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Abstract

We present a descriptor, called fully convolutional self-

similarity (FCSS), for dense semantic correspondence. To

robustly match points among different instances within the

same object class, we formulate FCSS using local self-

similarity (LSS) within a fully convolutional network. In

contrast to existing CNN-based descriptors, FCSS is inher-

ently insensitive to intra-class appearance variations be-

cause of its LSS-based structure, while maintaining the pre-

cise localization ability of deep neural networks. The sam-

pling patterns of local structure and the self-similarity mea-

sure are jointly learned within the proposed network in

an end-to-end and multi-scale manner. As training data

for semantic correspondence is rather limited, we propose

to leverage object candidate priors provided in existing

image datasets and also correspondence consistency be-

tween object pairs to enable weakly-supervised learning.

Experiments demonstrate that FCSS outperforms conven-

tional handcrafted descriptors and CNN-based descriptors

on various benchmarks.

1. Introduction

Establishing dense correspondences across semantically

similar images is essential for numerous tasks such as scene

recognition, image registration, semantic segmentation, and

image editing [17, 31, 24, 48, 53]. Unlike traditional dense

correspondence approaches for estimating depth [39] or op-

tical flow [3, 44], in which visually similar images of the

same scene are used as inputs, semantic correspondence es-

timation poses additional challenges due to intra-class vari-

ations among object instances, as exemplified in Fig. 1.

Often, basic visual properties such as colors and gradi-

ents are not shared among different object instances in the

same class. These variations, in addition to other complica-

tions from occlusion and background clutter, lead to signifi-

cant differences in appearance that can distract matching by

handcrafted feature descriptors [34, 46]. Although powerful

optimization techniques can help by enforcing smoothness

constraints over a correspondence map [31, 24, 53, 45, 18],

(a) Source image (b) Target image

(c) Window (d) Window (e) FCSS in (c) (f) FCSS in (d)

Figure 1. Visualization of local self-similarity. Even though there

are significant differences in appearance among different instances

within the same object class in (a) and (b), their local self-

similarities computed by our FCSS descriptor are preserved as

shown in (e) and (f), providing robustness to intra-class variations.

they are limited in effectiveness without a proper matching

descriptor for semantic correspondence estimation.

Over the past few years, convolutional neural network

(CNN) based features have become increasingly popu-

lar for correspondence estimation thanks to their localiza-

tion precision of matched points and their invariance to

minor geometric deformations and illumination changes

[19, 50, 41, 49]. However, for computing semantic cor-

respondences within this framework, greater invariance is

needed to deal with the more substantial appearance dif-

ferences. This could potentially be achieved with a deeper

convolutional network [42], but would come at the cost of

significantly reduced localization precision in matching de-

tails (see [32, 21] for examples). Furthermore, as training

data for semantic correspondence is rather limited, a net-

work cannot be trained properly in a supervised manner.

To address these issues, we introduce a CNN-based de-

scriptor that is inherently insensitive to intra-class appear-

ance variations while maintaining precise localization abil-

ity. The key insight, illustrated in Fig. 1, is that among

different object instances in the same class, their local struc-

tural layouts remain roughly the same. Even with dissimi-
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lar colors, gradients, and small differences in feature posi-

tions, the local self-similarity (LSS) between sampled patch

pairs is basically preserved. This property has been utilized

for non-rigid object detection [40], sketch retrieval [5], and

cross-modal correspondence [25]. However, existing LSS-

based techniques are mainly handcrafted and need further

robustness to capture reliable matching evidence from se-

mantically similar images.

Our proposed descriptor, called fully convolutional self-

similarity (FCSS), formulates LSS within a fully convolu-

tional network in manner where the patch sampling patterns

and self-similarity measure are both learned. We propose a

convolutional self-similarity (CSS) layer that encodes the

LSS structure and possesses differentiability, allowing for

end-to-end training together with the sampling patterns.

The convolutional self-similarities are measured at multiple

scales, using skip layers [32] to forward intermediate con-

volutional activations. Furthermore, since limited training

data is available for semantic correspondence, we propose

a weakly-supervised feature learning scheme that leverages

correspondence consistency within object candidate priors

provided in existing datasets. Experimental results show

that the FCSS descriptor outperforms conventional hand-

crafted descriptors and CNN-based descriptors on various

benchmarks, including that of Taniai et al. [45], Proposal

Flow [18], the PASCAL dataset [6], and Caltech-101 [13].

