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Abstract

Semantic labelling and instance segmentation are two

tasks that require particularly costly annotations. Starting

from weak supervision in the form of bounding box detec-

tion annotations, we propose a new approach that does not

require modification of the segmentation training proced-

ure. We show that when carefully designing the input labels

from given bounding boxes, even a single round of training

is enough to improve over previously reported weakly su-

pervised results. Overall, our weak supervision approach

reaches ∼95% of the quality of the fully supervised model,

both for semantic labelling and instance segmentation.

1. Introduction

Convolutional networks (convnets) have become the de

facto technique for pattern recognition problems in com-

puter vision. One of their main strengths is the ability to

profit from extensive amounts of training data to reach top

quality. However, one of their main weaknesses is that they

need a large number of training samples for high quality

results. This is usually mitigated by using pre-trained mod-

els (e.g. with ∼ 106 training samples for ImageNet clas-

sification [37]), but still thousands of samples are needed

to shift from the pre-training domain to the application do-

main. Applications such as semantic labelling (associating

each image pixel to a given class) or instance segmentation

(grouping all pixels belonging to the same object instance)

are expensive to annotate, and thus significant cost is in-

volved in creating large enough training sets.

Compared to object bounding box annotations, pixel-

wise mask annotations are far more expensive, requiring

∼15× more time [25]. Cheaper and easier to define, box

annotations are more pervasive than pixel-wise annotations.

In principle, a large number of box annotations (and images

representing the background class) should convey enough

information to understand which part of the box content is

foreground and which is background. In this paper we ex-

plore how much one can close the gap between training a

convnet using full supervision for semantic labelling (or in-

stance segmentation) versus using only bounding box an-

notations.

Our experiments focus on the 20 Pascal classes [9] and
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Figure 1: We propose a technique to train semantic labelling

from bounding boxes, and reach 95% of the quality ob-

tained when training from pixel-wise annotations.

show that using only bounding box annotations over the

same training set we can reach ∼ 95% of the accuracy

achievable with full supervision. We show top results for

(bounding box) weakly supervised semantic labelling and,

to the best of our knowledge, for the first time report results

for weakly supervised instance segmentation.

We view the problem of weak supervision as an issue

of input label noise. We explore recursive training as a

de-noising strategy, where convnet predictions of the pre-

vious training round are used as supervision for the next

round. We also show that, when properly used, “classic

computer vision” techniques for box-guided instance seg-

mentation are a source of surprisingly effective supervision

for convnet training.

In summary, our main contributions are:

− We explore recursive training of convnets for weakly

supervised semantic labelling, discuss how to reach

good quality results, and what are the limitations of

the approach (Section 3.1).

− We show that state of the art quality can be reached

in a single training round when properly employing

GrabCut-like algorithms to generate training labels

from given bounding boxes, instead of modifying the

segmentation convnet training procedure or using re-

cursive training (Section 3.2).

− We report the best known results when training us-

ing bounding boxes only, both using Pascal VOC12

and VOC12+COCO training data, reaching compar-

able quality with the fully supervised regime (Section

4.2).
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− We are the first to show that similar results can be

achieved for the weakly supervised instance segment-

ation task (Section 6).

2. Related work

Semantic labelling. Semantic labelling may be tackled via

decision forests [38] or classifiers over hand-crafted super-

pixel features [11]. However, convnets have proven partic-

ularly effective for semantic labelling. A flurry of variants

have been proposed recently [32, 26, 5, 24, 48, 18, 46]. In

this work we use DeepLab [5] as our reference implementa-

tion. This network achieves state-of-the-art performance on

the Pascal VOC12 semantic segmentation benchmark and

the source code is available online.

Almost all these methods include a post-processing step to

enforce a spatial continuity prior in the predicted segments,

which provides a non-negligible improvement on the results

(2 ∼ 5 points). The most popular technique is DenseCRF

[20], but other variants are also considered [19, 2].

Weakly supervised semantic labelling. In order to keep

annotation cost low, recent work has explored different

forms of supervision for semantic labelling: image labels

[29, 28, 27, 30, 42], points [3], scribbles [44, 23], and

bounding boxes [8, 27]. [8, 27, 15] also consider the case

where a fraction of images are fully supervised. [44] pro-

poses a framework to handle all these types of annotations.

In this work we focus on box level annotations for se-

mantic labelling of objects. The closest related work are

thus [8, 27]. BoxSup [8] proposes a recursive training pro-

cedure, where the convnet is trained under supervision of

segment object proposals and the updated network in turn

improves the segments used for training. WSSL [27] pro-

poses an expectation-maximisation algorithm with a bias to

enable the network to estimate the foreground regions. We

compare with these works in the result sections. Since all

implementations use slightly different networks and train-

ing procedures, care should be taken during comparison.

