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Abstract

We propose a novel, practical solution for high qual-

ity reconstruction of axially-symmetric transparent objects.

While a special case, such transparent objects are ubiq-

uitous in the real world. Common examples of these are

glasses, tumblers, goblets, carafes, etc., that can have very

unique and visually appealing forms making their recon-

struction interesting for vision and graphics applications.

Our acquisition setup involves imaging such objects from

a single viewpoint while illuminating them from directly

behind with a few patterns emitted from an LCD panel.

Our reconstruction step is then based on optimization of

the object’s geometry and its refractive index to minimize

the difference between observed and simulated transmis-

sion/refraction of rays passing through the object. We ex-

ploit the object’s axial symmetry as a strong shape prior

which allows us to achieve robust reconstruction from a sin-

gle viewpoint using a simple, commodity acquisition setup.

We demonstrate high quality reconstruction of several com-

mon rotationally symmetric as well as more complex n-fold

symmetric transparent objects with our approach.

1. Introduction

Significant advances have been achieved in vision and

graphics in the area of 3D scanning of objects including

non-lambertian and specular surfaces. However, accurate

modeling and reconstruction of transparent objects has con-

tinued to be a challenging problem due to the transmissive

and refractive properties of such objects. Generally, the

problem involves the estimation of optical properties such

as index of refraction as well as shape estimation (multiple

surfaces) of a target object. Previous work in vision and

graphics has tried to tackle the more general problem of 3D

reconstruction of transparent objects, achieving results with

limited quality in practice with relatively simple optical se-

tups [11], or requiring more complicated optical setups for

volumetric reconstruction with multiview acquisition [12]

or immersion in various types of liquids to simplify the im-

Figure 1: Examples of acquired axially-symmetric transparent

objects rendered lit with two frontal area light sources.

age formation model [20, 5].

In this work, we focus on high quality reconstruction for

the special case of axially-symmetric transparent objects.

We note that such transparent objects are ubiquitous in the

real world with common examples being glasses, goblets,

tumblers, carafes, etc. (see Fig. 1). Such everyday objects

can have very unique and visually appealing forms which

makes their reconstruction interesting for various vision and

graphics applications. We propose a practical approach to-

wards such reconstruction using a very simple setup with

commodity components involving a camera and an LCD

panel and exploit the inherent (vertical) axial-symmetry of

the objects to acquire data from just a single viewpoint

for efficient acquisition. Our reconstruction method takes

an analysis-by-synthesis approach where we optimize the

shape and refractive index of the target object by compar-

ing the acquired and simulated (using ray-tracing) transmis-

sion/refraction of patterns emitted by the LCD panel in the

background. We demonstrate high quality reconstruction

for two classes of axially-symmetric transparent objects -

those exhibiting complete rotational symmetry, and more

complex objects exhibiting n-fold axial-symmetry - using

our practical acquisition approach. Unlike works that tar-
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get a volumetric reconstruction, we target a surface (mesh

based) reconstruction which has the advantage of achiev-

ing reconstruction at near camera resolution (∼2K) without

being memory limited for such high resolution.

The rest of the paper is organized as follows: we first cover

some relevant previous work in Section 2. We then describe

our practical acquisition setup and procedure in Section 3,

before describing our analysis-by-synthesis approach for re-

constructing rotationally symmetric transparent objects in

Section 4. We then present the extension of the approach

for more complex objects exhibiting n-fold axial symmetry

in Section 5. Finally, we present additional reconstruction

results and analysis of our method in Section 6.

2. Related Work

While there exists a vast literature on general 3D scanning,

we will restrict the discussion here to acquisition and mod-

eling of transparent objects. A recent survey on the topic

can be found in [7]. We review some closely related works

in the following:

Our acquisition setup is inspired by environment mat-

ting [24]. However, compared to an image based repre-

sentation obtained with environment matting, we estimate

a full 3D representation of a transparent object including

shape and refractive index. Matusik et al. [14] proposed a

data-driven technique for acquisition and rendering of trans-

parent objects. Their approach is based on acquiring an

approximate geometry using shape-from-silhouette recon-

struction, coupled with view dependent reflectance field ac-

quired using multiple cameras and light sources. While ef-

fective in creating a realistic rendering result, the approach

is not suitable for simulating accurate light transport with

the acquired model.

