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Abstract

We formulate an energy for segmentation that is de-

signed to have preference for segmenting the coarse over

fine structure of the image, without smoothing across

boundaries of regions. The energy is formulated by inte-

grating a continuum of scales from a scale space computed

from the heat equation within regions. We show that the

energy can be optimized without computing a continuum

of scales, but instead from a single scale. This makes the

method computationally efficient in comparison to energies

using a discrete set of scales. We apply our method to tex-

ture and motion segmentation. Experiments on benchmark

datasets show that a continuum of scales leads to better seg-

mentation accuracy over discrete scales and other compet-

ing methods.

1. Introduction

Segmentation of images using low-level cues plays a key

role in computer vision. An image consists of many differ-

ent structures at different scales, and thus the notion of scale

space [24], which consists of blurs of the image at all de-

grees, has been central to computer vision. The need for in-

corporating scale space in segmentation is well-recognized

[40]. Further, there is evidence from human visual studies

(e.g., [18, 35]) that the coarse scale, i.e., from high levels of

blurring, is predominantly processed before the fine scale.

This coarse-to-fine principle has led to many efficient algo-

rithms that are able to capture the coarse structure of the

solution, which is often most important in computer vision.

Therefore, it is natural for segmentation algorithms to use

scale space and operate in a coarse-to-fine fashion.

Existing methods for segmentation that incorporate scale

have either one of the following limitations. First, most seg-

mentation methods (e.g., [6, 25, 2]) based on scale spaces

consider global scale spaces that are computed on the whole

image, which does not capture the fact that there exist mul-

tiple regions of the segmentation at different scales, and this

could lead to the removal and/or displacement of impor-

tant structures in the image, for instance, when large struc-

tures are blurred across small ones, leading to an inaccurate

segmentation. Second, algorithms that use a coarse-to-fine

principle (e.g., [5, 33]) do so sequentially (see Figure 1) so

that the algorithm operates at the coarser scale and then uses

the result to initialize computation at a finer scale. While

this warm start may influence the finer scale result, there is

no guarantee that the coarse structure of the segmentation is

preserved in the final solution.

In this paper, we develop an algorithm that simultane-

ously addresses these two issues. Specifically, we formu-

late a novel multi-region energy for segmentation, which

integrates a continuum of scales from Shape-Tailored Scale

Spaces. These scale spaces are defined within regions of the

segmentation, and thus they prevent removal or displace-

ment of important structures. By integrating over a con-

tinuum of scales of the scale space determined by the heat

equation, we show that this energy has preference to coarse

structure of the data without ignoring the fine structure. We

show that it operates in a parallel coarse-to-fine fashion (see

Figure 1). That is, it is initially dominated by the coarse

structure of the data, then segments finer structure of the

data, while preserving the structure from the coarse-scale

of the data. We provide analytic solutions for the optimiza-

tion of the energy, which leads to a computationally more

efficient method than similar energies integrating discrete

scales. We apply our algorithm to the problem of texture

segmentation, and show our method outperforms discrete

scale spaces and existing state of the art. We also apply

our method to motion segmentation, show the advantage

of the shape-tailored continuum scale space, and show out-

performance against existing state of the art.

1.1. Related Work

Scale space theory [24, 53, 15, 27] has a long and rich

history as a theory for analyzing images, and we only pro-

vide brief highlights. The idea is that an image consists of

structures at various different scales (e.g., a leaf of a tree

exists at a different scale than a forest), and thus to ana-

lyze an image without a-priori knowledge, it is necessary

to consider the image at all scales. This is accomplished

by blurring the image at a continuum of kernel sizes. The
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Sequential Coarse-to-Fine

Parallel Coarse-to-Fine (Ours)

Figure 1. [Top]: Sequential coarse-to-fine methods use the result

of segmentation (red) from the coarse scale to initialize (yellow)

the finer scales, and may lose coarse structure of the coarse seg-

mentation solution without additional heuristics. Note that the re-

sult of segmentation of the coarse scale is the left image in red

(the blurred image is not shown), and towards the right segmenta-

tion is done at finer scales. [Bottom]: Our parallel coarse-to-fine

approach considers a continuum of scales all at once and has a

coarse-to-fine property. The evolution is shown from left to right.

most common kernel is a Gaussian, which is known to be

the only scale space satisfying certain axioms such as not

introducing any new features as the image is blurred [29].