2. Related Work

Feature Descriptors Conventional gradient-based and

intensity comparison-based descriptors, such as SIFT [34],

HOG [8], DAISY [46], and BRIEF [4], have shown limited

performance in a dense correspondence estimation across

semantically similar but different object instances. Over the

past few years, besides these handcrafted features, several

attempts have been made using deep CNNs to learn dis-

criminative descriptors for local patches from large-scale

datasets. Some of these techniques have extracted imme-

diate activations as the descriptor [16, 14, 9, 33], which

have shown to be effective for patch-level matching. Other

methods have directly learned similarity measures for com-

paring patches using a convolutional similarity network

[19, 50, 41, 49]. Even though these CNN-based descriptors

encode a discriminative structure with a deep architecture,

they have inherent limitations in handling large intra-class

variations [41, 10]. Furthermore, they are mostly tailored

to estimate sparse correspondences, and cannot in practice

provide dense descriptors due to their high computational

complexity. Of particular importance, current research on

semantic correspondence lacks an appropriate benchmark

with dense ground-truth correspondences, making super-

vised learning of CNNs less feasible for this task.

LSS descriptor, proposed in [40], have achieved impres-

sive results in object detection, image retrieval by sketch-

ing [40], deformable shape class retrieval [5], and cross-

modal correspondence estimation [25, 26]. Inspired by

LSS, among the more recent cross-modal descriptors is

the dense adaptive self-correlation (DASC) descriptor [25],

which provides satisfactory performance but is unable to

handle non-rigid deformations due to its fixed patch pooling

scheme. The deep self-correlation (DSC) descriptor [26] re-

formulates LSS in a deep non-CNN architecture. As all of

these techniques use handcrafted descriptors, they lack the

robustness to deformations that is possible with CNNs.

Dense Semantic Correspondence Many techniques for

dense semantic correspondence employ handcrafted fea-

tures such as SIFT [34] or HOG [8]. To improve the match-

ing quality, they focus on optimization. Among these meth-

ods are some based on SIFT Flow [31, 24], which uses hier-

archical dual-layer belief propagation (BP). Other instances

include the methods with an exemplar-LDA approach [2],

through joint image set alignment [53], or together with

cosegmentation [45].

More recently, CNN-based descriptors have been used

for establishing dense semantic correspondences. Pre-

trained ConvNet features [27] were employed with the SIFT

Flow algorithm [33] and with semantic flow using object

proposals [18]. Choy et al. [7] proposed a deep convolu-

tional descriptor based on fully convolutional feature learn-

ing and convolutional spatial transformer [23]. As these

methods formulate the networks by combining successive

convolutions only, they face a tradeoff between appearance

invariance and localization precision that presents inherent

limitations on semantic correspondence.

Weakly-Supervised Feature Learning For the purpose

of object recognition, Dosovitskiy et al. [11] trained the

network to discriminate between a set of surrogate classes

formed by applying various transformations. For object

matching, Lin et al. [28] proposed an unsupervised learn-

ing to learn a compact binary descriptor by leveraging an

iterative training scheme. More closely related to our work

is the method of Zhou et al. [52], which exploits cycle-

consistency with a 3D CAD model [35] as a supervisory

signal to train a deep network for semantic correspondence.

However, the need to have a suitable 3D CAD model for

each object class in a training stage limits its applicability.

3. The FCSS Descriptor

3.1. Problem Formulation and Overview

Let us define an image I such that Ii : I → R
3 for

pixel i = [ix, iy]
T . For each image point Ii, a dense de-

scriptor Di : I → R
L of dimension L is defined on a local

support window. For LSS, this descriptor represents locally

self-similar structure around a given pixel by recording the

similarity between certain patch pairs within a local win-

dow. Formally, LSS can be described as a vector of feature
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values Di =
⋃

lDi(l) for l ∈ {1, ..., L}, where the feature

values are computed as

Di(l) = maxj∈Ni
exp (−S (Pj−sl , Pj−tl) /λ) , (1)

where S(Pi−sl , Pi−tl) is a self-similarity distance between

two patches Pi−sl and Pi−tl sampled on sl and tl, the lth se-

lected sampling pattern, around center pixel i. To alleviate

the effects of outliers, the self-similarity responses are en-

coded by non-linear mapping with an exponential function

of a bandwidth λ [1]. For spatial invariance to the position

of the sampling pattern, the maximum self-similarity within

a spatial window Ni is computed.

