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Abstract

Since human observers are the ultimate receivers of dig-

ital images, image quality metrics should be designed from

a human-oriented perspective. Conventionally, a number

of full-reference image quality assessment (FR-IQA) meth-

ods adopted various computational models of the human

visual system (HVS) from psychological vision science re-

search. In this paper, we propose a novel convolutional neu-

ral networks (CNN) based FR-IQA model, named Deep Im-

age Quality Assessment (DeepQA), where the behavior of

the HVS is learned from the underlying data distribution of

IQA databases. Different from previous studies, our model

seeks the optimal visual weight based on understanding of

database information itself without any prior knowledge of

the HVS. Through the experiments, we show that the pre-

dicted visual sensitivity maps agree with the human subjec-

tive opinions. In addition, DeepQA achieves the state-of-

the-art prediction accuracy among FR-IQA models.

1. Introduction

Predicting perceptual quality is the main goal of image

quality assessment (IQA), which is applied in the wide field

of image processing such as process evaluation, image and

video encoding, and monitoring. Since human observers are

the ultimate receivers of digital images and videos, quality

metrics should be designed from a human-oriented perspec-

tive. Therefore, a great deal of effort has been made to de-

velop IQA methods based on the analysis of the properties

and mechanism of the human visual system (HVS).

When a distorted image is perceived by HVS, some error

signals are emphasized and some others are masked. Figs.

1(a) and (b) show a distorted image by JPEG and its objec-

tive error map. The distortions around the houses and on the
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Figure 1. Examples of predicted sensitivity maps: (a) is a distorted

image; (b) is an objective error map; (c) is a predicted perceptual

error map. Darker regions in (b) indicate more pixel-wise distorted

pixels, and those in (c) indicate perceptually more distorted ones.

sky regions are easily observable. However, those on textu-

ral regions (e.g. rocks) are less noticeable though there are

a lot of pixel-wise distortions as shown in Fig. 1(b). There-

fore, simple pixel-wise metrics such as peak signal-to-noise

ratio (PSNR) and mean squared error (MSE) do not corre-

late well with perceived quality. To conduct reliable IQA,

it is necessary to understand the human visual sensitivity

which explains the perceptual impact of artifacts according

to a spatial characteristic of pixels.

Based on these observations, many full-reference image

quality assessment (FR-IQA) methods have adopted vari-

ous computational models of the HVS from psychological
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vision science [4], and made assumptions of the HVS’s be-

havior to predict perceptual quality [32, 34, 35]. However,

since the majority of the HVS models are complex and were

designed in a limited and refined condition, it is difficult to

assure the best performance by generalizing the HVS mod-

els to the practical IQA problem.

Recently, convolutional neural networks (CNN) have

been the widely used in computer vision [11]. Beyond

the classification framework, CNNs have been successfully

used to generate image maps such as semantic segmenta-

tion map [16] and depth map [6]. Inspired by these works,

we use the CNN to generate a visual sensitivity map which

refers to a weighting map of describing the degree of visual

importance of each pixel to the HVS.

The CNN model in our approach is dedicated to learn

the HVS properties. Based on the objective error map, the

model seeks the visual weight of each pixel. The predicted

visual sensitivity map allocates local weights to the pixels

according to their local spatial characteristics of the dis-

torted images. This approach is similar to weighted pooling

strategies adopted in FR-IQA methods [32, 35]. However,

different from the previous works, our model finds a visual

weight without any prior knowledge of the HVS, but relying

only on the dataset: a triplet of a distorted image, its objec-

tive error map, and its ground-truth subjective score. Fig.

1(c) shows an example result of the proposed model. The

dark regions indicate perceptually distorted pixels. Com-

pared to the objective error map in (b), it is obvious that (c)

emphasizes the visible distortions such as coding artifacts

above the sea and around the house.

We name the proposed method as Deep Image Quality

Assessment (DeepQA). Our contributions can be summa-

rized as follows.