Both [8] and [27] propose new ways to train convnets under

weak supervision. In contrast, in this work we show that

one can reach better results without modifying the training

procedure (compared to the fully supervised case) by in-

stead carefully generating input labels for training from the

bounding box annotations (Section 3).

Instance segmentation. In contrast to instance agnostic

semantic labelling that groups pixels by object class, in-

stance segmentation groups pixels by object instance and

ignores classes.

Object proposals [35, 16] that generate segments (such as

[34, 21]) can be used for instance segmentation. Similarly,

given a bounding box (e.g. selected by a detector), GrabCut

[36] variants can be used to obtain an instance segmentation

(e.g. [22, 7, 41, 40, 47]).

To enable end-to-end training of detection and segmentation

systems, it has recently been proposed to train convnets for

the task of instance segmentation [14, 33]. In this work we

explore weakly supervised training of an instance segment-

ation convnet. We use DeepMask [33] as a reference imple-

mentation for this task. In addition we re-purpose DeepLab-

v2 network [6], originally designed for semantic segmenta-

tion, for the instance segmentation task.

3. From boxes to semantic labels

The goal of this work is to provide high quality semantic

labelling starting from object bounding box annotations.

We design our approach aiming to exploit the available in-

formation at its best. There are two sources of information:

the annotated boxes and priors about the objects. We integ-

rate these in the following cues:

C1 Background. Since the bounding boxes are expected

to be exhaustive, any pixel not covered by a box is labelled

as background.

C2 Object extent. The box annotations bound the extent

of each instance. Assuming a prior on the objects shapes

(e.g. oval-shaped objects are more likely than thin bar or

full rectangular objects), the box also gives information on

the expected object area. We employ this size information

during training.

C3 Objectness. Other than extent and area, there are addi-

tional object priors at hand. Two priors typically used are

spatial continuity and having a contrasting boundary with

the background. In general we can harness priors about

object shape by using segment proposal techniques [35],

which are designed to enumerate and rank plausible object

shapes in an area of the image.

3.1. Box baselines

We first describe a naive baseline that serves as start-

ing point for our exploration. Given an annotated bounding

box and its class label, we label all pixels inside the box

with such given class. If two boxes overlap, we assume the

smaller one is in front. Any pixel not covered by boxes is

labelled as background.

Figure 2 left side and Figure 3c show such example an-

notations. We use these labels to train a segmentation net-

work with the standard training procedure. We employ the

DeepLabv1 approach from [5] (details in Section 4.1).

Recursive training. We observe that when applying the

resulting model over the training set, the network outputs

capture the object shape significantly better than just boxes

(see Figure 2). This inspires us to follow a recursive train-

ing procedure, where these new labels are fed in as ground

truth for a second training round. We name this recursive

training approach Naive.
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Example Output after After After Ground

input rectangles 1 training round 5 rounds 10 rounds truth

Figure 2: Example results of using only rectangle segments and recursive training (using convnet predictions as supervision

for the next round), see Section 3.1.

The recursive training is enhanced by de-noising the con-

vnet outputs using extra information from the annotated

boxes and object priors. Between each round we improve

the labels with three post-processing stages:

1. Any pixel outside the box annotations is reset to back-

ground label (cue C1).

2. If the area of a segment is too small compared to its

corresponding bounding box (e.g. IoU< 50%), the

box area is reset to its initial label (fed in the first

round). This enforces a minimal area (cue C2).

3. As it is common practice among semantic labelling

methods, we filter the output of the network to better

respect the object boundaries. (We use DenseCRF [20]

with the DeepLabv1 parameters [5]). In our weakly su-

pervised scenario, boundary-aware filtering is particu-

larly useful to improve objects delineation (cue C3).

The recursion and these three post-processing stages are

crucial to reach good performance. We name this recurs-

ive training approach Box, and show an example result in

Figure 2.

Ignore regions. We also consider a second variant Boxi

that, instead of using filled rectangles as initial labels, we

fill in the 20% inner region, and leave the remaining inner

area of the bounding box as ignore regions. See Figure 3d.

Following cues C2 and C3 (shape and spatial continuity pri-

ors), the 20% inner box region should have higher chances

of overlapping with the corresponding object, reducing the

noise in the generated input labels. The intuition is that the

convnet training might benefit from trading-off lower recall

(more ignore pixels) for higher precision (more pixels are

correctly labelled). Starting from this initial input, we use

the same recursive training procedure as for Box.

Despite the simplicity of the approach, as we will see in

the experimental section 4, Box / Boxi is already competit-

ive with the current state of the art.