By leveraging CNNs, our objective is to design a dense

descriptor that formulates LSS in a fully convolutional and

end-to-end manner for robust estimation of dense seman-

tic correspondences. Our network is built as a multi-scale

series of convolutional self-similarity (CSS) layers where

each includes a two-stream shifting transformer for apply-

ing a sampling pattern. To learn the network, including its

self-similarity measures and sampling patterns, in a weakly-

supervised manner, our network utilizes correspondence

consistency between pairs of input images within object lo-

cations provided in existing datasets.

3.2. CSS: Convolutional SelfSimilarity Layer

We first describe the convolutional self-similarity (CSS)

layer, which provides robustness to intra-class variations

while preserving localization precision of matched points

around fine-grained object boundaries.

Convolutional Similarity Network Previous LSS-based

techniques [40, 25, 26] evaluate (1) by sampling patch pairs

and then computing their similarity using handcrafted met-

rics, which often fails to yield detailed matching evidence

for estimating semantic correspondences. Instead, we com-

pute the similarity of sampled patch pairs through CNNs.

With l omitted for simplicity, the self-similarity between a

patch pair Pi−s and Pi−t is formulated through a Siamese

network, followed by decision or metric network [50, 19]

or a simple Euclidean distance [41, 49] as shown in Fig.

2(a). Specifically, convolutional activations through feed-

forward processes F(Pi−s;Wc) and F(Pi−t;Wc) with

CNN parameters Wc are used to measure self-similarity

based on the Euclidean distance, such that

S(Pi−s, Pi−t) = ‖F(Pi−s;Wc)−F(Pi−t;Wc)‖
2. (2)

Note that our approach employs the Siamese network to

measure self-similarity within a single image, in contrast

to recent CNN-based descriptors [41] that directly mea-

sure the similarity between patches from two different im-

ages. Computing S(Pi−s, Pi−t) for all sampling patterns

(s, t) in this network is time-consuming, since the number
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(b) Efficient implementation of CSS layer

Figure 2. Convolutional self-similarity (CSS) layers, implemented

as (a) straightforward and (b) efficient versions, measure the self-

similarity S(Pi−Ws
, Pi−Wt

) between a patch pair Pi−Ws
and

Pi−Wt
from sampling patterns Ws and Wt. With the efficient

scheme, convolutional self-similarity is equivalently solved while

avoiding repeated computations for convolutions.

of iterations through the Siamese network is linearly pro-

portional to the number of sampling patterns. To expedite

this computation, we instead generate the convolutional ac-

tivations of an entire image by passing it through the CNN,

similar to [22], and then measure the self-similarity for the

sampling patterns directly on the convolutional activations

Ai = F(Ii;Wc), as shown in Fig. 2(b). Formally, this can

be written as

S(Pi−s, Pi−t) = ‖Ai−s −Ai−t‖
2. (3)

With this scheme, the self-similarity is measured by run-

ning the similarity network only once, regardless of the

number of sampling patterns. Interestingly, a similar com-

putational scheme was used to measure the similarity be-

tween two different images in [51], whereas our scheme in-

stead measures self-similarity within a single image.

Two-Stream Shifting Transformer The sampling pat-

terns (s, t) of patch pairs are a critical element of local self-

similarity. In our CSS layer, a sampling pattern for a pixel

i can be generated by shifting the original activation Ai by

s and t to form two different activations from which self-

similarity is measured. While this spatial manipulation of

data within the network could be learned and applied us-

ing a spatial transformer layer [23], we instead formulate

a simplification of this, called a shifting transformer layer,

in which the shift transformations s and t are defined as

network parameters that can be learned because of the dif-

ferentiability of the shifting transformer layer. In this way,

the optimized sampling patterns can be learned in the CNN.
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Concretely, the sampling patterns are defined as network

parameters Ws = [Wsx ,Wsy ]
T and Wt = [Wtx ,Wty ]

T

for all (s, t). Since the shifted sampling is repeated in an (in-

teger) image domain, the convolutional self-similarity acti-

vation Ai is shifted simply without interpolation in the im-

age domain according to the sampling patterns. We first

define the sampled activations though a two-stream shifting

transformer as

Ai−Ws
= F(Ai;Ws), Ai−Wt

= F(Ai;Wt). (4)

From this, convolutional self-similarity is then defined as

S(Pi−Ws
, Pi−Wt

) = ‖F(Ai;Ws)−F(Ai;Wt)‖
2. (5)

Note that S(Pi−Ws
, Pi−Wt

) represents a convolutional

self-similarity vector defined for all (s, t).

