few examples are available. This situation

frequently arises in recognition of retail product categories

which are inherently fine-grained, and where we usually

have just a single studio-image example of a product to train

on. Another example is the detection of the camera pose of

a query image with respect to a large scene modeled by a

3D point-cloud. Here we train on a sparsely sampled set of

partial views of the modeled scene, and the task is to detect

unseen views. Yet another example is the detection of brand

∗authors contributed equally to this work

Figure 1. Qualitative examples of the performance of the pro-

posed approach on various datasets (Section 4): (a)GroZi-3.2K,

(b) GroZi-120, (c) GameStop, (d) Retail121, (e) PCPE, (f)

FlickrLogos-32. The images are shown in greyscale, the cyan de-

tection boxes are annotated with the detected category images in

the bottom left corner. Best viewed in color.

logos in community photos.

In this paper we propose an approach for the scenario of

fine-grained object detection and recognition with limited

training data and large-scale datasets. Designed to work for

both image and video inputs, the method consists of three

main components: a fast initial detection and classification

algorithm, Deep Neural Network (DNN) based fine-grained
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category refinement, and temporal integration for video in-

puts. In the following, we summarize our main contribu-

tions and discuss the related work.

1.1. Main Contributions

• A non-parametric probabilistic model for multi-scale,

fine-grained multi-class detection and recognition, ca-

pable of working in the challenging one-training-

example per class setup. Accompanied by a sequen-

tial three-step inference approach to cope with a very

large space of possible unobserved variable assign-

ments: task specific objectness→ per hypothesis class

short list prediction → per hypothesis structured pre-

diction and refinement.

• A fast Nearest Neighbor (NN) search technique capa-

ble of searching for hundreds of thousands of image

patch descriptors within a set of millions, in less than

a second per mega-pixel.

• A DNN combining the detected object images and

their associated classification results (obtained using

the probabilistic model) in order to produce fine-

grained classification refinement. The network is

trained on synthetic data.

• Experimental results validating the usefulness of the

proposed approach by showing promising results on

six datasets of retail product detection, logo detection,

and single-image camera pose estimation for 3D point

clouds.

1.2. Related work

In recent studies on object recognition and classifica-

tion, much attention has been given to natural object cat-

egories, with substantial intra-class variations. Typically,

the number of categories is up to a thousand, and presence

of rich training data is usually assumed. In this domain,

currently dominated by deep learning based methods, no-

table recent works include [32, 3, 26, 25]. In [3] a CNN

is used to classify region proposals provided by an exter-

nal detector; later in [26], both the region proposal and the

classification are produced by a single end-to-end network.

This Region-CNN (RCNN) paradigm exhibits state-of-the-

art performance on PASCAL VOC 2012 dataset.

While deep learning is a very powerful and useful tool,

it requires a massive training set with labeled examples that

are sufficiently similar to the test images. Training with

a single example per category poses a challenge for these

methods. The same claim also holds for the majority of

more classical general purpose object detectors [5, 17]. A

plausible solution is to synthesize training data from the few

available examples. We use this method to train a network

for the Phase 2 of our approach. However, training data

synthesis alone does not seem to be sufficient for successful

training, as illustrated in the Results section by the lower

performance of the FRCNN detector [26] (kindly provided

by the authors) trained on the same synthetic data we use

for our Phase 2.

Addressing the limitation of a small training set, there

are a number of works focusing on one-shot learning for

object recognition. In the seminal paper [18], each object

category is represented using a probabilistic Constellation

model. Model parameters are first learned for a generic cat-

egory on sufficiently large training data; then models for

individual categories are obtained by tuning the parameters

using the few available examples. The method was tested

on the Caltech101 dataset with 101 roughly cropped (one

object per image), visually distinct categories. Additional

works [21, 16, 37] explore the problem of one-shot learning

for character recognition.

An interesting work in [8] deals with recognition of 3D

retail products from arbitrary angles, training on one stu-

dio image per product. The method of [8] is to pre-train a

DNN on an auxiliary dataset with a richer data of 3D views,

and then fine-tune it on the single-image-per-class for the

targeted products. Their method is tested on 300 objects in

the RGB-D dataset, displaying its usefulness in teaching the

network to generalize to novel views.