Model based reconstruction has previously been explored

for transparent objects with simple known parametric

shapes [2]. Closer to our approach, shapes of transparent

objects have been estimated using direct ray measurements

in [11, 4, 17] or time-of-flight distortion [18]. These meth-

ods however requires for each ray to cross no more than

two interfaces, restricting its application to solid transparent

objects that satisfy this condition. In comparison, our ap-

proach allows reconstruction of hollow axially-symmetric

transparent objects with up to four interfaces.

Researchers have also investigated volumetric reconstruc-

tion of transparent objects. Here, immersion of the object in

a liquid with matching index of refraction has been explored

to prevent refractive bending of rays, enabling tomographic

reconstruction from transmissive imaging [20, 5]. Addition-

ally, immersion in a fluorescent liquid has been proposed for

estimating the outer surface of a transparent object [5]. Flu-

orescent dye has also been employed for extinction based

tomographic reconstruction of liquid volumes [6]. While

very general solutions, these approaches may not always be

desirable due to requiring immersion in various liquids.

Volumetric reconstruction of refractive transparent objects

is a challenging inverse problem, known from the optics lit-

erature [21]. In particular, there were earlier attempts to

recover axially-symmetric objects [13], but the proposed

solutions were limited by complicated optical setup which

are not easy to scale for larger objects and the methods

proved to work in practice only for low levels of refrac-

tion inside the object. Recently, Ma et al. [12] have pro-

posed a more practical setup for volumetric reconstruction

of transparent objects using refractive tomography based

on transport of intensity formulation. Their measurement

approach involves a collimated beam source transmitting

through a transparent object while the resulting refractions

are imaged on screens placed at two different focal depths

to estimate entry and exit ray correspondence for tomogra-

phy. The object then needs to be rotated to observe such

projections from multiple viewpoints for volumetric recon-

struction. In comparison, our approach just requires acqui-

sition from a single viewpoint using a very simple optical

setup and exploits the object’s inherent axial-symmetry as a

strong shape prior for reconstruction. We also note that in

contrast to tomographic approaches which tend to smooth

out sharp features, our method enables high resolution re-

construction while preserving high frequencies in the recon-

structed shape.

Also related is background oriented schlieren imaging

which has also been applied to the problem of tomorgraphic

reconstruction of gas flows and liquids [1]. Wetzstein et

al. [23] have proposed a single image acquisition approach

for reconstructing thin transparent surfaces using distor-

tion of light field background illumination. The approach

was extended to background illumination with light field

probes as a way of imaging refractions in a transparent vol-

ume [22, 9]. These above approaches are however suitable

for volumes with small magnitudes of refraction.

Also related to our method is the work of Miyazaki and

Ikeuchi [15] who proposed an inverse raytracing framework

(with polarization imaging) for reconstructing the outer sur-

face of transparent objects from surface reflection. Fi-

nally, Morris and Kutulakos [16] have proposed scatter trace

photography as solution for reconstructing the outer sur-

face of complex transparent objects with inhomogeneous

interiors. Their method works by separating the first sur-

face reflection from the complex secondary bounces inside

such objects. Our method purely operates on transmis-

sion/refraction through a clear transparent object while ig-

noring any surface reflection effects.
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3. Acquisition and Setup

Camera

LCD

Monitor 

Transparent 

Object

Figure 2: Acquisition setup consisting of a camera and an LCD

monitor.

We employ a very simple “environment matting” like acqui-

sition setup which consists of the target transparent object

placed between a camera and an LCD panel (see Fig. 2).

We employ a Point Grey Grasshopper3 (GS3-U3-41C6C-

C 4.1MP CMOS) machine vision camera (2K resolution),

and an LG 27” LCD monitor (1920 × 1080 resolution) for

our experiments. We place the object close to the monitor at

about 5 cm distance in order to keep both the object and the

panel in focus during acquisition. We then emit a few light-

ing patterns on the LCD panel while observing their distor-

tion due to transmission through the object. This allows us

to estimate a ray deflection map which we later employ for

estimating the object’s shape and refractive index.