1. DeepQA learns the visual sensitivity characteristics of

the HVS without any prior knowledge. By using a deep

CNN, the visual weight of each pixel is sought by us-

ing a triplet of a distorted image, its objective error

map, and its ground-truth subjective score.

2. DeepQA can generate the perceptual error map as

an intermediate result, which provides us an intuitive

analysis of local artifacts for given distorted images.

3. A novel deep CNN based FR-IQA framework is pro-

posed. Our model can be trained by end-to-end opti-

mization, and achieves state-of-the-art correlation with

human subjective scores.

2. Related Work

2.1. Human Visual Sensitivity

A number of computational models of human percep-

tion have been developed in the literature. Luminance adap-

tation describes that the visibility threshold of the HVS is

determined by background luminance, which is similar to

Weber-Fechner law [3]. Contrast sensitivity function (CSF)

refers to the varying sensitivity of the HVS according to

spatial frequency of images [4]. The presence of texture de-

creases the visibility of image distortion, which is called

contrast masking [13, 4]. In contrast, the coding artifact on

homogeneous regions is easier to be observed. To imitate

image representation in the visual cortex, sub-band decom-

position models such as Gabor filters and steerable pyra-

mids have been adopted [29].

Based on these observations, many FR-IQA metrics have

been developed. There are two general strategies for FR-

IQA: bottom-up and top-down frameworks. The former

simulates the various processing stages in the HVS utiliz-

ing the computational models directly which is described

earlier [4]. Meanwhile, the latter designs the overall func-

tion of IQA based on assumptions on the HVS. For exam-

ple, structural similarity index (SSIM) assumed that con-

trast and structural distortions are critical to the HVS [32].

Feature similarity index (FSIM) assumed that phase con-

gruency is the primary feature for the HVS perception [35].

2.2. Machine Learning Approach on IQA

Machine learning was mostly adopted in no-reference

image quality assessment (NR-IQA). Since the reference

images are not available in NR-IQA, researchers tried to de-

sign elaborate features which can discriminate distorted im-

ages from their pristine images. One of the popular features

is a family of natural scene statistics (NSS) which assumes

that natural scenes contain statistical regularity [26, 20]. Be-

yond the NSS, various kinds of features were developed for

NR-IQA [31, 8].

On the other hand, machine learning has been adopted

partially in FR-IQA. In [22], singular value decomposition

features were extracted and regressed onto the quality score

using support vector regression (SVR). Multi-method fu-

sion (MMF) proposed to combine the multiple existing FR-

IQA methods using machine learning to achieve a state-of-

the-art accuracy [15]. In [23], multiple features were ex-

tracted from difference of Gaussian frequency bands, and

regressed onto the quality score.

Relatively recently, there have been attempts to adopt

deep learning for the NR-IQA problem. Hou et al. used

a deep belief network where wavelet NSS features were

extracted and fed into the deep model [7]. Kang et al.

first applied a CNN to the NR-IQA problem without us-

ing any handcrafted features [8]. Kim and Lee described

a two-stage CNN-based NR-IQA model, where local qual-

ity scores generated by a FR-IQA method were used as

proxy patch labels [9]. Liang et al. [14] proposed a dual-

path CNN-based FR-IQA model, where a non-aligned im-

age of a similar scene as reference are also deal with.
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Figure 2. Architecture of DeepQA. The model takes as input a distorted image and an error map, and generates the sensitivity map. After

multiplication with the error map, it is regressed onto the subjective score.

3. Sensitivity Map Prediction

3.1. Architecture

On deciding the human visual sensitivity, the most in-

tuitive way is comparing the energies of an error signal

and its background signal, where the error signal indicates

the objective error map and the background signal indicates

the reference image. However, in a real world situation, the

HVS observes only a distorted image without knowing the

error signal. Therefore, we test two scenarios in this paper.