In the first phase of our approach, we use a non-

parametric probabilistic model for the initial detection and

classification. We compute the various probabilities using a

variant of efficient sub-linear nearest neighbor (NN) search

[22, 35], in the spirit of the seminal work [1]. The model

itself is similar to the non-parametric star model used as

a single scale hand detector in [12], but in our case it is

modified by adding unobserved variables to support effi-

cient multi-scale and multi-class fine-grained detection and

recognition. In addition, we propose a sequential inference

procedure that accommodates for the extremely large search

space of possible assignments to the unobserved variables

of the model.

A number of works deal with fine-grained recognition,

both using classical [40] and deep [41, 34] methods. To

disambiguate similar categories [40, 41] detect object parts

and decide on the category labels based on rectified images

of these parts. [34] trains a deep model using triplet loss.

We use a DNN classifier for fine-grained refinement in the

second Phase. During training, its learning capacity is fo-

cused on discriminating between the strongest candidates

from the first Phase detector, which often represent similar

object categories.

We consider data with little intra-class variation (e.g. a

class is represented by a specific retail product). This is

related to instance recognition methods, based on template

matching techniques, such as [31]. Leading such methods

[13, 24, 11] were tested and outperformed in [7], which
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was used as a baseline in this work. Image retrieval works

[23, 29] typically assume that the object is either the entire

image or appears roughly cropped, whereas in our case mul-

tiple potentially small objects may appear in a large image.

As mentioned above, we use data synthesis to train our

DNN for Phase 2. Common methods for augmentation of

training data produce new images using translations, mirror

reflections, and adding Gaussian noise [15]. We go a step

further, using random homographies to generate new views

and learned linear filters to degrade the high-quality training

studio images for a more realistic appearance.

The literature for detecting and recognizing retail prod-

ucts in images [33, 7, 20, 36] is rather limited compared to

general purpose techniques. The closest work to our setting

is [7], which demonstrated promising results on the chal-

lenging task of detecting 3235 grocery products in still im-

ages. A short-list of possible categories is first estimated

using random forests, applied on a regular grid of sub-

windows. The training images of the found categories are

then matched, one by one, to localize and recognize the

products. In contrast, in the proposed approach we first lo-

calize the objects regardless of their class, and only then

perform classification by re-using (for efficiency) the com-

putations from the first step. An earlier work comparing the

performance of different descriptors on the dataset contain-

ing 120 products and 28 in-store test videos is presented in

[20]. Despite the listed efforts and industrial advances, the

problem of robust and scalable retail products recognition in

unconstrained realistic conditions still remains largely open.

2. Method

We organized our approach in three main phases: (i) fast

detection & recognition; (ii) deep (fine grained) classifica-

tion refinement; (iii) temporal integration & tracking based

refinement. In the following we describe each of those

phases in detail.

2.1. Phase 1: Fast detection and recognition of thou
sands of categories with very limited training

1 In this section we describe the fast detection and recog-

nition method that we use to generate object hypotheses

(bounding boxes) and classify them according to the cate-

gory. As mentioned above, the method is designed to work

even with just a single training example per-category. Fac-

ing the training data restriction, we adopt a classical ap-

proach to the initial detection: reasoning over patches ex-

tracted from both the query and the training images. We

sample the patches densely and represent them using stan-

dard descriptors. The training patches are indexed using

efficient sub-linear search data structures (e.g. LSH or kd-

trees) and the query patches are searched within those struc-

1The code will be available at https://github.com/

leokarlin/msmo_star_model

tures. The Nearest Neighbors (NNs) found for the query

patches are used to infer the desired output using the non-

parametric probabilistic model described next. If accepted,

the relatively short Matlab code for the proposed approach

will be publicly released. The details and the intuition be-

hind the inference process are given below, and are graphi-

cally illustrated in Figure 2 to underline its simplicity.

2.1.1 Training: indexing patches from all the training

images

Given a set of training images {It}, each depicting a single

object of interest (could also be Bounding Box (BB) crops

from images with multiple objects), we first convert each It
into a scale (Gaussian) pyramid and compute a set of dense

descriptors for each pyramid level. We used dense greyscale

SIFT [19, 6] in our experiments, but are in no way limited

to it. Obviously, color information is important for many

classes, especially so for retail products, and we in fact use

it in the Phase 2 (fine-grained refinement) of our approach.