However, using rectangular shapes as training labels is

clearly suboptimal. Therefore, in the next section, we pro-

pose an approach that obtains better results while avoiding

recursive training.

3.2. Box­driven segments

The box baselines are purposely simple. A next step in

complexity consists in utilising the box annotations to gen-

erate an initial guess of the object segments. We think of

this as “old school meets new school”: we use the noisy out-

puts of classic computer vision methods, box-driven figure-

ground segmentation [36] and object proposal [35] tech-

niques, to feed the training of a convnet. Although the out-

put object segments are noisy, they are more precise than

simple rectangles, and thus provide improved results. A

single training round is enough to reach good quality.

3.2.1 GrabCut baselines

GrabCut [36] is the established technique to estimate an ob-

ject segment from its bounding box. We propose to use

a modified version of GrabCut, which we call GrabCut+,

where HED boundaries [43] are used as pairwise term in-

stead of the typical RGB colour difference. (The HED

boundary detector is trained on the generic boundaries of

BSDS500 [1]). We considered other GrabCut variants, such

as [7, 40]; however, the proposed GrabCut+ gives higher

quality segments (see supplementary material).

Similar to Box
i, we also consider a GrabCut+i variant,

which trades off recall for higher precision. For each

annotated box we generate multiple (∼ 150) perturbed

GrabCut+ outputs. If 70% of the segments mark the pixel

as foreground, the pixel is set to the box object class. If less

than 20% of the segments mark the pixels as foreground, the

pixel is set as background, otherwise it is marked as ignore.

The perturbed outputs are generated by jittering the box co-

ordinates (±5%) as well as the size of the outer background

region considered by GrabCut (from 10% to 60%). An ex-

ample result of GrabCut+i can be seen in Figure 3g.

3.2.2 Adding objectness

With our final approach we attempt to better incorporate

the object shape priors by using segment proposals [35].

Segment proposals techniques are designed to generate a

soup of likely object segmentations, incorporating as many

“objectness” priors as useful (cue C3).
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We use the state of the art proposals from MCG [34]. As

final stage the MCG algorithm includes a ranking based on

a decision forest trained over the Pascal VOC 2012 dataset.

We do not use this last ranking stage, but instead use all the

(unranked) generated segments. Given a box annotation, we

pick the highest overlapping proposal as a corresponding

segment.

Building upon the insights from the baselines in Section

3.1 and 3.2, we use the MCG segment proposals to supple-

ment GrabCut+. Inside the annotated boxes, we mark as

foreground pixels where both MCG and GrabCut+ agree;

the remaining ones are marked as ignore. We denote this

approach as MCG ∩ GrabCut+ or M ∩ G+ for short.

Because MCG and GrabCut+provide complementary

information, we can think of M ∩ G+ as an improved ver-

sion of GrabCut+i providing a different trade-off between

precision and recall on the generated labels (see Figure 3i).

The BoxSup method [8] also uses MCG object proposals

during training; however, there are important differences.

They modify the training procedure so as to denoise inter-

mediate outputs by randomly selecting high overlap propos-

als. In comparison, our approach keeps the training pro-

cedure unmodified and simply generates input labels. Our

approach also uses ignore regions, while BoxSup does not

explore this dimension. Finally, BoxSup uses more epochs

for training than our approach.

Section 4 shows results for the semantic labelling task,

compares different methods and different supervision re-

gimes. In Section 5 we show that the proposed approach

is also suitable for the instance segmentation task.

4. Semantic labelling results

Our approach is equally suitable (and effective) for

weakly supervised instance segmentation as well as for se-

mantic labelling. However, only the latter has directly com-

parable related work. We thus focus our experimental com-

parison efforts on the semantic labelling task. Results for

instance segmentation are presented in Section 6.

Section 4.1 discusses the experimental setup, evaluation,

and implementation details for semantic labelling. Section

4.2 presents our main results, contrasting the methods from

Section 3 with the current state of the art. Section 4.3 fur-

ther expands these results with a more detailed analysis,

and presents results when using more supervision (semi-

supervised case).

4.1. Experimental setup

Datasets. We evaluate the proposed methods on the Pascal

VOC12 segmentation benchmark [9]. The dataset consists

of 20 foreground object classes and one background class.

The segmentation part of the VOC12 dataset contains 1 464

training, 1 449 validation, and 1 456 test images. Following

previous work [5, 8], we extend the training set with the an-

notations provided by [12], resulting in an augmented set of

10 582 training images.