Scale space has been used to analyze structures in images

(e.g., [13, 50, 29, 44]). This has had wide ranging applica-

tions in stereo and optical flow [31], reconstruction [20, 49],

key-point detection in wide-baseline matching [30], design

of descriptors for matching [17], shape matching [7], and

curve evolution [43], among others.

Gaussian scale spaces have also been used in image seg-

mentation, most notably in texture segmentation [14, 39,

6, 25, 42], which occur frequently in natural images [2].

While these methods capture important scale information,

they use a global scale space defined on the entire image,

which does not capture the characteristic scale of features

within regions and blurs across segmentation boundaries.

Anisotropic scale spaces [40, 4] have been applied to re-

duce blurring across boundaries, but this could blur across

regions where edges are not salient. Recently, [23] have

addressed this issue by computing scales locally within the

evolving regions of the segmentation. However, only a dis-

crete number of scales are used and thus the method does

not exhibit coarse-to-fine behavior. Such methods for seg-

mentation have been numerically implemented with vari-

ous optimization methods, including level sets [38], con-

vex methods [41, 26], and others [47]. The energy we con-

sider is not convex, and thus we rely on gradient descent on

curves. The energy we consider involves optimization with

partial differential equation (PDE) constraints, and thus we

build on optimization methods from [3, 11].

Coarse-to-fine methods, where coarse representations of

the image or objective function are processed and then finer

aspects of the data are successively revealed, have a long

history in computer vision [5]. In these methods, data or the

objective function is smoothed, and the smoothed problem

is solved. The result is used to initialize the problem with

less smoothing, where finer details of the data are revealed.

The hope is that this finer result retains aspects of coarse so-

lution, while gradually finding finer detail. However, with-

out additional heuristics such as restricting the finer solu-

tion to be around the solution of the coarse problem, there

is no guarantee that coarse structure is preserved when solv-

ing the finer problem. Recently, [33] provided analysis and

derived closed form solutions for the smoothing of the ob-

jective in problems of point cloud matching. Our method

uses a single energy integrating over a continuum of scales

in parallel, rather than a sequential approach where multi-

ple energies from coarse to fine are solved. This guarantees

that the coarse and fine scale aspects of the desired solution

are obtained.

Since we also apply our method to the problem of seg-

menting moving objects in video based on motion, we

highlight some aspects of that literature most relevant to

this work. Methods for motion segmentation are based

on optical flow (e.g., [45]). Piecewise parametric mod-

els for motion of regions in segmentation are used in e.g.,

[52, 10]. Non-parametric warps are used for motion models

(e.g.,[37, 46, 54]). Our goal here is not to estimate mo-

tion, but rather we use existing techniques for motion esti-

mation, and improve the segmentation of regions by merely

replacing a single scale formulation with our novel contin-

uum scale space approach.

2. Continuum Shape-Tailored Energy

In this section, we construct a coarse-scale preferential

energy without blurring across segments. To achieve this,

we introduce a Shape-Tailored Continuum Scale Space. A

Shape-Tailored Scale Space avoids blurring across regions,

and a continuum of scales obtains a coarse-to-fine property.

2.1. ShapeTailored Heat Scale Space

The Gaussian Scale Space, constructed by smoothing the

image with a Gaussian at a continuum of scales (variances),

can be generalized to be defined within regions (subsets of

the image) of arbitrary shape by using the heat equation

(see Figure 2). The solution to the heat equation defaults

to Gaussian smoothing when the domain is R
2. The heat

equation, defined in a region R, is:











∂tu(t, x) = ∆u(t, x) x ∈ R, t > 0

∇u(t, x) ·N = 0 x ∈ ∂R, t > 0

u(0, x) = I(x) x ∈ R

(1)

where u : [0,+∞) × R → R
k denotes the scale space,

R ⊂ Ω ⊂ R
2 is the domain (or subset) of the image Ω, I :

Ω → R
k (k ≥ 1 is the number of channels) is the image, ∂R

denotes the boundary of R, N is the unit outward normal
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t = 0 t = 2 t = 8 t = 50

Figure 2. Shape-tailored scale space (solution of heat equation

within regions with boundary in red) for various times (scales).

Notice the quick diffusion of fine scale structures, and the persis-

tence of coarse structure. The persistence of coarse structure is

important to our coarse-to-fine segmentation scheme.

vector to R, ∇ denotes the vector of partials, ∆ denotes the

Laplacian, ∂t denotes the partial derivative with respect to t,

and t is the scale parameter parameterizing the scale space.