However, initial detection and recognition in greyscale has

its benefits in terms of higher resilience to color variation

due to lighting and camera changes. A significant portion of

the final performance of our approach is achieved in Phase

1 without using color.

The grid step for the dense descriptors is reduced accord-

ing to scale (we use the base step of 4 pixels) and the patch

size is fixed (we use 24x24 patches). We denote by {F i
t } the

set of all descriptors collected from It. The pyramid scales

are taken in the range (0.5, 1] (we used {0.6, 0.8, 1} ). The

support for the rest of the scales is achieved at query time

by down-scaling the query image Iq by a factor of 0.5 in

a loop until minimal vertical size is reached. This way the

running time is ≤ 1.33× the running time of Iq processed

in its original scale alone. The training descriptors are in-

dexed using efficient sub-linear search data structures as de-

scribed in section 2.1.4, and the query patches are searched

within those structures. Due to the sub-linear nature of the

search in these data structures, the running time is very little

affected by the increase in the number of indexed training

descriptors, making it beneficial to sample them in multi-

ple scales as described (this is basically a memory vs speed

trade-off). For each sampled training descriptor F i
t we re-

tain the following metadata: (i) l(F i
t ) = l(It) - category

label of the source image It; (ii) s(F i
t ) scale of the pyra-

mid level from which F i
t was sampled; (iii) o(F i

t ) relative

position of F i
t within the object. In our implementation we

use the relative offset to the object‘s center of mass.

2.1.2 Probabilistic model

We denote by {F j
q } the set of descriptors sampled from the

query image Iq , in a dense grid of every 4 pixels. We use
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Figure 2. Graphical diagram illustrating the inference process

24 × 24 patches. Denote by U a triplet of random vari-

ables U =< X,S,C > representing (a random) event of

appearance of an object from category C at image location

X (object center coordinate) and scale S (scale relative to

the nominal size of the object, X and S jointly define a

bounding box). Our goal is to compute (or approximate)

the posterior probability P (U |{F j
q }) for all the possible as-

signments to U . After doing that, we extract the top scoring

hypotheses U out of this posterior by a straightforward Non-

Maximal Suppression (NMS) process by looking at over-

laps between the hypotheses. We assume a uniform prior

over U, and that the posterior decomposes via Naı̈ve-Bayes:

P
(

U |
{

F j
q

})

∝ P
({

F j
q

}

|U
)

=
∏

j

P
(

F j
q |U

)

. (1)

Since objects usually occupy a small portion of an image,

we assume most of the descriptors {F j
q } are not generated

by any specific assignment to U , that represents a hypoth-

esis that a certain object is present at a certain image re-

gion - they belong either to background or to other ob-

jects. This intuition is expressed via the decomposition

P
(

F j
q |U

)

=
∑

Rj P (Rj) · P (F j
q |U,R

j), where Rj is an

unobserved binary random variable with Rj = 1 denot-

ing the event that F j
q is indeed related to the hypothesis

U . Formally, P (F j
q |U,R

j) = Q(F j
q |U) if Rj = 1 and

P (F j
q |U,R

j) = Q(F j
q ) if Rj = 0. According to the as-

sumption above: P (Rj = 0) ≫ P (Rj = 1). We explain

the distributions Q, and the way to compute them in the

next subsection. Figure 3 shows a graphical illustration of

the model. In the supplementary material we prove that:

LogP
(

U |{F j
q }

)

= const +
∑

j LogP (F j
q |U) ≈

∑

j

Q(F j
q |U)

Q(F j
q )
∝

∑

j

Q(F j
q ,U)

Q(F j
q )

.
(2)

In order to find the most likely hypotheses U by com-

puting argmaxU LogP (U |{F j
q }) we need to overcome the

Figure 3. Probabilistic model used for detection and recognition in

Phase 1

enormous size (assuming large number of categories) of the

proposal set for U =< X,S,C >. We therefore resort to

a sequential approximate inference, each time inferring part

of the variables and conditioning on them to infer the rest:

X̂, Ŝ ← argmaxX,S

∑

j

Q(F j
q ,X,S)

Q(F j
q )

(3)

here Q(F j
q , X, S) =

∑

C Q(F j
q , X, S, C),

Ĉ ← argmaxC P (C|{F j
q }, X̂, Ŝ) =

argmaxC
∑

j

Q(F j
q ,X̂,Ŝ,C)

Q(F j
q )

,
(4)

X̂, Ŝ ← argmaxX,S P (X,S|{F j
q }, Ĉ) =

= argmaxX,S

∑

j

Q(F j
q ,X,S,Ĉ)

Q(F j
q )

.
(5)

Each of the inference steps (3-5) above returns multiple hy-

potheses to be processed by the subsequent step, where the

final output of (3) is the input to the NMS. We call Equation

(3) the objectness step where we infer the potential loca-

tions and scales of all the objects present in Iq regardless of

their category. We call Equation (4) the short-list step where

we generate the short list of potential candidate categories

for each object hypothesis returned by the objectness step.

Equation (5) is the final detection refinement step, where we

refine the location and the scale for each candidate returned

by (4) and compute its final score. The following sections

explain how to apply the proposed sequential MAP infer-

ence process in practice.

4116



2.1.3 Non-parametric estimation of the probabilities

and efficient inference

To perform the inference we need to compute the distribu-

tions Q(F j
q ), Q(F j

q , X, S), and Q(F j
q , X, S, C) for every

descriptor F j
q sampled from the query image Iq . We first

find a set of K approximate Euclidean nearest neighbors

{N j
k |1 ≤ k ≤ K} of F j

q in the set of all the training im-

age descriptors {F i
t |∀i, t} obtained as explained in Subsec-

tion 2.1.1. From the set of nearest neighbors we compute

Q(F j
q , X, S) using approximate Kernel Density Estimate:

Q(F j
q , X, S) ≈ Q(S) ·

1

K

K
∑

k=1

φ(F j
q , N

j
k , X, S), (6)

where

φ(F j
q , N

j
k , X, S) = exp(− 1

2‖F
j
q −N j

k‖
2/σ2) · ...

·exp
(

− 1
2S

2‖X− | z(F j
q ) + o(N j

k) | ‖
2/ρ2

)

· ...

·exp

(

− 1
2

(

S − s(N j
k)
)2

/γ2

)

(7)

The value for Q(F j
q , X, S) is thus an averaged contribution

of the K nearest neighbors. The probability of observing

F j
q at location X , scale S, conditioned on the specific neigh-

bor descriptor N j
k , is modeled as a product of three compo-

nents in the equation above. The first one exp(− 1
2‖F

j
q −

N j
k‖

2/σ2) is the data fidelity term, penalizing distance be-

tween the descriptors F j
q and N j

k . Here σ is our tolerance

to variation of the expected descriptor appearance. The

second term exp
(

− 1
2S

2‖X− | z(F j
q ) + o(N j

k) | ‖
2/ρ2

)

is the penalty for deviation in expected spatial location,

where z(F j
q ) is the image location of F j

q in Iq and o(N j
k)

is the relative offset between N j
k and the center of the

object in its respective scale. Here ρ is our tolerance

to the expected local object deformation. The final term

exp(− 1
2

(

S − s(N j
k)
)2

/γ2) measures the discrepancy in

scale, so γ is our tolerance to local scale variation. The

φ(F j
q , N

j
k , X, S) is the ‘belief‘ of F j

q that some object (from

any category of interest) appears at location X with scale S,

based on matching training descriptor N j
k . We use values

σ = 0.2, ρ = 15 and γ = 0.1 throughout all our exper-

iments. The parameters were set on a small validation set

not used in the experiments. To balance the different object

scales inherently being represented by a different number of

descriptors, we set Q(S) ∝ 1
S2 . Marginalizing over X and

S, we are left with the fidelity term alone:

Q(F j
q ) ≈

1

K

K
∑

k=1

exp

(

−
1

2
‖F j

q −N j
k‖

2/σ2

)

(8)