In some of our experiments, we use additional training im-

ages from the COCO [25] dataset. We only consider im-

ages that contain any of the 20 Pascal classes and (follow-

ing [48]) only objects with a bounding box area larger than

200 pixels. After this filtering, 99 310 images remain (from

training and validation sets), which are added to our training

set. When using COCO data, we first pre-train on COCO

and then fine-tune over the Pascal VOC12 training set.

All of the COCO and Pascal training images come with se-

mantic labelling annotations (for fully supervised case) and

bounding box annotations (for weakly supervised case).

Evaluation. We use the “comp6” evaluation protocol. The

performance is measured in terms of pixel intersection-

over-union averaged across 21 classes (mIoU). Most of our

results are shown on the validation set, which we use to

guide our design choices. Final results are reported on the

test set (via the evaluation server) and compared with other

state-of-the-art methods.

Implementation details. For all our experiments we use

the DeepLab-LargeFOV network, using the same train and

test parameters as [5]. The model is initialized from a

VGG16 network pre-trained on ImageNet [39]. We use a

mini-batch of 30 images for SGD and initial learning rate of

0.001, which is divided by 10 after a 2k/20k iterations (for

Pascal/COCO). At test time, we apply DenseCRF [20]. Our

network and post-processing are comparable to the ones

used in [8, 27].

Note that multiple strategies have been considered to

boost test time results, such as multi-resolution or model

ensembles [5, 18]. Here we keep the approach simple and

fixed. In all our experiments we use a fixed training and

test time procedure. Across experiments we only change

the input training data that the networks gets to see.

For our best variant M ∩ G+ the data generation step for

VOC12 takes ~6h, running in parallel (12 cores) on a GPU

machine. Our total training time is ~16h, including Dee-

pLab training (~10h). In comparison BoxSup [8] training

takes ~27h.

4.2. Main results

Box results. Figure 4 presents the results for the recurs-

ive training of the box baselines from Section 3.1. We see

that the Naive scheme, a recursive training from rectangles

disregarding post-processing stages, leads to poor qual-

ity. However, by using the suggested three post-processing

stages, the Box baseline obtains a significant gain, getting

tantalisingly close to the best reported results on the task [8].

Details of the contribution of each post-processing stage are

presented in the supplementary material. Adding ignore re-

gions inside the rectangles (Box → Box
i) provides a clear
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(a) Input image (b) Ground truth (c) Box (d) Boxi

(e) GrabCut (f) GrabCut+ (g) GrabCut+i (h) MCG (i) M ∩ G+

Figure 3: Example of the different segmentations obtained starting from a bounding box annotation. Grey/pink/magenta

indicate different object classes, white is background, and ignore regions are beige. M ∩ G+ denotes MCG ∩ GrabCut+.
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Figure 4: Segmentation quality versus training round for

different approaches, see also Tables 1 and 2. Pas-

cal VOC12 validation set results. “Previous best (rect-

angles/segments)” corresponds to WSSLR/BoxSupMCG in

Table 2.

gain and leads by itself to state of the art results.

Figure 4 also shows the result of using longer training for

fully supervised case. When using ground truth semantic

segmentation annotations, one training round is enough to

achieve good performance; longer training brings marginal

improvement. As discussed in Section 3.1, reaching good

quality for Box/Boxi requires multiple training rounds in-

stead, and performance becomes stable from round 5 on-

Method val. mIoU

-
Fast-RCNN 44.3

GT Boxes 62.2

Weakly

supervised

Box 61.2

Box
i 62.7

MCG 62.6

GrabCut+ 63.4

GrabCut+i 64.3

M ∩ G+ 65.7

Fully supervised DeepLab
ours

[5] 69.1

Table 1: Weakly supervised semantic labelling results for

our baselines. Trained using Pascal VOC12 bounding boxes

alone, validation set results. DeepLab
ours

indicates our

fully supervised result.

wards. Instead, GrabCut+/M ∩ G+ do not benefit from ad-

ditional training rounds.

Box-driven segment results. Table 1 evaluates res-

ults on the Pascal VOC12 validation set. It in-

dicates the Box/Boxi results after 10 rounds, and

MCG/GrabCut+/GrabCut+i/M∩G+ results after one round.

“Fast-RCNN” is the result using detections [10] to generate

semantic labels (lower-bound), “GT Boxes” considers the

box annotations as labels, and DeepLab
ours

indicates our

fully supervised segmentation network result obtained with

a training length equivalent to three training rounds (upper-

bound for our results). We see in the results that using ig-

nore regions systematically helps (trading-off recall for pre-

cision), and that M∩G+ provides better results than MCG and
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GrabCut+ alone.