Increasing t indicates increasing amount of smoothing.

The construction of scale space using the heat equation is

useful for segmentation as it allows us to conveniently com-

pute coarse scales of the data within regions of a segmenta-

tion. If the regions are chosen to be the correct segmenta-

tion, this avoids blurring data across segmentation bound-

aries. However, one does not know the segmentation a-

priori, and thus the regions are simultaneously optimized

with the scale spaces in the optimization problem defined

next.

2.2. CoarseScale Preferential Energy

The Gaussian scale space is relevant in defining our

coarse-scale preferential energy as the heat equation re-

moves the fine structure of the image in short time, and

spends more time removing coarse structure (see Figure 2)

[9]. Therefore, a data term integrating the scale space over

the scale parameter of the heat equation gives preference to

segmentations separating the coarse over the fine structure.

We thus propose the following energy for segmentation in-

tegrating over a continuum of scales:

E =

N
∑

i=1

∫

Ri

∫ T

0

|ui(t, x)− ai|
2w(t) dt dx+ Reg(∂Ri),

(2)

where T > 0 is the final time, {Ri}
N
i=1 are a collection of

regions forming the segmentation, ai ∈ R
k is the average

of ui(t, ·), and w : R
+ → R is a function that weights

each scale. It can be shown that ai is independent of t.

This energy is the mean-squared error of the image within

the region across all scales. It generalizes common single

scale segmentation models, including piecewise constant

Mumford-Shah (Chan-Vese [51, 34]). Reg denotes usual

curve regularization that will be discussed in the implemen-

tation section, Section 3.3.

To further demonstrate the coarse preference of our en-

ergy, we write the data term of the energy in Fourier domain.

For simplicity, we choose w(t) = 1; other weights lead to a

similar conclusion. Choosing the whole domain as a region,

the data term can be written in Fourier domain as:

Lemma 1 Suppose I : R2 → R and a =
∫

R2 I(x) dx =
∫

R2 u(t, x) dx. Then

∫ ∞

0

∫

R2

|u(t, x)− a|2 dx dt =

∫

R2

|H(ω)Î(ω)|2 dω, (3)

where H(ω) = 1√
2|ω| , Î denotes the Fourier transform, and

ω denotes frequency.

The proof can be found in supplementary materials. The

function H decays the high frequency components of I at

a linear rate, thus the energy gives preference to the coarse

image structure. Without integrating over the scale space,

the energy in Fourier domain would result in H = 1, which

has equal preference to coarse and fine structure.

3. Optimization and Scale Weighting

We now derive the optimization scheme for the energy

(2), and propose and analyze weight choices.

3.1. Constrained Optimization Problem

The energy (2) is optimized with respect to the regions.

Since the integrand of the energy depends on the regions

nonlinearly, as the heat equation has a non-linear depen-

dence on the region, the energy is not convex, and thus we

apply gradient descent. In order to compute the gradient,

we formulate the energy minimization as a constrained opti-

mization problem. That is, we treat the minimization of the

energy (2) as defined on both the regions Ri and ui with the

constraint that ui satisfies the heat equation (1). This formu-

lation allows us to apply the technique of Lagrange multipli-

ers, which makes computations simpler since the nonlinear

dependence of ui on Ri is decoupled.

Since all data terms of the energy in (2) have the same

form, we focus on computing the gradient for any one term.

For convenience in notation, we avoid the subscript i denot-

ing the index of the region. Using Lagrange multipliers, we

formulate the energy as a function of region R, u, and the

Lagrange multiplier λ : [0, T ]×R → R
k with the constraint

that u satisfies the heat equation:

E(R, u, λ) =

∫ T

0

∫

R

f(u) dx dt+

∫ T

0

∫

R

(∇λ · ∇u+ λ∂tu) dx dt, (4)

where f(t, u) = (u − a)2w(t). We have excluded the de-

pendencies on x, t for convenience of notation. We have

also provided a more general form of the squared error with

a general function f of u. The second term comes from

the weak form of the heat equation. Integrating by parts to
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move the gradient from λ to ∇u gives the classical form of

the heat equation in (1). Therefore, the second term in (4)

is indeed obtained by Lagrange multipliers.

