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Abstract

We propose a multigrid extension of convolutional neu-

ral networks (CNNs). Rather than manipulating represen-

tations living on a single spatial grid, our network layers

operate across scale space, on a pyramid of grids. They

consume multigrid inputs and produce multigrid outputs;

convolutional filters themselves have both within-scale and

cross-scale extent. This aspect is distinct from simple mul-

tiscale designs, which only process the input at different

scales. Viewed in terms of information flow, a multigrid

network passes messages across a spatial pyramid. As a

consequence, receptive field size grows exponentially with

depth, facilitating rapid integration of context. Most criti-

cally, multigrid structure enables networks to learn internal

attention and dynamic routing mechanisms, and use them to

accomplish tasks on which modern CNNs fail.

Experiments demonstrate wide-ranging performance ad-

vantages of multigrid. On CIFAR and ImageNet classifica-

tion tasks, flipping from a single grid to multigrid within the

standard CNN paradigm improves accuracy, while being

compute and parameter efficient. Multigrid is independent

of other architectural choices; we show synergy in com-

bination with residual connections. Multigrid yields dra-

matic improvement on a synthetic semantic segmentation

dataset. Most strikingly, relatively shallow multigrid net-

works can learn to directly perform spatial transformation

tasks, where, in contrast, current CNNs fail. Together, our

results suggest that continuous evolution of features on a

multigrid pyramid is a more powerful alternative to exist-

ing CNN designs on a flat grid.

1. Introduction

Since Fukushima’s neocognitron [9], the basic architec-

tural design of convolutional neural networks has persisted

in form similar to that shown in the top of Figure 1. Pro-

cessing begins on a high resolution input, of which filters

examine small local pieces. Through stacking many lay-

ers, in combination with occasional pooling and subsam-

pling, receptive fields slowly grow with depth, eventually

encompassing the entire input. Work following this mold

includes LeNet [23], the breakthrough AlexNet [21], and

the many architectural enhancements that followed, such as

VGG [32], GoogLeNet [34], residual networks [11, 12, 38]

and like [22, 15]. Coupled with large datasets and compute

power, this pipeline drives state-of-the-art vision systems.

However, sufficiency of this design does not speak to its

optimality. A revolution in performance may have blinded

the community to investigating whether or not unfolding

computation in this standard manner is the best choice. In

fact, there are shortcomings to the typical CNN pipeline:

• It conflates abstraction and scale. Early layers cannot

see coarser scales, while later layers only see them.

For tasks requiring fine-scale output, such as semantic

segmentation, this necessitates specialized designs for

reintegrating spatial information [24, 10, 3, 1].

• The fine-to-coarse processing within a standard CNN

is in opposition to a near universal principle for effi-

cient algorithm design: coarse-to-fine processing. The

first layer in a standard CNN consists of many filters

independently looking at tiny, almost meaningless re-

gions of the image. Would it not be more reasonable

for the system to observe some coarse-scale context

before deciding how to probe the details?

• Communication is inefficient. A neuron’s receptive

field is determined by the units in the input layer that

could propagate a signal to it. Standard CNNs imple-

ment a slow propagation scheme, diffusing informa-

tion across a single grid at rate proportional to convolu-

tional filter size. This may be a reason extremely deep

networks [34, 11, 22] appear necessary; many layers

are needed to counteract inefficient signal propagation.

These points can be summarized as inherent deficiencies

in representation, computation, and communication. Our

multigrid architecture (Figure 1, bottom) endows CNNs

with additional structural capacity in order to dissolve these

deficiencies. It is explicitly multiscale, pushing choices

about scale-space representation into the training process.
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Figure 1. Multigrid networks. Top: Standard CNN architectures conflate scale with abstraction (depth). Filters with limited receptive

field propagate information slowly across the spatial grid, necessitating the use of very deep networks to fully integrate contextual cues.