First, DeepQA takes both a distorted image and an error map

as inputs. Second, DeepQA–s is a simpler version, where

only a distorted image is used as an input. The architectures

of DeepQA is shown in Fig. 2. DeepQA–s contains only

branch from input distorted images (Conv1-1 and Conv2-

1), and there is no concatenation layer.

Deep convolutional networks with 3 × 3 filters are used

for both models inspired by the recent work [30]. To gener-

ate a sensitivity map without losing the pixel position in-

formation, the model consists of only convolutional lay-

ers. In DeepQA, the distorted image and the error map go

through different convolutional layers at the beginning, and

are concatenated after the second convolutional layer. To

preserve the feature map size after convolution operations,

zeros are padded around the border before each convolu-

tion. Two strided convolutions are used for subsampling, as

shown in Fig. 2. Therefore the final output is 1/4 of that

of the original input image, and the ground-truth objective

error maps are downscaled by 1/4 correspondingly. In both

DeepQA–s and DeepQA, each convolutional layer except

Conv6 employs a leaky rectified linear unit (LReLU) [18].

The Conv6 layer adopts a rectified linear unit (ReLU) [21]

since the weights are positive real numbers. In addition, the

bias of Conv6 is initialized to 1. At the end of the model,

two fully connected layers are used to regress features onto

the subjective scores. Here, LReLU and ReLU are used for

hidden and output layers respectively.

3.2. Image Normalization

The distorted images are simply normalized before they

are fed into the CNN. Let Ir be a reference image, and Id
be a distorted image. We first convert them into grayscale

images, and rescale them to the range [0, 1]. Then the low

pass filtered versions of them are subtracted. The normal-

ized images are denoted by Îr and Îd. This is because the

HVS is not sensitive to the changes in low-frequency band.

The contrast sensitivity function (CSF) shows a band-pass

filter shape peaking at around 4 cycles per degree, and sen-

sitivity drops rapidly at low frequency [4].

3.3. Sensitivity Map Prediction

To make the model learn to generate the sensitivity map,

we utilize a triplet of a distorted image, its objective error

map, and its corresponding ground-truth subjective score.

Instead of just averaging the objective error map, the sen-

sitivity map weights each pixel to reflect the HVS. Toward

the end, we first define the objective error map using the

normalized log difference function as

e =
log

(

1/((Îr − Îd)
2
+ ε/2552)

)

log (2552/ε)
(1)

where ε = 1 for the experiment.

The visual sensitivity map is obtained from the CNN
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models

s1 = CNN1(Îd; θ1) (2)

s2 = CNN2(Îd, e; θ2) (3)

where CNN1(·) and CNN2(·) indicate the CNN models

of DeepQA–s and DeepQA with the parameters θ1 and θ2
respectively. Then the perceptual error map is defined by

p = s⊙e, where ⊙ is the Hadamard product, and s is s1 or

s2.

Since we padded zeros before each convolution, feature

maps near the borders tend to be zeros. To alleviate this, we

ignore the pixels near borders around the perceptual error

map. Each four rows and columns for each border are ex-

cluded in the experiment, which can partially compensate

the information loss. Therefore, the pooled score is derived

by averaging the cropped perceptual error map as

µp =
1

(H − 8) · (W − 8)

∑

(i,j)∈ω

p (4)

where H and W are the height and width of p, (i, j) indi-

cates pixel index, and ω indicates the cropped region. Since

it cannot be assured that the pooled score has a linear re-

lationship with the subjective score, additional fully con-

nected layers are used to conduct nonlinear regression. Then

the final objective function is defined as

Ls(Îd; θ) = ‖(f(µp)− S)‖2F (5)

where f(·) is a nonlinear regression function, S is the

ground-truth subjective score of the input distorted image,

and θ is θ1 for DeepQA–s or θ2 for DeepQA.