We may now compute the gradient for E (4) by deriving

the optimizing conditions in u and λ. Details are found in

supplementary materials. Optimizing in λ simply results in

the original heat equation constraint, so we compute the op-

timizing condition for u by computing the derivative (vari-

ation) of E with respect to u. This results in a solution for

λ as given below:

Lemma 2 (PDE for Lagrange Multiplier λ) The La-

grange multiplier λ satisfies the following heat equation

with forcing term, evolving backwards in time:










∂tλ(t, x) + ∆λ(t, x) = fu(t, u(t, x)) x ∈ R× [0, T ]

∇λ(t, x) ·N = 0 x ∈ ∂R× [0, T ]

λ(T, x) = 0 x ∈ R

,

(5)

where fu denotes the partial with respect to the second ar-

gument.

Duhamel’s Principle [12] leads to the following solution:

Lemma 3 (Lagrange Multiplier λ) The solution of (5)

can be written as

λ(t, x) = −

∫ T

t

F (s− t, x; s) ds. (6)

where F (·, ·; s) : [0, T ] × R → R is the solution of the

forward heat equation (1) with zero forcing and initial con-

dition fu(u) evaluated at time s, i.e.,










∂tF (t, x; s)−∆F (t, x; s) = 0 x ∈ R× [0, T ]

∇F (t, x; s) ·N = 0 x ∈ ∂R× [0, T ]

F (0, x; s) = fu(s, u(s, x)) x ∈ R

.

(7)

In the case that f(t, u) = (u − a)2w(t), λ can be ex-

pressed as

λ(t, x) = −2

∫ T

t

(u(2s− t, x)− a)w(s) ds. (8)

The formula for λ in (8) is convenient for particular choices

of the weight w as taking the limit as T gets large leads

to the energy gradient being computable without explicitly

computing the scale space u, as shown in the next section.

With the optimizing conditions for u and λ of E, we can

now compute the gradient of the energy E with respect to

R in terms of λ and u:

Proposition 1 The gradient of E with respect to the bound-

ary ∂R can be expressed as

∇∂RE =

∫ T

0

[f(u) +∇λ · ∇u+ λ∂tu] dt ·N, (9)

where N is the normal vector to ∂R.

3.2. Weighting Functions

We now explore possible choices of weights, w. Some

choices of weights may have convenient solutions for the

gradient that does not require computation of the scale-

space u, which makes the computational cost much less

expensive than the generic formula (9). As observed in the

experiments, all have a coarse-to-fine behavior, but each dif-

fers in the extent of this property. Calculations are provided

in supplementary materials.

Exponential With Positive Exponent (ExpPos): We

consider the weight w(t) = e1/α[(t/T )2−1]
1[0,T ](t), where

α > 0 and 1 denotes the indicator function. Here, the

weight increases with scale so that the largest scales be-

tween 0 and T are weighted the most. We truncate at a fi-

nite T . This is because for large scales, the image is blurred

too much to be used in segmentation, and very large scales

should have either low or zero weight. This weighting ex-

hibits the most coarse-to-fine behavior of any weightings

we consider. Although this is the ideal weighting, to the

best of our knowledge, the gradient (9) cannot be written

in a form that does not require computation of the scale

space. Thus, it is computationally more costly than other

weightings we consider. However, typically T is chosen

small (e.g., T = 10 for a 256 × 256 image) in comparison

to other weightings, which offers cost savings.

Truncated Uniform Weight (Uniform): We consider

the weight function w(t) = 1[0,T ](t). This uses a uniform

weight on all scales between 0 and T . Since we want to

avoid very large scales (T → ∞), we choose a finite T . The

gradient when T is large (but still finite) is approximated as

∇∂RE ·N ≈ (u0 + a)(aT − UT ) +
1

2
|∇UT |

2, (10)

where u0 is initial condition to the heat equation (original

data), and

{

UT (x)− T∆UT (x) = Tu0(x) x ∈ R

∇UT ·N = 0 x ∈ ∂R
. (11)

UT is the integral of the scale space from 0 to T and this

can be approximated as the solution of (11) (see supplemen-

tary). The advantage of (10) is that it does not require ex-

plicit computation of the scale space, and (11) can be solved

efficiently iteratively. Indeed, in gradient descent of R, the

solution for the previous iteration can be used as a warm

start for the next iteration. Analysis of the approximation is

in supplementary.