Bottom: In multigrid networks, convolutional filters act across scale space (x, y, c, s), thereby providing a communication mechanism

between coarse and fine grids. This reduces the required depth for mixing distant contextual cues to be logarithmic in spatial separation.

Additionally, the network is free to disentangle scale and depth: every layer may learn several scale-specific filter sets, choosing what to

represent on each pyramid level. Traditional pooling and subsampling are now similarly multigrid, reducing the size of an entire pyramid.

Computation occurs in parallel at all scales; every layer

process both coarse and fine representations. Section 3.2

also explores coarse-to-fine variants that transition from

processing on a coarse pyramid to processing on a full pyra-

mid as the network deepens. Pyramids provide not only an

efficient computational model, but a unified one. Viewing

the network as evolving a representation living on the pyra-

mid, we can combine previous task-specific architectures.

For classification, attach an output to the coarsest pyramid

level; for segmentation, attach an output to the finest.

Multigrid structure facilitates cross-scale information

exchange, thereby destroying the long-established notion of

receptive field. Most neurons have receptive field equiva-

lent to the entire input; field size grows exponentially with

depth, or, in progressive multigrid networks, begins with

the full (coarse) input. Quick communication pathways ex-

ist throughout the network, and enable new capabilities.

We specifically demonstrate that multigrid CNNs,

trained in a pure end-to-end fashion, can learn to attend

and route information. Their emergent behavior may dy-

namically emulate the routing circuits articulated by Ol-

shausen et al. [28]. We construct a synthetic task that stan-

dard CNNs completely fail to learn, but multigrid CNNs

accomplish with ease. Here, attentional capacity is key.

As Section 2 reviews, recent CNN architectural innova-

tions ignore scale-space routing capacity, focusing instead

on aspects like depth. Multigrid, as Section 3 details, com-

plements such work. Section 4 measures performance im-

provements due to multigrid on classification tasks (CIFAR

and ImageNet) and synthetic semantic segmentation tasks.

Multigrid boosts both baseline and residual CNNs. On a

synthetic spatial transformation task, multigrid is more than

a boost; it is required, as residual networks alone do not pos-

sess attentional capacity. Section 5 discusses implications.

2. Related Work

In wake of AlexNet [21], exploration of CNNs across

computer vision has distilled some rules of thumb for their

design. Small (e.g. 3× 3) spatial filters, in many successive

layers, make for efficient parameter allocation [32, 34, 11].

Feature channels should increase with spatial resolution re-

duction [21, 32] (e.g. doubling as in Figure 1). Deeper net-

works are better, so long as a means of overcoming vanish-

ing gradients is engineered into the training process [34, 16]

or the network itself [33, 11, 22, 15]. Width matters [38].

The desire to adapt image classification CNNs to more

complex output tasks, such as semantic segmentation, has

catalyzed development of ad-hoc architectural additions for

restoring spatial resolution. These include skip connec-

tions and upsampling [24, 3], hypercolumns [10], and,

autoencoder-like, hourglass or U-shaped networks that re-

duce and re-expand spatial grids [1, 13, 27, 30].

This latter group of methods reflects the classic intuition

of connecting bottom-up and top-down signals. Our work

differs from these and earlier models [2] by virtual of de-

coupling pyramid level from feature abstraction. Represen-

tations at all scales evolve over the depth of our network.

Such dynamics also separates us from past multiscale CNN

work [8, 7, 35], which does not consider embedded and con-

tinual cross-scale communication.
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Figure 2. Multigrid layers. Left: We implement a multigrid convolutional layer (mg-conv) using readily available components. For each

grid in the input pyramid, we rescale its neighboring grids to the same spatial resolution and concatenate their feature channels. Convolution

over the resulting single grid approximates scale-space convolution on the original pyramid. Downscaling is max-pooling, while upscaling

is nearest-neighbor interpolation. Right: A building block (res-mg-unit) for residual connectivity [11] in multigrid networks.

While prior CNN designs have varied filter size (e.g. [21,

34]), our choice to instead vary grid resolution is crucial.