In order to obtain accurate pixel-screen correspondence

with a small set of measurements, we employ a combina-

tion of horizontal and vertical linear gradients (and their in-

verses) and a few high frequency gray codes (Fig.3, a). We

employ the linear gradients to compute approximate1 screen

coordinates for camera rays and then refine the position esti-

mate using the high frequency gray codes. We also employ

the horizontal gradients later in our pipeline for inner shape

estimation. This results in a capture sequence of 13 patterns

from a single viewpoint - one constant white screen illumi-

nation, four patterns consisting of X and Y linear gradients

and their inverses, and four patterns each of the X and Y

high frequency gray codes. Each photograph is taken with

400 ms exposure time at full 2K resolution in 16 bit pixel

depth, and the acquisition finishes in under 10 seconds. We

also perform camera calibration using Bouguet’s calibration

toolbox [3].

In the following, we explain how the acquired data is use-

ful for reconstructing axially-symmetric transparent objects

1Employing only gradients is not precise enough in practice due to any

potential optical non-linearities such as screen gamma/falloff and/or global

illumination effects.

(a) Sample photographs with gradient and gray code patterns

(b) Def. vector (c) Def. amp (d) Flip image

Figure 3: Acquired data used for computation of a deflection

map. (a) Sample photographs taken with horizontal X gradient,

and high frequency vertical and horizontal patterns respectively.

(b) Visualization of deflection vectors with R, G encoding x, y de-

flection respectively, and B encoding missing data. (c) Deflection

amplitude. (d) Flip image computed from deflection map used for

identifying solid (2-interface) vs hollow (4-interface) sections.

exhibiting complete rotational symmetry (Section 4), and

more complex n-fold axial-symmetry (Section 5).

4. Rotationally symmetric objects

Given the acquired data, our reconstruction pipeline for

completely rotationally symmetric objects proceeds as fol-

lows: we first detect the outer silhouette of the object

against the background and employ the 2D silhouette to

reconstruct the outer surface through its rotation about the

symmetry axis. We assume that the object consists of solid

or hollow sections, with 2- or 4-interfaces respectively for

ray traversal, which are detected next. The algorithm then

focuses on the estimation of the object’s refractive index as

well as inner shape estimation of any hollow sections using

an inverse rendering procedure. An overview of the recon-

struction pipeline can be seen in Fig. 4.

4.1. Outer shape and rotation axis

We first detect the outer silhouette of the object using the

two images acquired with a horizontal gradient and its in-

verse pattern on the LCD screen. The outer silhouette can
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Figure 4: Proposed pipeline for reconstructing an axially-

symmetric transparent object with solid and hollow sections.

be easily computed from the magnitude of the difference of

these two gradient images (shown in Fig. 5, a) which en-

hances the vertical edges. The next step is to estimate the

3D position and orientation of the symmetry axis. In or-

der to do this, we first find the 2D axis of symmetry on the

camera image plane. Given the 2D outer silhouette, this can

be done using line fitting. As the 2D symmetry axis is a

projection of the object’s 3D symmetry axis, we can cal-

culate 3D position of the axis using known position of the

LCD screen and the known distance from the screen to the

center of rotation of the object (pre-calibrated). The LCD

plane and the object’s rotation axis are parallel to each other

in our setup allowing us to project the axis from 2D to 3D.

Finally, using the object’s 3D axis of rotation, 2D silhou-

ette and the camera’s intrinsics, we can estimate the object’s

circular radius for each cross-section along the axis of rota-

tion. We sample the rotation axis at the resolution of the

2D silhouette and create a rotational cross-section for each

scan-line to define the outer shape.

4.2. Deflection map and flip­image

Before proceeding further with the reconstruction, we need

to segment the object into separate solid and hollow sections

with 2- and 4-interfaces respectively. The solid sections are

purely described by the outer shape of the object. However,

the hollow 4-interface sections need additional estimation

of the inner shape and thickness. In order to do this, we first

compute a ray deflection map of how the transparent ob-

ject distorts the intersection of camera rays with points on

the LCD screen due to refraction. Such deflection informa-

tion is computed from the camera-screen point correspon-

dence obtained using the gradient and gray code patterns.

To effectively capture the deflection information, the data

includes both 2D direction and magnitude (Fig. 3 b, c).