Exponential With Negative Exponent (ExpNeg): We

consider the weight w(t) = e−(1/α)t for all t ∈ [0,∞),
where α > 0. A small value of α implies that only the small

scales are relevant. A large value of α includes larger scales,

which is desired. The intuition for using this weighting is

that it includes moderately large scales with non-negligible
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continuum of scales, ExpPos weight

continuum of scales, uniform weight

continuum of scales, ExpNeg weight

discrete scales, STLD

native scale (no scale space)

segmentation evolution→
Figure 3. Visualization of Energy Optimization for Various

Scale Weightings. We compare usual segmentation of the native

image scale, a discrete shape-tailored scale space (STLD), Exp-

Pos, Uniform, and ExpNeg weightings for the continuum scale

space. No coarse-to-fine behavior is exhibited for the native image

scale and STLD. The continuum scale spaces give coarse-to-fine

behavior, with ExpPos more so than other weightings.

weight as desired, it disregards very large scales as desired

by having exponentially decaying weight, and it has an ex-

act solution for the gradient that does not require the com-

putation of scale space. One can show that the gradient is

∇∂RE ·N = aα(a+2u0)−u0U2α+
1

4α
U2
2α−

1

2
|∇U2α|

2,

(12)

where U2α solves (11) with T replaced by 2α. Like the

uniform weighting, the gradient yields a form that does not

require the computation of the scale space. An advantage

over the uniform case is that the solution is exact.

3.3. MultiRegion Segmentation

We now present the numerical implementation of the

gradient descent for energy (2), when there are multiple re-

gions. The term involving regularization is discussed later.

Let GiNi be the gradient of the ith summand of E in (2),

where Ni is the outward normal to Ri. For instance, GiNi

can be any one of the expressions (9), (10), (12). As shown

in [56], the gradient of the full energy evaluated at a point x

is just the sum of GiNi for all i such that x ∈ ∂Ri. For

a point x ∈ ∂Ri ∩ ∂Rj , this yields that the gradient is

(Gi −Gj)Ni.

To achieve sub-pixel accuracy, we use relaxed indicator

functions φi : Ω → [0, 1] for i = 1, . . . , N to represent

the regions, similar to level set methods [38]. Ri is where

φi is larger than φj , j 6= i. By abuse of notation, denote

by Gi the quantity multiplying the normal vector of region

Ri in either of (9), (10), (12), which is defined in the entire

region Ri. We extend it from Ri to D(Ri), a small dilation

of Ri, by solving for Gi in D(Ri). The extension beyond

the region is done so that the evolution of φi can be defined

around the curve, as in level set methods. Following [38] to

convert a curve to a level set evolution, the update scheme

for φi inducing the regions gradient descent is Algorithm 1.

Algorithm 1 Multi-Region Gradient Descent

1: Input: An initialization of φi

2: repeat

3: Set regions: Ri = {x ∈ Ω : i = argmaxjφj(x)}
4: Compute dilations, D(Ri), of Ri

5: Compute band pixels Bi = D(Ri) ∩D(Ω\Ri)
6: Compute Gi in Bi from (9), (10), or (12)

7: Update pixels x ∈ D(Ri) ∩D(Rj) as follows:

φτ+∆τ
i (x) = φτ

i (x)−∆τ(Gi(x)−Gj(x))|∇φτ
i (x)|

+∆τ · ε∆φτ
i (x).

8: Update all other pixels as

φτ+∆τ
i (x) = φτ

i (x) + ∆τ · ε∆φτ
i (x).

9: Clip between 0 and 1: φi = max{0,min{1, φi}}.

10: until regions have converged

The update of the φi in Line 7 of Algorithm 1 involves

the term ∆φτ
i , which provides smoothness of the curve.

More sophisticated regularizers (such as length regulariza-

tion) may be used, but we have found this simple regular-

ization sufficient. We choose ε = 0.005 in experiments,

and this does not need to be tuned, as it is mainly for induc-

ing regularity for computation of derivatives of φ. Further,

considering the scale space naturally induces regularity.

4. Application to Motion Segmentation

In this section, we show how the results of the previ-

ous section can be applied to motion segmentation. Motion

segmentation is the problem of segmenting objects and/or

regions with similar motions computed using multiple im-

ages of the object(s). One of the challenges of motion seg-

mentation is that motion is inferred through a sparse set of

measurements (e.g., along image edges or corners), and thus

the motion signal is typically only reliable for segmentation

in sparse locations. By using a scale space formulation of

an energy for motion segmentation, coarse representations
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residual SS residual non-SS SS non-SS SS

Figure 4. Motion residuals at a single scale are sparse (left col-

umn), leading to difficulties in using these cues in segmentation

(non-SS). Motion cues at a continuum of scales (SS) provide a

richer signal (2nd column), which improves segmentation. Seg-

mentations (in purple) are shown for a frame (middle two) and a

few frames ahead (right two). Although errors in the non-SS ap-

proach are subtle between frames, they quickly propagate across

frames, compared to our approach.

of the motion signal are integrated and more significantly

impact the segmentation. This property increases the reli-

ability of motion segmentation (Figure 4), and the coarse-

to-fine approach captures the coarse-structure without being

impacted by fine-scale distractions at the outset.