To compute (3) efficiently with Q(F j
q , X, S) as defined

by (6) for each scale S (in our case S ∈ {0.6, 0.8, 1})

we first compute a weighted histogram of the size of

Iq , where each pixel z(F j
q ) + o(N j

k) accumulates weight

exp
(

− 1
2‖F

j
q −N j

k‖
2/σ2

)

S2Q(F j
q )

and then convolve it with a 2D

symmetric Gaussian kernel with STD ρ/S. Finally, we av-

erage across nearby scales using a 1D Gaussian kernel with

STD γ. Using the same notation as above we set:

Q(F j
q , X, S, C) ∝

∑

k id
(

l(N j
k) = C

)

· φ(F j
q , N

j
k , X, S)

where id(·) is the indicator function. Now, Equation 4

can be simply computed by maximizing over a weighted

histogram accumulating to cells indexed by l(N j
k) with

weights given by φ(F j
q , N

j
k , X̂, Ŝ)/Q(F j

q ). Finally, Equa-

tion 5 is computed exactly as Equation 3, but filtering out

all the weights for which l(N j
k) 6= Ĉ.

2.1.4 Efficient nearest neighbor computation

To perform inference efficiently, we need to quickly find K

approximate nearest neighbors of multiple query descrip-

tors F j
q in a large set of indexed training descriptors. For

example, in the GroZi-3.2K dataset with 3.2K categories

we have 7M training descriptors and 55K query descrip-

tors in an average query image. A possible approach is to

use a kd-tree [22]. However, for the numbers mentioned, it

takes over 20 seconds for the NN search alone, on a mod-

ern PC. We therefore resort to a different technique building

on and extending the seminal ideas proposed in CSH [14]

and in [28]. We first use the spectral hashing [35] based

LSH technique to find good matches (≤ 0.5 distance in L2-

normalized descriptor space) for a subset (20%) of all the

F j
q descriptors. Here we assume that on each of the ob-

jects in the query there is at least one descriptor that has

found a good match. We then extend these matches as fol-

lows: assume a patch F j
q in location z(F j

q ) has a match

N j
k . For every unmatched nearby patch Fm

q we consider a

match Nm
k , sampled from the same training image as N j

k ,

such that o(N j
k) − o(Nm

k ) = z(F j
k ) − z(Fm

k ). To save

the computations, we pair an unmatched patch Fm
q only

with a single already matched patch F j
q that is closest in

query image pixel coordinates (according to the distance

transform). Only good matches (as above) are kept. We

iteratively repeat the match extension process. The process

is randomized by independently ignoring each previously

matched patch with probability p (we used p = 0.5). This

way, for any unmatched patch, the probability of extend-

ing the match from its nth closest already matched patch

is equal to (1 − p)pn−1. This implicitly allows to extend

the matching from a number of nearby patches and not just

from the spatially closest one.
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2.2. Phase 2: Deep finegrained refinement

So far we have presented an approach for fast and re-

liable detection of objects of interest and their initial clas-

sification using a very limited training data (one example

per class). In this section we describe a deep Convolutional

Neural Network (CNN) based method for improving fine-

grained classification performance of the system. We de-

sign a CNN that admits the detected object bounding boxes

together with their associated scored short-lists of possi-

ble classifications produced by Phase 1, and produces im-

proved classifications for these bounding boxes. The CNN

is trained to infer the distribution over the categories, us-

ing deep visual features combined with Phase 1 predictions.

We synthesize large amounts of training images using geo-

metric and photometric transformations of the few available

training examples. For each object detection returned by

Phase 1 in a test image, we multiply the scores of the top 5

classification hypotheses of Phase 1 by corresponding CNN

confidences thus obtaining the final result.

Architecture of the CNN: Our DNN is based on fine

tuning a variant of the VGG-f network [3]. Specifically,

we use the first 2-15 layers VGG-f trained on ImageNet [4]

unchanged. The reason we do not perform full training is

the essentially limited data available per class. We reduce

the stride of the first conv1 layer from 4 to 2 to increase the

spatial sampling rate of the input images. This decreases the

minimal image size admissible by the network. To remedy

this, we add one additional set of layers (conv, ReLU, max-

pooling, and LRN) after the 15th pool5 layer. The size of

the conv. filters is 3× 3, and max-pool is the same as other

layers of this type in VGG-f. We change the size of the

fc6 and fc7 fully-connected layers from 4096 to 2048. For

canonical image size (which we set to 325 by appropriate

selection of the spatial dimensions of the additional filter),

the output of fc7 is 1×1×2048, and we concatenate it with

a vector of 1 × 1 × Ncats per-category confidence values

produced by Phase 1 for the currently examined hypothesis

(Ncats is the number of categories), before feeding it to fc8.