3.4. Total Variation Regularization

When the model is optimized to minimize (5) without

any constraints, it generates the sensitivity map which looks

like high-frequency noise. To avoid this, a smoothing con-

straint is applied to the sensitivity map. We adopt a total

variation (TV) L2 norm, because it can penalize the high

frequency component of the sensitivity map during the op-

timization of the CNN. Similar to [19], we define the TV

regularization as

TV (s) =
1

H ·W

∑

(i,j)

(sobelh(s)
2 + sobelv(s)

2)β/2 (6)

where H and W are the height and width of the predicted

sensitivity map, sobelh and sobelv are Sobel operation in

horizontal and vertical directions respectively, and β = 3 in

the experiment.

3.5. Training Method

For better convergence of the optimization, the adaptive

moment estimation optimizer (ADAM) [10] with Nesterov

momentum [5] was employed to alter the regular stochas-

tic gradient descent method. The learning rate was initially

set to 5 × 10−4. To balance between the regression loss

(5) and the TV regularization (6), we multiplied 103 and

10−2 to them respectively. The effects of TV regularization

is further discussed in Section 4.2. In addition, L2 regular-

ization was applied to all layers (L2 penalty multiplied by

5× 10−3).

3.5.1 Patch-based Approach

To train DeepQA on GPU, the sizes of input images need to

be fixed. Therefore, to train the model using the LIVE IQA

database [27], which contains images with various sizes,

we divided the input images into patches with a fixed size.

Here, it is necessary to avoid the overlapped regions when

the perceptual error map is reconstructed. Therefore, the

step of the sliding window is determined by steppatch =
sizepatch − (Nign × 2 × R) where Nign is the number

of ignored pixels, and R is the size ratio of the input and

the perceptual error map. In the experiment with the LIVE

IQA database, the ignored pixel was 4, the patch size was

112 × 112, and the sliding step was 80 × 80. In addition,

during training stage, all the patches composing one image

should be included in the same minibatch so that µp in (4)

can be derived from the reconstructed perceptual error map.

4. Experimental Results

4.1. Dataset

Four different IQA databases were used to evaluate the

proposed algorithm: LIVE IQA [27], CSIQ [12], TID2008

[25], and TID2013 [24]. The LIVE IQA database contains

29 reference images and 982 distorted images with five dis-

tortion types: JPEG and JPEG2000 (JP2K), additive white

Gaussian noise (WN), Gaussian blur (BLUR), and Rayleigh

fast-fading channel distortion (FF). The CSIQ database in-

cludes 30 reference images and 866 distorted images of

six distortion types: JPEG, JP2K, WN, GB, pink Gaus-

sian noise (PGN), and global contrast decrements (CTD).

TID2008 consists of 25 reference images and 1,700 dis-

torted images with 17 different distortions at four levels

of degradation, whereas TID2013 is expanded to contain

24 distortions types at five levels of degradation. In the ex-

periment, the ground-truth subjective scores were rescaled

to the range [0, 1]. For differential mean opinion score

(DMOS) values (in LIVE IQA and CSIQ), the scale was

reversed so that the larger values indicate perceptually bet-

ter images.

To evaluate the performances of the IQA algorithms, we

used two standard measures, i.e., Spearman’s rank order

correlation coefficient (SRCC) and Pearson’s linear corre-

lation coefficient (PLCC) by following [1].
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(a) (b) wTV = 10
−4 (c) wTV = 10
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−2 (j) wTV = 10

−1

Figure 3. Examples of the predicted sensitivity maps with various TV regularization weights: (a) and (f) show distorted images; (b) - (e)

and (g) - (j) are their predicted sensitivity maps with different TV regularization weights.
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Figure 4. Comparison of SRCC and PLCC curves according to the

degree of TV regularization weight.