Using the above estimated deflection map and axis of sym-

metry, we compute a so called flip image (Fig. 3, d) neces-
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(b) Approx. geometry

Figure 5: Initial estimation of inner and outer geometry. An edge

enhanced image (a) is generated by subtracting a photograph under

horizontal gradient (Fig. 3 top-left) from its inverse. Initial inner

and outer geometry (b) is then estimated by processing (a).

sary for our reconstruction pipeline. The flip image marks

rays that cross over from one side of the symmetry axis to

the other during propagation between screen and camera.

Given the vertical axis of symmetry of the objects we ac-

quire, this results in marking of rays that cross over from the

left side of the axis (marked green) to the right side (marked

red) or vice versa. A flip in the color coding with respect to

the background then represents a solid section, while the

absence of flip represents a hollow section for subsequent

processing. This works well in our case due to the relatively

high refractive index of the transparent objects (1.3 − 1.6)

along with their circular cross-sections that cause the solid

sections to flip rays about the symmetry axis.

4.3. Initialization of inner shape

After segmenting the object into solid and hollow sections,

the next step is to initialize the inner shape of the object’s

hollow sections. This can be done using inner silhouette de-

tection in conjunction with the computed flip image. First,

we approximately determine the cross-sections along the

rotation axis where there is a change in the number of inter-

faces using the previously obtained flip image. Next, we ob-

tain an initial estimate of the thickness of the inner walls of

the determined hollow sections. Initializing the wall thick-

ness simply amounts to determining the inner radius of cir-

cular cross-sections orthogonal to the symmetry axis which

we determine as follows:

1. Given the outer silhouette, we once again employ the

edge enhanced image shown in Fig. 5 (a) to detect the in-

ner silhouette. This is done by detecting the inner left and

right edges along a scan line (cross-section) in the hollow

4-interface section of this enhanced image as local maxima

of horizontal intensity gradients.
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Figure 6: Ray diagrams for the unknown refractive index and

inner geometry estimation based on inverse ray tracing.

2. The thickness of a cross-section is then estimated as

the mean of the left and right wall thickness. Finally, for

smoothness of the estimated wall thickness across cross-

sections, we fit a 4-th degree polynomial curve to the es-

timated cross-section thicknesses. This is done in order to

filter out any noise in the inner silhouette detection and to

obtain a smooth profile of the inner shape (Fig. 5, b).

These steps provide us with an initial estimate of the 3D

shape of the object which we then refine using an inverse

rendering procedure that estimates the object’s refractive in-

dex and the final optimized shape.

4.4. Refractive index estimation

We take a sequential approach of first estimating the un-

known refractive index η, followed by refining the final (in-

ner) geometry. We restrict the refractive index estimation to

the solid 2-interface section of the transparent object where

the 3D shape is completely described by the outer silhou-

ette. For each ray corresponding to pixels in the ROI (seg-

mented using flip image), ray tracing is performed to com-

pute the trajectory of refraction with a chosen η as shown

in Fig. 6 (left). Then, the sum of error, ei,ref , is calcu-

lated between the computed trajectory for the chosen η and

a measured deflection map.

arg min
n

∑

i∈[x,y]

ei,ref = arg min
n

∑

i∈[x,y]

|Pi,mea − Pi,tra|

(1)

This process is iterated over a sufficiently wide range of val-

ues for η ∈ [1.0, 2.0] while searching for the value that min-

imizes error sum in Equation 1. Fig. 7 (left) shows the itera-

tions for the wineglass in Fig. 3 with an estimated η = 1.57,

which is in the range of crown and flint glass2.

2Department of Physics and Astronomy, Georgia State Univer-

sity http://hyperphysics.phy-astr.gsu.edu/hbase/

tables/indrf.html
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Figure 7: The refractive index is estimated by searching for a

value that minimizes the error between ray traced and measured

ray deflections. The error plots present the estimated η for a wine-

glass (left), and a transparent plastic goblet (right).