Applying multiple filter sets, of different spatial size, to a

single grid could emulate a multigrid computation. How-

ever, we use exponential (power of 2) grid size scaling.

Emulating this via larger filters quickly becomes cost pro-

hibitive in terms of both parameters and computation; it

is impractical to implement in the style of Inception mod-

ules [34]. Dilated [37] and atrous convolution [3], while

related, do not fully capture the pooling and interpolation

aspects (detailed in Section 3) of our multigrid operator.

Recent efforts to improve the computational efficiency

of CNNs, though too numerous to list in full, often attack

via parameter [36, 4, 17] or precision [29, 5] reduction.

Concurrent work extends such exploration to include cas-

cades [14, 26], in which explicit routing decisions allow for

partial evaluation of a network. Unlike this work, our cross-

scale connections are bi-directional and we explore rout-

ing in a different sense: internal transport of information

(e.g. attention [28]) for solving a particular task. We focus

on a coarse-to-fine aspect of efficiency, borrowing from the

use of multigrid concepts in image segmentation [31, 25].

3. Multigrid Architectures

Figure 1 conveys our intention to wire cross-scale con-

nections into network structure at the lowest level. We can

think of a multigrid CNN as a standard CNN in which ev-

ery grid is transformed into a pyramid. Every convolutional

filter extends spatially within grids (x, y), across grids of

multiple scales (s) within a pyramid, and over correspond-

ing feature channels (c). A pyramidal slice, across scale-

space, of the preceding layer contributes to the response at

a particular corresponding neuron in the next.

This scheme enables any neuron to transmit a signal

up the pyramid, from fine to coarse grids, and back down

again. Even with signals jumping just one pyramid level

per consecutive layer, the network can exploit this structure

to quickly route information between two spatial locations

on the finest grid. Communication time is logarithmic in

spatial separation, rather than linear as in standard CNNs.

This difference in information routing capability is par-

ticularly dramatic in light of the recent trend towards stack-

ing many layers of small 3×3 convolutional filters [32, 11].

In standard CNNs, this virtually guarantees that either very

deep networks, or manually-added pooling and unpooling

stages [1, 13, 27, 30], will be needed to propagate informa-

tion across the pixel grid. Multigrid allows for faster prop-

agation with minimal additional design complexity. More-

over, unlike fixed pooling/unpooling stages, multigrid al-

lows the network to learn data-dependent routing strategies.

Instead of directly implementing multigrid convolution

as depicted in Figure 1, we implement a close alternative

that can be easily built out of standard components in ex-

isting deep learning frameworks. Figure 2 illustrates the

multigrid convolutional layer (mg-conv) we use as a drop-in

replacement for standard convolutional (conv) layers when

converting a network from grids to pyramids.

With multigrid convolution, we may choose to learn in-

dependent filter sets for each scale within a layer, or alter-

natively, tie parameters between scales and learn shared fil-

ters. We learn independent sets, assuming that doing so

affords the network the chance to squeeze maximum per-

formance out of scale-specific representations. Channel

counts between grids need not match in any particular man-

ner. Each of c0, c1, c2, c
′

0
, c

′

1
, c

′

2
in Figure 2 is independent.

For comparisons, we either set channel count on the finest

grid to match baseline models, or calibrate channel counts

so that total parameters are similar to the baselines. Sec-

tion 4 reveals quite good performance is achievable by halv-

ing channel count with each coarser grid (e.g. c1 = 1

2
c0,

c2 = 1

4
c0). Thus, multigrid adds minimal computational

overhead; the coarse grids are cheap.