With this motivation, we reformulate the motion seg-

mentation problem with scale space. Let I0, I1 : Ω → R
k

be two images of a sequence where Ω is the domain of

the image. For a given region Ri, we define a mapping

wi : Ri → Ω ⊂ R
2, which we call a warp or deformation

that back warps I1 to I0. We assume that I0 and I1 are re-

lated through wi by the Brightness Constancy Assumption,

except for occlusions, as in typical works in the optical flow

[45]. Define the energy

Emseg =

N
∑

i=1

∫

Ri

∫ T

0

[1−m(x)]|ui(t, x)|
2w(t) dt dx−

∫

Ri

m(x) log pRi
(I0(x)) dx+ Reg(∂Ri), (13)

where ui is the scale space of the difference of I0 and the

back-warping of I1 in the un-occluded region Ri\Oi:

u0,i =

{

I1(wi(x))− I0(x) x ∈ Ri\Oi

0 x ∈ Oi

, (14)

and m : Ω → [0, 1] is the motion ambiguity function. Note

that the energy in the case m = 0 is equivalent to integrating

over all scales the difference of the scale spaces of I0 and of

Î1 (defined as I1 ◦wi inside Ri\Oi and I0 in Oi). Note that

Î1 is used rather than I1◦wi as the latter does not correspond

to I0 in the occlusion. This energy requires that the regions

are chosen so that all scales of the images between 0 and T

match. The motion ambiguity function m indicates whether

the motion at a pixel is reliable for segmentation (1 in a

textureless or occluded region and 0 otherwise). In case

the motion is ambiguous, local color histograms pRi
within

regions are used for grouping. As is typical in optical flow

[45], we set the occlusion to be a threshold of the residual:

Oi = {x ∈ Ri : |I1(wi(x))− I0(x)|
2 > β}.

The optimization involves iterative alternating updates of

the warps and the regions. To update warps, we use the

method of warp estimation in [55]. To update the regions,

we use the results of the previous section and use the ex-

ponential weight with negative exponent, for computational

efficiency. This yields the gradient of the ith data terms in

(13) approximately as

[

(1−m)(
α

4
U2 − u0U −

1

2
|∇U |2)−m log pRi

(I0)

]

Ni,

(15)

where U is the solution of (11) using T = 2α and right hand

side u0,i. The gradient descent of Emseg is then given by

Algorithm 1, choosing Gi to be the component of (15) mul-

tiplying Ni. We apply our method frame-by-frame. Then

we propagate the result to the next frame via the computed

warp to warm-start the segmentation in the next frame.

5. Experiments

5.1. Texture Segmentation

Datasets and Methods Compared: We first test our

method on texture segmentation, a task where multiscale in-

formation is important. We test on two datasets used in [23].

The Brodatz Synthetic Dataset has 198 images generated

from textures in Brodatz and random shapes from MPEG

dataset. The second is the Real-World Texture Dataset,

which consists of 256 textured images obtained from pho-

tographs of real-world scenes. We use RGB color chan-

nels and binned oriented gradients at four angles, as the fea-

tures for segmentation. Since the contribution in this paper

is the use of shape-tailored scale spaces at a continuum of

scales, we compare to [23] (STLD), which uses scale space

but only considers a discrete number of scales. For refer-

ence, we include other segmentation methods. We use the

abbreviations ExpPos, Uniform, and ExpNeg for the posi-

tive exponent exponential, uniform, and negative exponent

exponential weights in our method. The methods are all

initialized with a standard box tessellation.