Table 2 indicates the box-driven segment results after 1

training round and shows comparison with other state of

the art methods, trained from boxes only using either Pascal

VOC12, or VOC12+COCO data. BoxSupR and WSSLR

both feed the network with rectangle segments (comparable

to Box
i), while WSSLS and BoxSupMCG exploit arbitrary

shaped segments (comparable to M ∩ G+). Although our

network and post-processing is comparable to the ones in

[8, 27], there are differences in the exact training procedure

and parameters (details in supplementary material).

Overall, our results indicate that - without modifying the

training procedure - M ∩ G+ is able to improve over previ-

ously reported results and reach 95% of the fully-supervised

training quality. By training with COCO data [25] before

fine-tuning for Pascal VOC12, we see that with enough ad-

ditional bounding boxes we can match the full supervision

from Pascal VOC 12 (68.9 versus 69.1). This shows that the

labelling effort could be significantly reduced by replacing

segmentation masks with bounding box annotations.

4.3. Additional results

Semi-supervised case. Table 2 compares results in the

semi-supervised modes considered by [8, 27], where some

of the images have full supervision, and some have only

bounding box supervision. Training with 10% of Pascal

VOC12 semantic labelling annotations does not bring much

gain to the performance (65.7 versus 65.8), this hints at the

high quality of the generated M ∩ G+ input data.

By using ground-truth annotations on Pascal plus bound-

ing box annotations on COCO, we observe 2.5 points gain

(69.1→ 71.6 , see Table 2). This suggests that the over-

all performance could be further improved by using extra

training data with bounding box annotations.

Boundaries supervision. Our results from MCG,

GrabCut+, and M ∩ G+ all indirectly include inform-

ation from the BSDS500 dataset [1] via the HED boundary

detector [43]. These results are fully comparable to

BoxSup-MCG [8], to which we see a clear improvement.

Nonetheless one would like to know how much using dense

boundary annotations from BSDS500 contributes to the

results. We use the weakly supervised boundary detection

technique from [17] to learn boundaries directly from the

Pascal VOC12 box annotations. Training M ∩ G+ using

weakly supervised HED boundaries results in 1 point loss

compared to using the BSDS500 (64.8 versus 65.7 mIoU

on Pascal VOC12 validation set). We see then that although

the additional supervision does bring some help, it has a

minor effect and our results are still rank at the top even

when we use only Pascal VOC12 + ImageNet pre-training.

Different convnet results. For comparison purposes with

[8, 27] we used DeepLabv1 with a VGG-16 network in our

experiments. To show that our approach also generalizes

Super-

vision

#GT

images

#Weak

images
Method

val. set

mIoU

test set

mIoU FS%

VOC12 (V)

Weak - V10k

Bearman et al. [3] 45.1 - -

BoxSupR [8] 52.3 - -

WSSLR[27] 52.5 54.2 76.9

WSSLS[27] 60.6 62.2 88.2

BoxSupMCG[8] 62.0 64.6 91.6

Box
i 62.7 63.5 90.0

M ∩ G+ 65.7 67.5 95.7

Semi V1.4k V9k

WSSLR[27] 62.1 - -

BoxSupMCG[8] 63.5 66.2 93.9

WSSLS[27] 65.1 66.6 94.5

M ∩ G+ 65.8 66.9 94.9

Full V10k -

BoxSup [8] 63.8 - -

WSSL [27] 67.6 70.3 99.7

DeepLab
ours

[5] 69.1 70.5 100

VOC12 + COCO (V+C)

Weak -
V+C

110k

Box
i 65.3 66.7 91.1

M ∩ G+ 68.9 69.9 95.5

Semi V10k
C123k BoxSupMCG[8] 68.2 71.0 97.0

C100k M ∩ G+ 71.6 72.8 99.5

Full
V+C133k

-

BoxSup [8] 68.1 - -

WSSL [27] 71.7 73 99.7

V+C110k DeepLab
ours

[5] 72.3 73.2 100

Table 2: Semantic labelling results for validation and

test set; under different training regimes with VOC12

(V) and COCO data (C). Underline indicates full supervi-

sion baselines, and bold are our best weakly- and semi-

supervised results. FS%: performance relative to the best

fully supervised model (DeepLab
ours

). Discussion in Sec-

tions 4.2 and 4.3.

across different convnets, we also trained DeepLabv2 with

a ResNet101 network [6]. Table 3 presents the results.

Similar to the case with VGG-16, our weakly supervised

approach M ∩ G+ reaches 93%/95% of the fully supervised

case when training with VOC12/VOC12+COCO, and the

weakly supervised results with COCO data reach similar

quality to full supervision with VOC12 only.