CNN training data synthesis: We use random geo-

metric and photometric image transformations to generate

O(104) training examples from a single (studio) image per

category. Learning the parameters for photometric trans-

formations requires a few dozen annotated objects in real

world images. The synthesis process (Figure 3 in supple-

mentary material) starts by generating an array of train-

ing object examples over a random natural image back-

ground. Second, the generated image undergoes a random

homography followed by a random photometric transfor-

mation(obtained as explained below).

Geometric variations: The homography is generated by

drawing five random values for the yaw, pitch and roll an-

gles, translation and scale. This extends the mirror reflec-

tions and translations commonly used for geometric aug-

mentation in other methods [15].

Photometric variations: We use a small auxiliary

dataset of annotated objects consisting of 80 retail in-situ

product images (the crops) paired with their studio catalog

images (the templates). Each such crop-template pair is reg-

istered by a homography. For each pair we compute a lo-

cal linear filter that, when applied to the template, produces

an image as close as possible to the corresponding crop, in

the least squares sense. We use the IRLS algorithm [9] to

compute the filters. Intuitively, the learned filter represents

the combined effect of the camera Point Spread Function,

illumination, and contrast loss, observed in the crop. In

our experiments, we produced filters of sizes m×m where

m ∈ {3, 5, 7, 9} from each crop-template pair, resulting in

a collection of 320 photometric filters. Photometric distor-

tions are generated as random convex combinations of three

randomly chosen filters from the collection.

2.3. Phase 3: Temporal integration and tracking

When applying the Phases 1 and 2 to video input we can

obtain additional performance boost using temporal inte-

gration of per-frame detection and recognition results. To

verify this, we use the KLT tracker [30] (implemented in

OpenCV [2]) to compute homographies between consecu-

tive video frames, and track the detection bounding boxes

to subsequent frames until they become covered (IoU≥ 0.5)

by other detection boxes or exit the frame. To limit the ef-

fect of False Alarms we use a score decay factor of 0.8 for

all the tracked boxes that are still uncovered. The benefit of

this simple pipeline is illustrated by the quantitative results

on all the tested video datasets (see Table 1).

3. Application to point clouds

The proposed approach can be used in order to detect the

pose of a camera within a 3D Point Cloud Model (PCM) co-

ordinate system using just a single (greyscale) image as an

input. We assume the point cloud was generated via some

form of SFM (we used VisualSFM [38, 39]). The PCM is

accompanied by a set of training images depicting different

(partial) views of the scene. For each image we have a set of

correspondences between some of the image pixels and 3D

points of the PCM, and a known camera pose (namely, ro-

tation matrix R, translation vector T and calibration matrix

K) w.r.t. the PCM coordinate system.

Our goal here is to find the camera pose (R and T) out

of a single query image of the scene modeled by the PCM

captured at a different time by a different camera (with

known K). The main idea is as follows: even though the

query image may be taken from a new pose not seen dur-

ing the training, for many sufficiently local regions of the

query there exist corresponding training image regions re-

lated to them only by 2D translation and scaling. Defin-

ing each training image as an object we would like to de-

4118



Figure 4. Finding region matches between a query image and the training images in order to infer the camera pose w.r.t. the PCM.

tect, we can use the algorithm of Phase 1 (as described

in section 2.1) to find matches to those objects in the

query image whenever possible. The found matches are

regions of arbitrary location, scale and shape determined

by back-projection (see Figure 3): for each detection hy-

pothesis of a training image Ĉ detected at query image lo-

cation X̂ with scale Ŝ, we build a ‘back-projection‘ ma-

trix BP of the same size as the query image, by assigning

weights maxk[id
(

l(N j
k) = Ĉ

)