4.5. Refinement of inner shape

Once the refractive index is determined, the last step of the

pipeline is to refine the initial estimate of the inner shape of

the hollow sections to obtain the final estimated 3D shape

of the transparent object. The problem now reduces to esti-

mating the final unknown radius ry for each circular cross-

section given a known refractive index using inverse render-

ing (Fig. 6, right). While the solid 2-interface section was

used for estimating a single value of refractive index for the

entire object, in this case the inverse rendering error sum is

computed separately for each cross-section for estimating

the final cross-section radii. Again, the sum of minimum er-

ror ey,geo is chosen as the best estimation of unknown radii

for each cross-section of the hollow 4-interface section as

given by Equation 2.

arg min
ry

∑

y

ey,geo = arg min
ry

∑

y

|Py,mea − Py,tra| (2)

We provide the initial wall thickness previously estimated

in Section 4.3 as an initial guess to the shape optimization

procedure for efficient convergence. Figure 8 (a) shows the

initial estimate of the wall thickness in blue and the final

estimated result for the inner radii in red. Note that the sin-

gular curvature between lines 650 and 700 is the result of

a more accurate estimation for the actual shape of the bot-

tom of the glass bowl after the optimization. This singular

curvature creates the bright oval pattern in the correspond-

ing area of the reference photograph in Fig. 8 (b) with con-

stant backlighting. Additionally, various other noticeable

patterns are created around the interface between the solid

and hollow sections and near the solid base of the wine glass

in the photograph that arise due to the high curvature and

geometry of these sections of the glass. The rendering re-

sult in Fig. 8 (c) shows a faithful reproduction of much of

these patterns in addition to the overall shape and appear-

ance compared to the photograph. We present additional

results of such reconstruction in Section 6.
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Figure 8: Final estimated inner geometry and rendering result.

(a) The estimated inner radii for the hollow section is marked in

red compared to the initial estimate shown in blue. The final object

rendering (c) is a good match with reference photograph (b).

5. N-fold symmetric objects

The reconstruction method for a rotationally symmetric ob-

ject as described in the previous section can be extended

for the reconstruction of an n-fold symmetric transparent

object with similar solid and hollow sections. We assume

that the outer cross-section is n-fold symmetric while the

inner cross-section is still circular which is true for many

everyday n-fold symmetric objects such as goblets, tum-

blers, etc. We observe that in most cases such objects can

be categorized as a combination of sections with complete

rotational symmetry and sections with n-fold symmetry as

shown in Fig. 9. We propose a reconstruction method for

the n-fold symmetric sections using a polygonal shape for

the outer cross-sections. The method requires a single user

input which is the vertex number of a polygon. The first

step of the method is separating any rotationally symmet-

ric sections from the n-fold symmetric sections. We ob-

serve that for vertical axially symmetric objects, an n-fold

symmetric section has stronger vertical edges than a rota-

tionally symmetric section as shown in Fig. 9 (center). A

horizontal projection over the vertical edges intensifies the

edge signals for the n-fold symmetric sections and allows

us to separate them using a simple threshold (Fig. 9, right).

Unlike a rotationally symmetric section for which the outer

cross-section is circular, a specific modeling method is re-

quired for generating the outer geometry of an n-fold sym-

metric section. We model the n-fold geometry as curved

lines between vertices of an n polygonal shape which is in-

scribed by the virtual circular shape of rotational symmetry

(Fig. 10). The curved n-fold shape also includes the planar

n-polygonal shape as a special case when the curvature, v,

is zero. We model the curved lines as a quadratic function

with vertex f which is parameterized by the local curvature,
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Intensity

Hor. projection

N-fold 
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N-fold 
symmetry

Rotational 
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Rotational 
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Figure 9: Separation of rotational and n-fold symmetry sections

using amplified vertical edges.

O
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Virtual boundary of rotational symmetry
Virtual boundary of n-polygonal shape
Actual boundary of n-fold symmetry 

pn



y=aLx+bL

Figure 10: Notation for modeling curved faces in an n-fold sym-

metric region.

v. The fixed position of each n-polygonal vertex, pi is spec-

ified by the user input of the vertex number of the polygon.