5. From boxes to instance segmentation

Complementing the experiments of the previous sec-

tions, we also explore a second task: weakly supervised in-

stance segmentation. To the best of our knowledge, these

are the first reported experiments on this task.

As object detection moves forward, there is a need to

provide richer output than a simple bounding box around

objects. Recently [14, 33, 31] explored training convnets

to output a foreground versus background segmentation of
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Image Ground
truth Box Box

i
M ∩ G+

Semi
supervised
M ∩ G+

Fully
supervised

Figure 5: Qualitative results on VOC12. Visually, the results from our weakly supervised method M ∩ G+ are hardly distin-

guishable from the fully supervised ones.

Supervision Method mIoU FS%

VOC12

Weak M ∩ G+ 69.4 93.2

Full DeepLabv2-ResNet101 [6] 74.5 100

VOC12 + COCO

Weak M ∩ G+ 74.2 95.5

Full DeepLabv2-ResNet101 [6] 77.7 100

Table 3: DeepLabv2-ResNet101 network semantic la-

belling results on VOC12 validation set, using VOC12 or

VOC12+COCO training data. FS%: performance relative

to the full supervision. Discussion in Section 4.3.

an instance inside a given bounding box. Such networks

are trained using pixel-wise annotations that distinguish

between instances. These annotations are more detailed and

expensive than semantic labelling, and thus there is interest

in weakly supervised training.

The segments used for training, as discussed in Section

3.2, are generated starting from individual object bounding

boxes. Each segment represents a different object instance

and thus can be used directly to train an instance segmenta-

tion convnet. For each annotated bounding box, we gener-

ate a foreground versus background segmentation using the

GrabCut+ method (Section 3.2), and train a convnet to re-

gress from the image and bounding box information to the

instance segment.

6. Instance segmentation results

Experimental setup. We choose a purposely simple in-

stance segmentation pipeline, based on the “hyper-columns

system 2” architecture [14]. We use Fast-RCNN [10] detec-

tions (post-NMS) with their class score, and for each detec-

tion estimate an associated foreground segment. We estim-

ate the foreground using either some baseline method (e.g.

GrabCut) or using convnets trained for the task [33, 6].

For our experiments we use a re-implementation of

the DeepMask [33] architecture, and additionally we re-

purpose a DeepLabv2 VGG-16 network [6] for the instance

segmentation task, which we name DeepLabBOX.

Inspired by [45, 4], we modify DeepLab to accept four

input channels: the input image RGB channels, plus a bin-

ary map with a bounding box of the object instance to seg-

ment. We train the network DeepLabBOX to output the

segmentation mask of the object corresponding to the input

bounding box. The additional input channel guides the net-

work so as to segment only the instance of interest instead of

all objects in the scene. The input box rectangle can also be

seen as an initial guess of the desired output. We train using

ground truth bounding boxes, and at test time Fast-RCNN

detection boxes are used.

We train DeepMask and DeepLabBOX using
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Supervision Method mAPr

0.5 mAPr

0.75 ABO

-

Rectangle 21.6 1.8 38.5

Ellipse 29.5 3.9 41.7

MCG 28.3 5.9 44.7

GrabCut 38.5 13.9 45.8

GrabCut+ 41.1 17.8 46.4

VOC12

Weak
DeepMask 39.4 8.1 45.8

DeepLabBOX 44.8 16.3 49.1

Full
DeepMask 41.7 9.7 47.1

DeepLabBOX 47.5 20.2 51.1

VOC12 + COCO

Weak
DeepMask 42.9 11.5 48.8

DeepLabBOX 46.4 18.5 51.4

Full
DeepMask 44.7 13.1 49.7

DeepLabBOX 49.4 23.7 53.1

Table 4: Instance segmentation results on VOC12 valida-

tion set. Underline indicates the full supervision baseline,

and bold are our best weak supervision results. Weakly su-

pervised DeepMask and DeepLabBOX reach comparable

results to full supervision. See Section 6 for details.

GrabCut+ results either over Pascal VOC12 or

VOC12+COCO data (1 training round, no recursion

like in Section 3.1), and test on the VOC12 validation set,

the same set of images used in Section 4. The augmented

annotation from [12] provides per-instance segments for

VOC12. We do not use CRF post-processing for neither of

the networks.

Following instance segmentation literature [13, 14] we

report in Table 4 mAPr at IoU threshold 0.5 and 0.75.

mAPr is similar to the tradional VOC12 evaluation, but

using IoU between segments instead of between boxes.

Since we have a fixed set of windows, we can also report

the average best overlap (ABO) [35] metric to give a

different perspective on the results.