·φ(F j
q , N

j
k , X̂, Ŝ)] to loca-

tions z(F j
q ) (from which the query descriptor F j

q was sam-

pled). This weight represents the maximal belief that the

nearest neighbors {N j
k} of F j

q have contributed to the detec-

tion hypothesis Ĉ, X̂, Ŝ. Using the detected center location

X̂ and scale Ŝ we can map each cloud point P visible in the

training image Ĉ onto the corresponding query image pixel

p. Each matched pair {P, p} is weighted by the BP (p) -

the BP value at pixel p. Collecting all the weighted point

correspondences {P, p,BP (p)} from all the detected hy-

potheses gives us a set of weighted matches, which we feed

into the standard IRLS algorithm [9] in order to obtain the

camera pose for the query image.

4. Results

To test the proposed approach we applied it to six dif-

ferent datasets. Three of the datasets were collected by us:

PCPE - Point Clouds Pose Estimation dataset, video games

dataset (3.7K categories), and retail products dataset (121

categories). Two additional existing retail benchmarks are

Grozi-120 [20] and Grozi-3.2K [7] (called “Grocery Prod-

ucts” in original publication), containing 120 and 3.2K re-

tail product categories respectively. Another benchmark is

the FlickrLogos-32 dataset of logos in the wild [27]. The re-

tail and logo datasets were captured in-situ with very limited

training (primarily one studio image per retail product, 40

images per logo). In our experiments we demonstrate high

quality performance on our own datasets, as well as im-

provement of the state-of-the-art on all the aforementioned

benchmarks. In addition, to demonstrate the inherent diffi-

culty of the very limited training setup to the top-performing

deep methods such as the popular R-CNN methodology,

we used the public implementation of the seminal Faster

RCNN (FRCNN) [26] method (which exhibits strong re-

sults on PASCAL and other datasets) and applied it to some

of our tested datasets. Having just one example per class,

we had to train(fine-tune) FRCNN using the same simulated

training data used to train our DNN in Phase 2 (section 2.2).

Table 1 summarizes the quantitative performance of the var-

ious Phases of our method, as well as comparisons to FR-

CNN and state-of-the-art. Full precision-recall graphs are

given in the supplementary.

Runtime: An un-optimized Matlab implementation of

the proposed algorithm runs in less than 1 second for a

1 mega-pixel image on a regular PC. For the point cloud

pose estimation application, somewhat more optimized

C++ code runs at 0.2 seconds per frame.

The Grozi-3.2K dataset consists of 680 test images col-

lected from 5 stores. Each image contains multiple in-

stances of products out of total 3235 food product cate-

gories, also organized in 27 larger classes, such as: ‘bak-

ery‘, ‘candy‘, ‘cereal‘, etc. The training data consists of 1

studio image per product. Many of the products appear de-

formed on the shelves (e.g. rotated, piled, etc.) and with

similar but different packaging. Some example test images

accompanied by our detection results are shown in Figure

1-a. We conducted the experiments on this dataset using the

protocol of [7]. For each category out of total 3235 only one

studio example was available. Consequently, in order to test

FRCNN on this dataset, we reduced the recognition task to

only the 27 ‘larger classes‘ the products were mapped to,

with hundreds of examples for each class. As a result FR-

CNN produced mAP of 81.1% on this simplified task, while

our method produced mAP of 86.47%.

The Grozi-120 dataset from [20], is comprised of 29 test

videos of 120 products on various shelves in retail stores.

The test set has 4973 frames annotated with ground-truth

(GT). The training consists of approximately 6 studio im-

ages per product category. We used the same protocol as

[7] to evaluate the performance. Figure1-b shows some ex-

ample test images and our method results. In Table 1 we
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Table 1. Quantitative performance evaluation of our method and comparison to the state-of-the-art methods [7], [10], and FRCNN [26]

on the relevant datasets (results of [7] and [10] are taken from respective papers). All the numbers are mean Average Precision (mAP)

computed as in [7]. Due to poor image quality or the too large number of (1-example) diverse categories in the Grozi-120/3.2K datasets

respectively, DL based methods (namely FRCNN and our Phase 2) were not tested there (please see text for a reduced experiment of

applying FRCNN on Grozi-3.2K). The Grozi-3.2K and FlickrLogos-32 datasets contain only still images, making Phase 3 irrelevant. The

top-5 mAP is mAP computed where hypothesis is considered correct if one of its 5 highest-scored classes is correct.