Given recent widespread use of residual networks [11],

we consider a multigrid extension of them. The right side of

Figure 2 shows a multigrid analogue of the original resid-

ual unit [11]. Convolution acts jointly across the multigrid

pyramid, while batch normalization (BN) [18] and ReLU

apply separately to each grid. Extensions are also possible
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Figure 3. Network diagrams. Top: Baseline (VGG) and multigrid (MG) CNNs for CIFAR-100 classification, as well as residual (RES,

R-) and progressive (PMG) versions. We vary depth by duplicating layers within each colored block. Bottom: Semantic segmentation

(SEG) and spatial transformation (SPT) architectures: U-NET [30], and our progressive multigrid alternative (PMG). We also consider

U-MG (not shown), a baseline that replaces U-NET grids with pyramids (as in VGG → MG), yet still shrinks and re-expands pyramids.
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with alternative residual units [12], but we leave such explo-

ration to future work. Our focus is on comparison of base-

line, residual, multigrid, and residual-multigrid networks.

3.1. Pooling

Within an mg-conv layer, max-pooling and subsampling

acts as a lateral communication mechanism from fine to

coarse grids. Similarly, upsampling facilitates lateral com-

munication from coarse to fine grids. Rather than locating

these operations at a few fixed stages in the pipeline, we are

actually inserting them everywhere. However, their action

is now lateral, combining different-scale grids in the same

layer, rather than between grids of different scales in two

layers consecutive in depth.

While Figure 1 shows additional max-pooling and sub-

sampling stages acting depth-wise on entire pyramids, we

also consider pipelines that do not shrink pyramids. Rather,

they simply attach an output to a particular grid (and possi-

bly prune a few grids outside of its communication range).

Success of this strategy motivates rethinking the role of

pooling in CNNs. Instead of explicit summarization em-

ployed at select stages, multigrid yields a view of pooling

as implicit communication that pervades the network.

3.2. Progressive Multigrid

The computation pattern underlying a multigrid CNN’s

forward pass has analogy with the multiscale multigrid

scheme of Maire and Yu [25]. One can view their eigen-

solver as a linear diffusion process on a multiscale pyramid.

We view a multigrid CNN as a nonlinear process, on a sim-

ilar pyramid, with the same communication structure.

Extending the analogy, we port their progressive multi-

grid computation scheme to our setting. Rather than starting

directly on the full pyramid, a progressive multigrid CNN

can spend several layers processing only a coarse grid. Fol-

lowing this are additional layers processing a small pyramid

(e.g. coarse and medium grids together), before the remain-

der of the network commits to work with the full pyramid.

In all multigrid and progressive multigrid experiments,

we set the fine-scale input grid to be the original image and

simply feed in downsampled (lower resolution) versions to

independent initial convolution layers. The outputs of these

initial layers then form a multigrid pyramid which is pro-

cessed coherently by the rest of the network.

3.3. Model Zoo

Figure 3 diagrams the variety of network architectures

we evaluate. For classification, we take a network with mi-

nor differences from that of Simonyan and Zisserman [32]

as our baseline. In abuse of notation, we reuse their VGG

name. Our 16-layer version, VGG-16, consists of 5 sections

of 3 convolutional layers each, with pooling and subsam-

pling between. A final softmax layer produces class predic-

tions (on CIFAR-100). Convolutional layers use 3×3 filters.

We instantiate variants with different depth by changing the

number layers per section (2 for VGG-11, 4 for VGG-21,

etc.). Residual baselines (RES) follow the same layout,

but use residual units within each section. Recall that each

residual unit contains two convolutional layers.

Multigrid (MG) and residual multigrid (R-MG) net-

works, starting respectively from VGG or RES, simply flip

from grids to pyramids and convolution to multigrid con-

volution. Progressive variants (PMG, R-PMG) expand the

first section in order to gradually work up to computation

on the complete pyramid. Even as their depth increases, a

significant portion of layers in progressive networks avoid

processing the full pyramid. As diagrammed, multigrid net-

works match their fine-grid feature count with baselines,

and hence add some capacity and parameters. For classi-

fication, we also consider smaller (denoted -sm) multigrid

variants with fewer channels per grid in order to be closer

in parameter count with baseline VGG and RES networks.