Baselines. We consider five training-free baselines: simply

filling in the detection rectangles (boxes) with foreground

labels, fitting an ellipse inside the box, using the MCG pro-

posal with best bounding box IoU, and using GrabCut and

GrabCut+ (see Section 3.2), initialized from the detection

box.

Analysis. The results table 4 follows the same trend as

the semantic labelling results in Section 4. GrabCut+

provides the best results among the baselines considered

and shows comparable performance to DeepMask, while

our proposed DeepLabBOX outperforms both techniques.

We see that our weakly supervised approach reaches ∼ 95%

of the quality of fully-supervised case (both on mAPr

0.5

and ABO metrics) using two different convnets, DeepMask

and DeepLabBOX, both when training with VOC12 or

Figure 6: Example result from our weakly supervised

DeepMask (VOC12+COCO) model.

VOC12+COCO.

Examples of the instance segmentation results from

weakly supervised DeepMask (VOC12+COCO) are shown

in Figure 6. Additional example results are presented in the

supplementary material.

7. Conclusion

The series of experiments presented in this paper

provides new insights on how to train pixel-labelling con-

vnets from bounding box annotations only. We showed

that when carefully employing the available cues, recurs-

ive training using only rectangles as input can be surpris-

ingly effective (Boxi). Even more, when using box-driven

segmentation techniques and doing a good balance between

accuracy and recall in the noisy training segments, we can

reach state of the art performance in a single round of train-

ing, without modifying the segmentation network training

procedure (M∩G+). Our results improve over previously re-

ported ones on the semantic labelling task and reach ∼95%

of the quality of the same network trained on the ground

truth segmentation annotations (over the same data). By

employing extra training data with bounding box annota-

tions from COCO we are able to match the full supervision

results. We also report the first results for weakly super-

vised instance segmentation, where we also reach ∼95% of

the quality of the fully-supervised training.

Our current approach exploits existing box-driven seg-

mentation techniques, treating each annotated box indi-

vidually. In future work we would like to explore co-

segmentation ideas (treating the set of annotations as a

whole), and consider even weaker forms of supervision.

Generated data and pre-trained models at: http:

//www.mpi-inf.mpg.de/box-to-segments.

883

http://www.mpi-inf.mpg.de/box-to-segments
http://www.mpi-inf.mpg.de/box-to-segments


References

[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation.

PAMI, 2011. 3, 6

[2] J. Barron and B. Poole. The fast bilateral solver. arXiv

preprint arXiv:1511.03296, 2015. 2

[3] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-

Fei. What’s the point: Semantic segmentation with

point supervision. arXiv preprint arXiv:1506.02106,

2015. 2, 6

[4] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik.

Human pose estimation with iterative error feedback.

In CVPR, 2016. 7

[5] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. Yuille. Semantic image segmentation with deep

convolutional nets and fully connected crfs. In ICLR,

2015. 2, 3, 4, 5, 6

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,

and A. L. Yuille. Deeplab: Semantic image segmenta-

tion with deep convolutional nets, atrous convolution,

and fully connected crfs. arXiv:1606.00915, 2016. 2,

6, 7

[7] M. Cheng, V. Prisacariu, S. Zheng, P. Torr, and

C. Rother. Densecut: Densely connected crfs for re-

altime grabcut. Computer Graphics Forum, 2015. 2,

3

[8] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bound-

ing boxes to supervise convolutional networks for se-

mantic segmentation. In ICCV, 2015. 2, 4, 6

[9] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The pascal

visual object classes challenge: A retrospective. IJCV,

2015. 1, 4

[10] R. Girshick. Fast R-CNN. In ICCV, 2015. 5, 7

[11] S. Gould, R. Fulton, and D. Koller. Decomposing a

scene into geometric and semantically consistent re-

gions. In ICCV, 2009. 2

[12] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and

J. Malik. Semantic contours from inverse detectors.

In ICCV, 2011. 4, 8

[13] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik.

Simultaneous detection and segmentation. In ECCV,

2014. 8

[14] B. Hariharan, P. Arbeláez, R. Girshick, and J. Ma-

lik. Hypercolumns for object segmentation and fine-

grained localization. In CVPR, 2015. 2, 6, 7, 8

[15] S. Hong, H. Noh, and B. Han. Decoupled deep neural

network for semi-supervised semantic segmentation.

In NIPS, 2015. 2

[16] J. Hosang, R. Benenson, P. Dollár, and B. Schiele.