Dataset \ Algorithm [7] [10] FRCNN [26] ours Phase 1 ours Phases 1+2 ours full ours full -top 5

Grozi-3.2K 23.49% - - 42.97% 44.72% - 52.16%
Grozi-120 - - - 43.22% - 49.7% 49.8%
Grozi-120 subset from [7] 13.21% - - 54.22% - 62.64% 62.77%
GameStop - - 27.17% 81.3% 87.5% 89.1% 93.4%
Retail 121 - - 53.67% 84.6% 84.7% 91.3% 91.9%
Flickr32 - 74.4% - 78.5% 79.3% - -

show both the performance for full set, as well as on the

subset of 885 frames used in [7] to evaluate their method.

We also show the performance of our full system, which

exploits the video-based tracking.

The GameStop dataset was collected by us in

GameStop retail stores (with kind permission of the

GameStop R©), and contains 5 videos in each frame contain-

ing multiple instances (up to several dozens) of 3.7K video

game categories captured in their natural store environment.

We have manually annotated 1039 frames of those videos

with bounding boxes of all the products in each frame. Fig-

ure 1-c shows examples of the test images with detection re-

sults by the proposed approach. Complete test videos with

the detection results are given in supplementary material.

The Retail-121 dataset collected by us, contains two

videos with multiple instances of 121 fine-grained retail

product categories in each frame. The training consisted of

one image per product category. The main reason we col-

lected this dataset is to showcase our system performance

in a more controlled conditions when the training images

represent exactly the appearance of products on the shelves

(i.e. same product packaging in both training and test). Fig-

ure 1-d shows examples from the 567 test images and the

corresponding detection results by the proposed approach.

Complete test videos with all the detection results are pro-

vided in supplementary material.

The PCPE dataset consists of five videos of large scenes

and objects which were reconstructed into point clouds us-

ing VisualSFM [38, 39]. The point cloud was constructed

using 100 frames sampled from a single training movie per

scene. For each point cloud an additional test movie was

captured at a different time and using a different device. In

addition, we moved the objects and tested on them in a dif-

ferent lighting and environment. The task was to detect the

presence of the point cloud in each individual frame of the

test videos and to accurately detect its pose with respect to

the point cloud. Figure 1-e shows example results, and we

provide full results in the supplementary material. The pose

is considered to be detected correctly if the average point

cloud re-projection error is below 5% of image height. The

proposed approach successfully detected the pose in 93.5%
of the video frames (averaged over all the test videos).

The FlickrLogos-32 dataset consists of 32 brand logos,

with 40 training images and 30 test images per brand (some

examples are given at Figure 1-f). The train and test sets are

as defined by FlickrLogos-32 authors. We have trained our

system by using 12 plane rotations of each of the 40 training

logo examples per brand (the examples are cropped from

training images using provided masks). The mean AP of

our method is 79.3%, exceeding by 4.9% the state-of-the-

art result of [10] that is based on deep networks.

5. Conclusions & future work

We propose a method for fast detection and recognition

of thousands of fine-grained object categories in still im-

ages and videos, using very restricted (∼ one image per cat-

egory) training data. The detection and recognition pipeline

of the Phase 1, based on a non-parametric probabilistic

model, displays superior performance on benchmarks avail-

able in the literature as well as on our own datasets. We

have shown that the fine grained classification performance

of Phase 1 is further improved by a deep network, trained

using a specially designed training data synthesis and in-

tegrating Phase 1 output. Finally, we have shown that, as

expected, an additional performance boost can be obtained

on video data using simple tracking. Some natural exten-

sions of the proposed approach that we are considering for

future work include: (i) usage of task specific deep descrip-

tors instead of hand crafted SIFT in Phase 1; (ii) combining

the proposed objectness step of Phase 1 with the Region

Proposal Network (RPN) module of FRCNN [26] for im-

proving the RPN results; (iii) the complication presented by

limited training data can be gradually lifted by automatic

harvesting of additional examples in unlabeled data using

the proposed algorithm, enabling effective training of more

data-demanding (e.g., deep) methods.
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