Results on Brodatz: First, we compare on Brodatz with

different weighting schemes introduced in Section 3.2 for

continuum scale spaces against STLD. To compare weight-

ings and not the quality of various approximations, we use

(9) to compute the gradient. Images are 128 × 128 and we

choose α = T = 10 (corresponding to the max scale used

in STLD) for all weightings. Results are displayed in Ta-

ble 1. All weightings give similar results, and all are signif-

icantly more accurate than STLD. This indicates that using
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Brodatz Synthetic Dataset

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

ExpPos (ours) 0.41 0.41 0.80 0.80 0.79 0.79 0.68 0.68

ExpNeg (ours) 0.39 0.39 0.78 0.78 0.77 0.77 0.68 0.68

Uniform (ours) 0.40 0.40 0.79 0.79 0.78 0.78 0.68 0.68

STLD 0.33 0.33 0.71 0.71 0.70 0.70 0.74 0.74

Real-World Texture Dataset

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

ExpNeg (ours) 0.60 0.60 0.91 0.91 0.91 0.91 0.45 0.45

STLD 0.58 0.58 0.87 0.87 0.87 0.87 0.59 0.59

non-STLD 0.17 0.17 0.81 0.81 0.82 0.82 0.77 0.77

mcg [2] 0.51 0.54 0.74 0.82 0.77 0.85 0.80 0.66

gPb [1] 0.50 0.54 0.74 c0.84 0.78 0.86 0.80 0.65

CB [21] 0.48 0.52 0.64 0.70 0.66 0.75 0.89 0.78

SIFT 0.10 0.10 0.55 0.55 0.59 0.59 1.44 1.44

Entropy [19] 0.08 0.08 0.74 0.74 0.75 0.75 0.95 0.95

Hist-5 [36] 0.14 0.14 0.66 0.66 0.70 0.70 1.18 1.18

Hist-10 [36] 0.13 0.13 0.66 0.66 0.70 0.70 1.19 1.19

Chan-Vese [8] 0.14 0.14 0.71 0.71 0.73 0.73 1.04 1.04

LAC [28] 0.09 0.09 0.55 0.55 0.58 0.58 1.41 1.41

Global Hist [32] 0.12 0.12 0.65 0.65 0.67 0.67 1.12 1.12

Table 1. Results on Texture Segmentation Datasets. Algorithms

are evaluated using contour and region metrics. Higher F-measure

for the contour metric, ground truth covering (GT-cov), and rand

index indicate better fit to the ground truth, and lower variation of

information (Var. Info) indicates a better fit to ground truth.

continuum scale space leads to increased performance.

Results on Real-World Texture Images: Since all re-

sults for different weightings are similar, we now use Exp-

Neg for comparison on the Real-World Texture Dataset be-

cause of its speed. Results, in Table 1, for α = 20, show

that the accuracy of the continuum scale space is greater

than discrete scales (STLD). Sample representative visual

results are shown in Figure 5.

Next, we test our approach with different choices of α

using the ExpNeg weighting. We also compare against

STLD in terms of speed and accuracy. Results are shown

in Table 2. Results of STLD show that more than one scale

is necessary, and faster speed by using fewer scales leads to

degradation of the segmentation. Second, results of ExpNeg

show that the results are stable across different parameter

choices for α. Finally, a speed comparison is performed be-

tween ExpNeg and STLD. Note that each scale that is used

in STLD requires the solution of a PDE, whereas our ap-

proach of ExpNeg requires only a single PDE. This makes

our continuum scale space approach computationally less

expensive, as confirmed in Table 2. Our approach also re-

quires only a single parameter in contrast to STLD that re-

quires choosing a list of scales.

5.2. Motion Segmentation

Datasets: We test our method on the Freiburg-Berkeley

Motion Segmentation (FBMS-59) [37] dataset. FBMS-59

consists of two sets - training, 29 sequences, and test, 30

sequences. Videos range between 19 and 800 frames, and

images

ground truth

STLD (discrete scales)

ExpNeg (continuum scales, ours)

images

ground truth

STLD (discrete scales)

ExpNeg (continuum scales, ours)

Figure 5. Sample representative results on Real-World Texture

Dataset. We compare the best two methods (ours) and STLD (us-

ing discrete scale spaces).