What makes for effective detection proposals? PAMI,

2015. 2

[17] A. Khoreva, R. Benenson, M. Omran, M. Hein, and

B. Schiele. Weakly supervised object boundaries. In

CVPR, 2016. 6

[18] I. Kokkinos. Pushing the boundaries of boundary de-

tection using deep learning. In ICLR, 2016. 2, 4

[19] V. Kolmogorov and R. Zabih. What energy functions

can be minimized via graph cuts?. PAMI, 2004. 2

[20] P. Krähenbühl and V. Koltun. Efficient inference in

fully connected crfs with gaussian edge potentials. In

NIPS. 2011. 2, 3, 4

[21] P. Krähenbühl and V. Koltun. Learning to propose ob-

jects. In CVPR, 2015. 2

[22] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image

segmentation with a bounding box prior. In ICCV,

2009. 2

[23] D. Lin, J. Dai, J. Jia, K. He, and J. Sun. Scribble-

sup: Scribble-supervised convolutional networks for

semantic segmentation. In CVPR, 2016. 2

[24] G. Lin, C. Shen, A. van dan Hengel, and I. Reid. Effi-

cient piecewise training of deep structured models for

semantic segmentation. In CVPR, 2016. 2

[25] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,

D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft

coco: Common objects in context. In ECCV, 2014. 1,

4, 6

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-

tional networks for semantic segmentation. In CVPR,

2015. 2

[27] G. Papandreou, L. Chen, K. Murphy, , and A. L.

Yuille. Weakly- and semi-supervised learning of a

dcnn for semantic image segmentation. In ICCV,

2015. 2, 4, 6

[28] D. Pathak, P. Kraehenbuehl, and T. Darrell. Con-

strained convolutional neural networks for weakly su-

pervised segmentation. In ICCV, 2015. 2

[29] D. Pathak, E. Shelhamer, J. Long, and T. Darrell. Fully

convolutional multi-class multiple instance learning.

In ICLR workshop, 2015. 2

[30] P. Pinheiro and R. Collobert. From image-level to

pixel-level labeling with convolutional network. In

CVPR, 2015. 2

[31] P. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár.

Learning to refine object segments. In ECCV, 2016.

6

[32] P. O. Pinheiro and R. Collobert. Recurrent convolu-

tional neural networks for scene labeling. In ICML,

2014. 2

884



[33] P. O. Pinheiro, R. Collobert, and P. Dollár. Learning

to segment object candidates. In NIPS, 2015. 2, 6, 7

[34] J. Pont-Tuset, P. Arbeláez, J. Barron, F. Marques, and

J. Malik. Multiscale combinatorial grouping for image

segmentation and object proposal generation. arXiv

preprint arXiv:1503.00848, 2015. 2, 4

[35] J. Pont-Tuset and L. V. Gool. Boosting object propos-

als: From pascal to coco. In ICCV, 2015. 2, 3, 8

[36] C. Rother, V. Kolmogorov, and A. Blake. Grabcut:

Interactive foreground extraction using iterated graph

cuts. In ACM Trans. Graphics, 2004. 2, 3

[37] O. Russakovsky, J. Deng, H. Su, J. Krause,

S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet

Large Scale Visual Recognition Challenge. IJCV,

2015. 1

[38] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Tex-

tonboost for image understanding: Multi-class object

recognition and segmentation by jointly modeling tex-

ture, layout, and context. IJCV, 2009. 2

[39] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. In

ICLR, 2015. 4

[40] M. Tang, I. Ben Ayed, D. Marin, and Y. Boykov.

Secrets of grabcut and kernel k-means. In ICCV, 2015.

2, 3

[41] T. Taniai, Y. Matsushita, and T. Naemura. Superdif-

ferential cuts for binary energies. In CVPR, 2015. 2

[42] Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng,

Y. Zhao, and S. Yan. Stc: A simple to complex frame-

work for weakly-supervised semantic segmentation.

arXiv preprint arXiv:1509.03150, 2015. 2

[43] S. Xie and Z. Tu. Holistically-nested edge detection.

In ICCV, 2015. 3, 6

[44] J. Xu, A. Schwing, and R. Urtasun. Learning to seg-

ment under various forms of weak supervision. In

CVPR, 2015. 2

[45] N. Xu, B. Price, S. Cohen, J. Yang, and T. S. Huang.

Deep interactive object selection. In CVPR, 2016. 7

[46] F. Yu and V. Koltun. Multi-scale context aggregation

by dilated convolutions. In ICLR, 2016. 2

[47] H. Yu, Y. Zhou, H. Qian, M. Xian, Y. Lin, D. Guo,

K. Zheng, K. Abdelfatah, and S. Wang. Loosecut:

Interactive image segmentation with loosely bounded

boxes. arXiv preprint arXiv:1507.03060, 2015. 2

[48] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vin-

eet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional

random fields as recurrent neural networks. In ICCV,

2015. 2, 4

885