For the semantic segmentation and spatial transforma-

tion tasks detailed in the next section, we use networks that

produce per-pixel output. As a baseline, we employ the U-

NET design of Ronneberger et al. [30]. Again, convolu-

tional filters are 3×3, except for the layers immediately fol-

lowing upsampling; here we use 2×2 filters, following [30].

We examine progressive multigrid alternatives (PMG, R-

PMG) that continue to operate on the multiscale pyramid.

Unlike the classification setting, we do not reduce pyramid

resolution. These networks drop some coarse grids towards

the end of their pipelines for the sole reason that such grids

do not communicate with the output.

4. Experiments

Our experiments focus on systematic exploration and

evaluation of the architectural design space, with the goal

of quantifying the relative benefits of multigrid and its syn-

ergistic combination with residual connections.

4.1. Classification: CIFAR­100 [20]

We evaluate the array of network architectures listed in

Table 1 on the task of CIFAR-100 image classification.

Data. We whiten and then enlarge images to 36 × 36. We

use random 32× 32 patches from the training set (with ran-

dom horizontal flipping) and the center 32× 32 patch from

test examples. There are 50K training and 10K test images.

Training. We use SGD with batch size 128, weight decay

rate 0.0005, and 300 iterations per epoch for 200 epochs.

For VGG, MG, and PMG, learning rate exponentially de-

cays from 0.1 to 0.0001; whereas for RES, R-MG, and R-

PMG, it decays at rate 0.2 every 60 epochs.

Results. From Table 1, we see that adding multigrid capac-
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Method Params (×10
6) FLOPs (×10

6) Error (%)

VGG-6 3.96 67.88 32.15

VGG-11 9.46 228.31 30.26

VGG-16 14.96 388.75 30.47

VGG-21 20.46 549.18 31.89

MG-sm-6 3.28 46.10 33.83

MG-sm-11 8.02 154.60 31.55

MG-sm-16 12.75 263.10 32.59

MG-sm-21 17.49 371.60 34.21

MG-6 8.34 116.63 32.08

MG-11 20.46 391.88 28.39

MG-16 32.58 667.13 29.91

MG-21 44.69 942.38 30.03

PMG-sm-9 3.33 73.23 32.38

PMG-sm-16 8.07 183.34 30.47

PMG-sm-30 12.82 293.46 31.06

PMG-9 8.46 186.21 30.61

PMG-16 20.60 468.09 28.11

PMG-30 32.74 749.98 29.89

RES-12 9.50 266.02 28.64

RES-22 20.49 586.93 28.05

RES-32 31.49 907.79 27.12

RES-42 42.48 1228.65 27.60

R-MG-sm-12 8.06 180.12 30.24

R-MG-sm-22 17.52 397.11 28.65

R-MG-sm-32 26.99 614.11 29.27

R-MG-sm-42 36.46 831.11 26.85

R-MG-12 20.56 457.20 27.84

R-MG-22 44.79 1007.70 26.79

R-MG-32 69.02 1558.20 25.29

R-MG-42 93.26 2108.71 26.32

R-PMG-sm-16 8.07 183.34 29.41

R-PMG-sm-30 17.56 403.57 27.68

R-PMG-sm-44 27.05 623.79 27.00

R-PMG-16 20.60 468.09 27.35

R-PMG-30 44.88 1031.87 26.44

R-PMG-44 69.16 1595.64 26.68

Table 1. CIFAR-100 classification performance.

ity consistently improves over both basic (compare green

entries), as well as residual CNNs (blue entries). Progres-

sive multigrid nets of similar depth achieve better or compa-

rable accuracy at reduced expense, as quantified in terms of

both parameters and floating point operations (red entries).

4.2. Semantic Segmentation

We generate synthetic data (10K training, 1K test im-

ages) for semantic segmentation by randomly scaling, ro-

tating, translating, and pasting MNIST [23] digits onto a

64 × 64 canvas, limiting digit overlap to 30%. The task is

to decompose the result into per-pixel digit class labels.