The curved line between points p1, p2, and f is described by

the standard quadratic equation ax2+bx+c = y. To gener-

ate the various faces of the n-fold curve, the quadratic is ro-

tated by θ which is the slope angle of line p1p2. Equation 3

then expresses the constant terms of the rotated quadratic

equation ax′2 + bx′ + c = y′, where xi and yi are x and y

coordinates of p1, p2, and f. Note that the relative orienta-

tion of the n-polygon with respect to the camera is obtained

by rotating the model by 1◦ intervals about the symmetry

axis (within a search range [0− 90]) and comparing the 2D

projection of each rotation with the reference photograph.

a =
(B1 −B3)(A2 −A3)− (B2 −B3)(A1 −A3)

(A2
1 −A2

3)(A2 −A3)− (A2
2 −A2

3)(A1 −A3)

b =
(B1 −B3)− a(A2

1 −A2
3)

(A1 −A3)

c = B1 − aA2
1 − bA1

where A = x′

icosθ + y′isinθ,B = y′icosθ − x′

isinθ

(3)

Examples of curved shape modeling for the n-fold symmet-

ric sections are shown in Fig. 11 including faces with con-

cave, flat, and convex shapes respectively. Note that the
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Figure 11: Examples of curved face modeling for the n-fold sym-

metric cross-sections of the object in Figure 9 including concave,

planar, and convex modeling respectively.

local curvature of the n-fold outer faces is not known ini-

tially. Hence, we propose to iteratively estimate the inner

shape and the outer n-fold face curvature in a sequential

manner. We first initialize the outer geometry with planar

faces for the n-fold sections and employ this outer shape

approximation to estimate the inner shape (with circular

cross-sections) using inverse rendering as described in Sec-

tion 4. This results in a semi-accurate reconstruction of n-

fold symmetric sections (Fig. 12, first column) with larger

residual errors in sections that have considerable curvature

in the outer faces (e.g., the lower n-fold region shown in the

bottom of the first column), and low residual errors in sec-

tions with negligible curvature in the outer faces (e.g., the

upper n-fold section). In a second phase, we then optimize

for the face curvature, v, of the n-fold faces by minimizing

the residual error between ray tracing and measured deflec-

tions (Fig. 12, second column). For a candidate curvature

value, the unknown vertex point f of the rotated quadratic

equation is specified by Equation 4.

(1 + a2L)x
2
f + (2B′aL − 2A′)xf +A′2 +B′2 − v2 = 0

yf = aLxf + bL

where A′ =
x1 + x2

2
, B′ = bL −

y1 + y2

2
(4)

Since the equation is quadratic its two solutions suggest two

possible positions for the vertex, one creating a concave

shape and the other convex. We try a range of curvature

candidates spanning from concave to convex outer geome-

try to search for a configuration with minimal residual error.

We then iterate the sequential estimation of inner geometry

and outer face curvature until the change in residual errors

is lower than a threshold, giving us the final reconstruction

result (Fig. 12, last column). The final rendering result is

comparable to the reference photograph in Figure 9. We

present an additional example in the next section.

6. Results

We have tested our acquisition and reconstruction method

for a wide range of axially symmetric transparent objects.

Figure 12: Rendering results (top row) and corresponding resid-

ual errors (bottom row) with iterative estimation of inner geometry

and curvature of n-fold faces. The first and the second columns are

initial inner geometry estimation with flat surface and initial cur-

vature estimation for n-fold faces, respectively. The fourth and

the fifth columns are final estimation for inner geometry and face

curvature, respectively.

Fig. 1 presents a realistic rendering of various acquired glass

objects lit with two frontal area light sources using Mit-

suba [8]. We also present rendering comparisons to pho-

tographs of the acquired objects under constant screen back-

ground illumination as seen in Figs. 8 and 12. A few addi-

tional representative results can be seen in Fig. 13. Note

that the cocktail glass (a) has two distinct hollow sections

including a small spherical section at the bottom that is well

reconstructed using our approach. (b) presents a rotation-

ally symmetric champagne glass, and (c) a pint glass. Here,

the pint glass has a few labels on the surface that cause oc-

clusions for transmission measurements in our setup. De-

spite this, our reconstruction is fairly accurate demonstrat-

ing the robustness of the approach for shape estimation. (d)

presents a more complex example of n-fold axial symme-

try: a glass tumbler with lozenge-pattern. Here, we pro-

vided the number of lozenges in a cross-section as an input

to the reconstruction algorithm. Finally, we present the re-

construction result of a shot glass containing some vodka

in (e). Here, we first acquired an empty shot glass in or-

der to accurately recover the inner geometry of the glass.