STLD Scale Comparison

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

STLD scales ODS OIS ODS OIS ODS OIS ODS OIS

4 0.56 0.56 0.85 0.85 0.85 0.85 0.63 0.63

20 0.55 0.55 0.84 0.84 0.84 0.84 0.64 0.64

4,8,12,16,20 0.58 0.58 0.87 0.87 0.87 0.87 0.59 0.59

ExpNeg Parameter α Comparison

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

α = 20 0.60 0.60 0.91 0.91 0.91 0.91 0.45 0.45

α = 30 0.60 0.60 0.90 0.90 0.90 0.90 0.46 0.46

α = 50 0.60 0.60 0.90 0.90 0.90 0.90 0.46 0.46

Speed Comparison

method average iterations average time

ExpNeg (α = 20) 12.9 ± 4.4 10.3 sec

STLD (scale 4,8,12,16,20) 16 ±4.1 83.7 sec

Table 2. Analysis of Scale Parameters and Speed. [Top]: Com-

parison of different scale choices for discrete scale spaces (STLD).

[Middle]: Results for different α in continuum scale space with

ExpNeg weight. [Bottom]: Speed comparison on a single proces-

sor for ExpNeg continuum scale space and STLD.

have multiple objects.

Comparison: To demonstrate the advantage of our con-

tinuum space energy over a corresponding single scale en-

ergy, we compare to [55]. Our approach replaces the sin-

gle scale motion term there with the energy (13). Further,

additional regularization used in [55] is not used, as the
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Training set (29 sequences) Test set (30 sequences)

P R F N/65 P R F N/69
[16] 79.17 47.55 59.42 4 77.11 42.99 55.20 5

[37] 81.50 63.23 71.21 16 74.91 60.14 66.72 20

[48] 83.00 70.10 76.01 23 77.94 59.14 67.25 15

[22] 86.91 71.33 78.35 25 87.57 70.19 77.92 25

[55] 89.53 70.74 79.03 26 91.47 64.75 75.82 27

ExpNeg (ours) 93.04 72.68 81.61 29 95.94 65.54 77.87 28

Table 3. FBMS-59 results. Average precision (P), recall (R), F-

measure (F), and number of objects detected (N) over all se-

quences in training and test datasets. Higher values indicate su-

perior performance. All methods are fully automatic.
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Figure 6. Sample visual results on representative sequences for

the FBMS-59 dataset (segmented objects in purple and red). The

change of energy to integrate over all scales (our approach) is gen-

erally less sensitive to clutter than using an energy that contains

only one scale (non-SS).

scale-space provides inherent regularization. Since we test

on benchmarks, we also compare to other state-of-the-art

approaches, although our main purpose is to show the im-

provements that occur by merely using our continuum scale

space energy.

Initialization: We initialize each with a segmentation of

optical flow from [45] between frame 1 and 20.

Parameters: Our method with ExpNeg weighting re-

quires one parameter α in (12). We choose it to be α = 20
by selecting it based on a few sequences from the training

set. Other parameters e.g., histogram sizes are chosen based

on [55].

Results on FBMS-59: Figure 6 shows some represen-

tative visual results of our method and the single scale ap-

proach. Table 3 shows quantitative results of the two ap-

proaches, as well as other state-of-the-art methods. Visual

results show our approach generally avoids distracting clut-

ter and thus prevents leakages in comparison to the single

scale approach. In many cases, it also captures more of the

object. Quantitative results show that we improve the F-

measure of [55] by about 2% on both training and test sets,

and that we increase the number of objects detected. We

also have highest F-measure of all competing methods.

Computational cost: The additional processing cost re-

quired for our scale space is small compared with the overall

cost of [55]. Our approach adds about 5 secs per frame (one

core) to the total time on average of about 30 secs per frame

by [55] on a 12-core processor.

6. Conclusion

We have presented a general energy that reformulates

conventional data terms in segmentation problems. This

novel energy incorporates a shape-tailored continuum scale

space. It exhibits two important properties: scales spaces

are defined within regions, so that structures in different

segments are not blurred across boundaries nor displaced,

and a coarse-to-fine property. The latter favors that the

coarse structure of the desired segmentation is obtained

while finer structure becomes successively obtained, with-

out having to rely on heuristics. Our shape-tailored con-

tinuum scale spaces have two main advantages over shape-

tailored discrete scale spaces: they have a coarse-to-fine

property, ignoring distracting fine-scale structure leading

to more accurate solutions, and they have a speed advan-

tage. We have shown application to both texture and motion

segmentation. Experiments on two benchmark datasets in

texture segmentation have shown the importance of shape-

tailored continuum scale spaces with respect to existing

state-of-the-art. Experiments on a motion segmentation

benchmark have shown the importance of multiscale infor-

mation in motion segmentation: a mere integration of the

common motion residual over scale improves results, lead-

ing to a state-of-the-art method.
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