In addition to networks already mentioned, we consider a

single grid (SG) baseline that mirrors PMG but removes all

grids but the finest. We also consider U-MG, which changes

resolution like U-NET, but works on pyramids.

Training. We use batch size 64, weight decay rate 0.0005,

and 150 iterations per epoch for 200 epochs. We set learn-

ing rate schedules for non-residual and residual networks in

the same manner as done for CIFAR-100.

Results. Table 2 and Figure 4 show dramatic performance

Method Params (×10
6) mean IoU (%) mean Error (%)

U-NET-11 3.79 58.46 22.14

U-MG-11 5.90 58.02 21.45

SG-11 0.23 32.21 22.33

R-SG-20 0.45 69.86 14.43

PMG-11 0.61 61.88 14.75

R-PMG-20 1.20 81.91 8.89

Table 2. MNIST semantic segmentation performance.

Method Params (×10
6) mean IoU (%) mean Error (%)

U-NET-11 3.79 12.20 37.55

SG-11 0.23 0 100.00

R-SG-20 0.45 0 82.98

PMG-11 0.61 50.64 29.20

R-PMG-20 1.20 55.61 25.59

Table 3. MNIST spatial transformation performance.

Params FLOPs val, 10-crop val, single-crop

Method (×10
6) (×10

9) Top-1 Top-5 Top-1 Top-5

VGG-16 [32] 138.0 15.47 28.07 9.33 - -

ResNet-34 C [11] 21.8 3.66 24.19 7.40 - -

ResNet-50 [11] 25.6 4.46 22.85 6.71 - -

WRN-34 (2.0) [38] 48.6 14.09 - - 24.50 7.58

R-MG-34 32.9 5.76 22.42 6.12 24.51 7.46

R-PMG-30-SEG 31.9 2.77 23.60 6.89 26.50 8.63

Table 4. ImageNet classification error (%) on validation set.

advantages of the progressive multigrid network. We report

scores of mean intersection over union (IoU) with the true

output regions, as well as mean per-pixel multiclass labeling

accuracy. These results are a strong indicator that contin-

uous operation on a multigrid pyramid should replace net-

works that pass through a low resolution bottleneck. See the

supplementary material for more examples like Figure 4.

4.3. Spatial Transformers

Jaderberg et al. [19] engineer a system for inverting spa-

tial distortions by combining a neural network for estimat-

ing the parameters of the transformation with a dedicated

unit for applying the inverse. Such a split of the problem

into two components appears necessary when using stan-

dard CNNs; they cannot learn the task end-to-end. But,

progressive multigrid networks are able to learn such tasks.

We generate a synthetic spatial transformation dataset

(60K training, 10K test images) in the same manner as the

one for semantic segmentation, but with only one digit per

image and an additional affine transformation with a uni-

formly random sheering angle in (−60◦, 60◦). Training is

the same as segmentation, except 800 iterations per epoch.

Results. Table 3 and Figure 5 show that all networks except

PMG and R-PMG fail to learn the task. Figure 5 (right side)

reveals the reason: U-NET (and others not shown) cannot

learn translation. This makes sense for single grid methods,

as propagating information across the fine grid would re-

quire them to be deeper than tested. U-NET’s failure seems

to stem from confusion due to pooling/upsampling. It ap-

pears to paste subregions of the target digit into output, but
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Figure 4. Semantic segmentation on synthetic MNIST. We compare U-NET, residual (R-), and progressive multigrid (PMG) networks

on a synthetic task of disentangling randomly distorted and overlapped MNIST digits. Figure 3 specifies the 11-layer U-NET and PMG

variants used here. An 11-layer single-grid (SG) baseline operates on only the finest scale. Analogous residual versions (R-SG, R-PMG)

are 20 layers deep. PMG thus performs similarly to a deeper single-grid residual network (R-SG), while R-PMG bests all.