We then recaptured the glass filled with vodka in order to

estimate the liquid’s refractive index (η = 1.36) for the ren-

dering. As can be seen, unlike some previous approaches

which require immersion of a transparent object in various

liquids, our approach scales to also acquiring axially sym-

metric transparent objects containing transparent liquids.

The refractive index estimation requires around 10 min-

utes on a machine with Intel iCore7 2.5 GHz quad-core

processor and 16 GB RAM. The inner geometry optimiza-

tion requires around 30 minutes for a rotationally symmet-

ric object, while an n-fold symmetric object takes around

90 minutes due to the iterative estimation of both inner and

outer shape. In order to quantitatively verify the accuracy
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(a) Cocktail glass (b) Champg. gl. (c) Pint glass (d) Tumbler with lozenge pattern (e) Shot glass containing vodka

Figure 13: Additional examples of reconstructed transparent objects. Left: photographs. Right: renderings.

(unit: mm)

Rotational symmetry N-fold symmetry

Avg. Error 0.351 0.859

St. dev. 0.171 0.321

Table 1: Reconstruction accuracy compared to physical measure-

ments with vernier calipers.

of our reconstruction, we made physical measurements of

the cross-section thicknesses using a high precision vernier

caliper (Mitutoyo 500-196-30, 0.01mm res.). We did this

because of difficulties in comparison against alternate ac-

quisition approaches. For example, scanning with powder

coating would only enable acquisition of the outer surface

as the inner surface would be occluded for many of the ac-

quired objects, while dyeing would still require somehow

eliminating refractions for reconstruction (e.g., immersing

in refractive index matching liquid). Instead, we made sev-

eral cross-sectional caliper measurements (at 10 different

positions) of six different objects (three each in the two cat-

egories of rotationally and n-fold symmetric) to compute

the mean and std. deviation of the reconstruction error (Ta-

ble 1). The mean error is less than 1mm in both cases.

As expected, we achieve higher accuracy for completely

rotationally symmetric objects due to their simpler cross-

sections. We also obtain consistent estimates of η for var-

ious transparent solids and liquids [10, 19]. We include a

few additional results in the supplemental material.

Discussion and Limitations: Our approach is specific to

axially symmetric objects and we take advantage of this

symmetry for robust single view reconstruction. Given the

strong symmetry assumption, any minor asymmetries in

the actual object are not reconstructed. We further rely on

model based reconstruction for objects with n-fold symme-

try. However, due to an extensive set of possible variations,

it is somewhat necessary to adopt the surface modeling for

individual types of such symmetry (e.g., lozenge pattern).

It might be possible to extend the approach somewhat to re-

construct more general shapes with multiview acquisition.

However, there are limits to how many interfaces can be

resolved in the general case [11]. While less general than

tomography based volumetric reconstruction, our approach

can produce very high quality results which preserve high

frequency shape features due to near camera resolution esti-

mation of discrete refractive boundaries. Our renderings un-

der constant background illumination are a good qualitative

match to photographs. However, there are some noticeable

differences due to us not accurately modeling the angular

fall-off of the LCD screen illumination or its polarization

characteristics in the renderings. We rely on being able to

observe ray deflections through a solid 2-interface section

for estimating the refractive index and currently only em-

ploy the green channel (central wavelength) data for this

purpose. Our approach will require modifications for ac-

quisition of birefringent transparent objects. The accuracy

of our reconstruction is also limited by the resolution of the

LCD screen which impacts the deflection map resolution.

7. Conclusions

We have presented a very practical approach for high qual-

ity reconstruction of axially symmetric transparent objects.

Such objects are quite common in the real world and can

have very unique, aesthetic and complex shape and appear-

ance. Our approach employs a simple environment mat-

ting style setup for efficient single view acquisition and ro-

bust reconstruction of such transparent objects including

estimation of shape and refractive index. We demonstrate

high quality reconstruction results for a wide range of rota-

tionally symmetric and n-fold symmetric everyday objects.

For these classes of objects, we achieve significantly better

qualitative results compared to prior work targeting more

general transparent object reconstruction.
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