4.2. Effects of TV Regularization

To analyze the effects of TV regularization, we tested

with four different weights (wTV = 10−4, 10−3, 10−2,

10−1) for the TV regularization during training. Fig. 3

shows the predicted sensitivity maps with different degrees

of TV regularization weight. When the weight was very

small, the sensitivity map was too detailed, which does not

agree with the HVS well. As the weight wTV increased

(from (b) to (e), and from (g) to (j)), the sensitivity map

tended to be smoother. In addition, it became clearly dis-

tinguishable between the perceptually less and more dis-

torted regions as shown in (e). However, since the TV reg-

ularization promotes piecewise smoothing, black spots also

increased as shown in (e).

To check if the TV regularization affects the prediction

accuracy, SRCC and PLCC over 80 epochs with the four

settings are drawn in Figs. 4(a) and (b). SRCC and PLCC

were obtained from the testing set every 2 epochs. When

wTV = 10−4, the SRCC and PLCC were slightly lower

than the others, but there were no significant differences be-

tween the different degrees of TV regularization term.

4.3. Sensitivity Map Prediction

To validate if DeepQA agrees with the HVS, the pre-

dicted sensitivity maps and the perceptual error maps are

shown in Fig. 5. Here, DeepQA was trained with wTV =
10−2. The distorted images with four different artifact types

(JPEG2000, JPEG, WN, and GB) are shown in (a), (e), (i),

and (m). Figs. (b), (f), (j), and (n) are the objective error

maps obtained from (1), Figs. (c), (g), (k), and (o) are the

predicted sensitivity maps, and Figs. (d), (h), (l), and (p) are

the perceptual error maps. The darker regions indicate more

distorted pixels. In (a), the distortion around the houses was

more noticeable than that on the rocks, as shown in (d). For

JPEG distortion, the banding artifact on the sky regions was

emphasized in (h). In case of additive white noise, the ob-

jective error was uniformly distributed over the image, as

shown in (j). In the perceptual error map, the distortion on

the homogeneous regions was more noticeable than that on

the textural regions, as shown in (l), which agrees with the

contrast masking and CSF. When the image was distorted

by Gaussian blur, strong edges were especially distorted as

(n), and the perceptual error map also had similar tendency,

as shown in (p).
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(a) (b) (c) (d)

(e) (f) (g) (h)
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(m) (n) (o) (p)

Figure 5. Examples of the predicted sensitivity maps; (a), (e), (i), and (m) are distorted images with JEPG2000, JPEG, white noise, and

Gaussian blur; (b), (f), (j), and (n) are the objective error maps; (c), (g), (k), and (o) are the predicted sensitivity maps; (d), (h), (l), and (p)

are the perceptual error maps.

In Fig. 6, the perceptual error maps of white noise and

Gaussian blur with different distortion levels are shown.

The fist row indicates the white noise, and the second row

indicates the Gaussian blur. When there is strong white

noise, the perceptual error map loses the structural details as

shown in (e). In contrast, when the Gaussian blur increases,

the distortion on the strong edges were more emphasized.

Generally, as the degree of distortion increased, the aver-

aged value of the perceptual error map decreased, which

indicates that DeepQA makes rational quality prediction ac-

cording to degree of distortion.

4.4. Performances Comparison

To evaluate the performance of DeepQA, we randomly

divided the reference images into two subsets (80% for

training and 20% for testing) and their corresponding dis-

torted images were divided in the same way so that there

was no overlap between the two sets. To increase the num-

ber of training samples, horizontally flipped images were

additionally supplemented. DeepQA was trained in a non-

distortion-specific way, that is, all the distortion types were

used simultaneously. The training iterated 80 epochs, then

the model with the lowest validation error was chosen over

the epochs. The prediction accuracy mostly saturated after

50 epochs as shown in Fig. 4. The correlation coefficients of

DeepQA were averaged after the procedure was repeated 20

times while dividing the training and testing sets randomly

in order to eliminate the performance bias.