Input True U-NET SG R-SG PMG R-PMG

Scaling & Rotation & Affine & Translation

Input True U-NET Input True U-NET

Rotation Only

Input True U-NET Input True U-NET

Affine Only

Input True U-NET Input True U-NET

Translation Only

Figure 5. Spatial transformations on synthetic MNIST. Left: Only multigrid CNNs (PMG, R-PMG) are able to learn to take a distorted

and translated digit as input and produce the centered original. Right: U-NET can learn to undo rotation and affine transformations, but

not translation. U-NET’s failure stems from inability to properly attend and route information from a sub-region of the input.

6671



Input Output Attention Attention

U
-N

E
T

P
M

G
R

-P
M

G

Input Output Attention Attention

U
-N

E
T

P
M

G
R

-P
M

G

Input Output Attention Attention

U
-N

E
T

P
M

G
R

-P
M

G

Input Output Attention Attention

U
-N

E
T

P
M

G
R

-P
M

G

Input Output Attention Attention

U
-N

E
T

P
M

G
R

-P
M

G

Input Output Attention Attention

U
-N

E
T

P
M

G
R

-P
M

G

Figure 6. Attention maps for MNIST spatial transformers. To produce attention maps, we sweep an occluder (8× 8 square of uniform

random noise) over the 64 × 64 input image and measure sensitivity of the output at the red and green locations. U-NET, which fails to

learn translation, attends to approximately the same regions regardless of input. PMG and R-PMG instead exhibit attention that translates

with the input. Please see the supplementary material for a more detailed visualization of our attention map generation process.

not in the correct arrangement. Figure 6 reveals that, unlike

U-NET, PMG and R-PMG exhibit attentional behavior.

4.4. Classification: ImageNet [6]

We select two designs to train from scratch on ImageNet:

• R-MG-34: A multigrid analogue of ResNet-34 [11],

with finest grid matching ResNet, and two additional

grids at half and quarter spatial resolution (and chan-

nel count). Pooling and resolution reduction mirror

ResNet-34 and the R-MG diagram in Figure 3.

• R-PMG-30-SEG: Similar to our semantic segmenta-

tion network, but adapted to ImageNet, it maps 224×
224 input onto 4 grids: 56 × 56, 28 × 28, 14 × 14,

7×7, that are maintained throughout the network with-

out pooling stages. We increase feature count with

depth and attach a classifier to the final coarsest grid.

Training uses SGD with batch size 256, weight decay

0.0001, 10K iterations per epoch for 100 epochs, starting

learning rate 0.1 with decay rate 0.1 every 30 epochs. Ta-

ble 4 compares our performance to that of ResNets and wide

residual networks (WRN) [38]. We observe:

• Multigrid substantially improves performance. R-MG-

34 even outperforms the deeper ResNet-50.

• Multigrid is a more efficient use of parameters than

simply increasing feature channel count on a single

grid. Compare R-MG-34 with the double-wide resid-

ual network WRN-34: we match its performance with

fewer parameters and require drastically fewer FLOPs.

• R-PMG-30-SEG outperforms ResNet-34. The same

design we used for segmentation is great for classifi-

cation, lending support to the idea of a single unifying

architecture which evolves a multigrid representation.

5. Conclusion

Our proposed multigrid extension to CNNs yields im-

proved accuracy on classification and semantic segmenta-

tion tasks. Progressive multigrid variants open a new path-

way towards optimizing CNNs for efficiency. Multigrid ap-

pears unique in extending the range of tasks CNNs can ac-

complish, by integrating into the network structure the ca-

pacity to learn routing and attentional mechanisms. These

new abilities suggest that multigrid could replace some ad-

hoc designs in the current zoo of CNN architectures.

On a speculative note, multigrid neural networks might

also have broader implications in neuroscience. Feedfor-

ward computation on a sequence of multigrid pyramids

looks similar to combined bottom-up/top-down processing

across a single larger structure if neurons are embedded

in some computational substrate according to their spatial

grid, rather than their depth in the processing chain.
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