DeepQA was compared to eight FR-IQA metrics: PSNR,

SSIM [32], MS-SSIM [33], VIF [28], GMSD [34], FSIMc

[35], DOG-SSIMc [17], and FR-DCNN [14]. In addition,

four deep learning-based NR-IQA methods were bench-
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(a) 0.8037 (b) 0.7125 (c) 0.4260 (d) 0.3657 (e) 0.0125

(f) 0.7361 (g) 0.5696 (h) 0.5299 (i) 0.4816 (j) 0.3630

Figure 6. Examples of the perceptual error maps with various distortion levels of white noise, and Gaussian blur: (a) - (e) are distorted by

white noise; (f) - (j) are distorted by Gaussian blur. The values indicate the averages of the perceptual error maps (µp).

Table 1. SRCC and PLCC comparison on the four IQA databases. FR (NR) indicates full-reference (no-reference) models, and italics

indicate deep learning-based methods.

LIVE IQA CSIQ TID2008 TID2013 Weighted Avg.

Type SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

FR PSNR 0.876 0.872 0.806 0.800 0.553 0.573 0.636 0.706 0.666 0.704

SSIM 0.948 0.945 0.876 0.861 0.775 0.773 0.637 0.691 0.745 0.767

MS-SSIM 0.951 0.949 0.913 0.899 0.854 0.657 0.786 0.833 0.842 0.809

VIF 0.963 0.960 0.920 0.928 0.749 0.808 0.677 0.772 0.765 0.826

GMSD 0.960 0.960 0.957 0.954 0.891 0.879 0.804 0.859 0.867 0.890

FSIMc 0.960 0.961 0.931 0.919 0.884 0.876 0.851 0.877 0.884 0.893

DOG-SSIMc 0.963 0.966 0.954 0.943 0.935 0.937 0.926 0.934 0.937 0.940

FR-DCNN 0.975 0.977 - - - - - - - -

DeepQA–s 0.977 0.975 0.957 0.956 0.878 0.892 0.766 0.818 0.848 0.876

DeepQA 0.981 0.982 0.961 0.965 0.947 0.951 0.939 0.947 0.949 0.955

NR SESANIA 0.934 0.948 - - - - - - - -

CNN 0.956 0.953 - - - - - - - -

Patchwise 0.960 0.972 - - - - 0.835 0.855 - -

BIECON 0.958 0.960 - - - - - - - -

marked: SESANIA [7], CNN [8], a ‘Patchwise’ method in

[2], and BIECON [9].

In Table 1, SRCC and PLCC of the FR-IQA algorithms

on LIVE IQA and TID2008 are compared. In the last col-

umn, the weighted average of SRCC and PLCC over the

four databases are reported, where each weight is propor-

tional to the number of distorted images of each database.

The top three models for each evaluation criterion are

shown in boldface. The reported SRCC and PLCC scores

of the deep learning-based models were taken from the

original papers. When all the distortion types were consid-

ered together, the highest SRCC and PLCC were achieved

by DeepQA, followed by DOG-SSIMc. DeepQA outper-

formed the other metrics on all the databases consistently,

meanwhile DeepQA–s only achieved competitive perfor-

mances on the LIVE IQA and CSIQ databases. From this

observation, it is obvious that taking the error map as an

input helps the CNN model extract more useful features to

achieve a higher accuracy.

Table 2 shows the SRCC comparison according to in-

dividual distortion type on the LIVE IQA and TID2008

databases. Even when each distortion type was tested sep-

arately, DeepQA generally achieved the competitive ac-

curacies on most distortion types. Since grayscale images

were used in DeepQA, it achieved low performance in local

block-wise distortions (Block), where color change is an es-

sential cue of distortion. In addition, since the normalization

process discards low-frequency components, DeepQA had

low correlation on mean shift (MS), where the global bright-

ness was changed consistently. Overall, DeepQA achieved

the competitive and consistent accuracies across all the

databases.
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Table 2. SRCC comparison on individual distortion types on the LIVE IQA and TID2008 databases. Italics indicate deep learning-based

methods.

Dist.type PSNR SSIM MS-SSIM VIF GMSD FSIMc DeepQA–s DeepQA

LIVE IQA JP2K 0.895 0.961 0.963 0.969 0.968 0.972 0.973 0.970

JPEG 0.881 0.972 0.981 0.984 0.973 0.979 0.976 0.978

WN 0.985 0.969 0.973 0.985 0.974 0.971 0.991 0.988

BLUR 0.782 0.952 0.954 0.972 0.957 0.968 0.979 0.971

FF 0.891 0.955 0.947 0.965 0.942 0.950 0.956 0.968

TID2008 AGN 0.907 0.811 0.953 0.880 0.918 0.875 0.913 0.980

ANMC 0.899 0.803 0.913 0.876 0.898 0.893 0.745 0.863

SCN 0.917 0.815 0.809 0.870 0.913 0.871 0.902 0.970

MN 0.852 0.779 0.805 0.868 0.709 0.825 0.717 0.795

HFN 0.927 0.873 0.821 0.907 0.919 0.913 0.958 0.974

IMN 0.873 0.673 0.811 0.833 0.661 0.771 0.710 0.725

QN 0.870 0.853 0.869 0.797 0.887 0.873 0.842 0.901

GB 0.870 0.954 0.691 0.954 0.897 0.947 0.939 0.950

DEN 0.942 0.953 0.859 0.916 0.975 0.961 0.859 0.929

JPEG 0.872 0.925 0.956 0.917 0.952 0.929 0.848 0.940

JP2K 0.813 0.962 0.958 0.971 0.980 0.978 0.922 0.958

JGTE 0.752 0.868 0.932 0.859 0.862 0.876 0.730 0.880

J2TE 0.831 0.858 0.970 0.850 0.883 0.856 0.871 0.928

NEPN 0.581 0.711 0.868 0.762 0.760 0.751 0.244 0.760

Block 0.619 0.846 0.861 0.832 0.897 0.847 0.095 0.517

MS 0.696 0.723 0.738 0.510 0.649 0.655 0.703 0.652

CTC 0.586 0.525 0.755 0.819 0.466 0.651 0.602 0.838

Table 3. Cross dataset test on the subset of the TID2008 database

(SRCC).

Metrics JP2K JPEG WN BLUR ALL

SSIM 0.963 0.935 0.817 0.960 0.902

DeepQA–s 0.932 0.912 0.896 0.947 0.916

DeepQA 0.945 0.928 0.890 0.957 0.940

4.5. Cross Dataset Test

To evaluate the generalization of DeepQA models, they

were trained using the LIVE IQA database, and tested on

the TID2008 database. Since the TID2008 database con-

tains broader kinds of distortion types, we chose four dis-

tortion types (JPEG, JPEG2000 compression, WN, and

BLUR) which are common in the two databases. The re-

sults of the cross dataset test are shown in Table 3. It can be

concluded that both DeepQA–s and DeepQA perform well

and that the performances of them do not depend on the

database.

5. Conclusion

In this paper, we have described a new FR-IQA frame-

work where the CNN model learns the human visual sen-

sitivity. By using a triplet of a distorted image, its objec-

tive error map, and its subjective score, the proposed model

could learn the behavior of the HVS. Moreover, a TV regu-

larization was proposed to penalize the high frequency com-

ponents in the predicted sensitivity map. With the proper

TV regularization, the sensitivity map becomes more visu-

ally plausible without loss of performance. Through the rig-

orous experiments, we checked that the predicted percep-

tual error maps agree with the HVS. The sensitivity maps

were predicted well with various distortion types and de-

grees of distortion. In addition, proposed DeepQA achieved

the state-of-the-art correlation score on every database. In

future study, we plan to advance the proposed framework

to NR-IQA to predict the subjective score without the ref-

erence images, which is the most challenging problem in

IQA.
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