Differentiability of Convolutional Self-Similarity For

end-to-end learning of the proposed descriptor, the deriva-

tives for the CSS layer must be computable, so that gradi-

ents of the final loss can be back-propagated to the convo-

lutional similarity and shifting transformer layers.

To obtain the derivatives for the convolutional similarity

layer and the shifting transformer layers, we first compute

the Taylor expansion of the shifting transformer activations,

under the assumption that Ai is smoothly varying with re-

spect to shifting parameters Ws:

Ai−Wn
s
= Ai−W

n−1

s
+(Wn

s −W
n−1

s )◦▽Ai−W
n−1

s
, (6)

where W
n−1
s represents the sampling patterns at the (n −

1)th iteration during training, and ◦ denotes the Hadamard

product. ▽Ai−W
n−1

s
is a spatial derivative on each activa-

tion slice with respect to ▽x and ▽y. By differentiating (6)

with respect to W
n
sx

, we get the shifting parameter deriva-

tives as
∂Ai−Wn

s

∂Wn
sx

= ▽xAi−W
n−1

s
. (7)

By the chain rule, with n omitted, the derivative of the

final loss L with respect to Wsx can be expressed as

∂L

∂Wsx

=
∂L

∂Ai−Ws

∂Ai−Ws

∂Wsx

. (8)

Similarly, ∂L/∂Wsy , ∂L/∂Wtx , and ∂L/∂Wty can be

calculated.

Moreover, the derivative of the final loss L with respect

to Ai can be formulated as

∂L

∂Ai

=
∂L

∂Ai−Ws

∂Ai−Ws

∂Ai

+
∂L

∂Ai−Wt

∂Ai−Wt

∂Ai

=
∂L

∂Ai−Ws

+
∂L

∂Ai−Wt

,

(9)

since ∂Ai−Ws
/∂Ai is 1 on the pixel i−Ws. In this way,

the derivatives for the CSS layer can be computed.

CSS Layer

CSS Layer

CSS 
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Image Convolutional Activations FCSS Descriptor
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Figure 3. Network configuration of the FCSS descriptor, consist-

ing of convolutional self-similarity layers at multiple scales.

3.3. Network Configuration for Dense Descriptor

Multi-Scale Convolutional Self-Similarity Layer In

building the descriptor through a CNN architecture, there

is a trade-off between robustness to semantic variations and

fine-grained localization precision [32, 21]. The deeper

convolutional layers gain greater robustness to semantic

variations, but also lose localization precision of matching

details around object boundaries. On the contrary, the shal-

lower convolutional layers better preserve matching details,

but are more sensitive to intra-class appearance variations.

Inspired by the skip layer scheme in [32], we formulate

the CSS layers in a hierarchical manner to encode multi-

scale self-similarities as shown in Fig. 3. Even though the

CSS layer itself provides robustness to semantic variations

and fine-grained localization precision, this scheme enables

the descriptor to boost both robustness and localization pre-

cision. The CSS layers are located after multiple interme-

diate activations, and their outputs are concatenated to con-

struct the proposed descriptor. In this way, the descriptor

naturally encodes self-similarity at multiple scales of recep-

tive fields, and further learns optimized sampling patterns

on each scale. Many existing descriptors [21, 50] also em-

ploy a multi-scale description to improve matching quality.

For intermediate activations A
k
i = F(Ii;W

k
c ), where

k ∈ {1, ...,K} is the level of convolutional activations and

W
k
c is convolutional similarity network parameters at the

kth level, the self-similarity at the the kth level is measured

according to sampling patterns Wk
s and W

k
t as

S(Pi−Wk
s
, Pi−Wk

t

) = ‖F(Ak
i ;W

k
s )−F(Ak

i ;W
k
t )‖

2.
(10)

Since the intermediate activations are of smaller spatial

resolutions than the original image resolution, we apply a

bilinear upsampling layer [32] after each CSS layer.

Non-linear Gating and Max-Pooling Layer The CSS

responses are passed through a non-linear gating layer to

mitigate the effects of outliers [1]. Furthermore, since the

pre-learned sampling patterns used in the CSS layers are

fixed over an entire image, they may be sensitive to non-

rigid deformation as described in [26]. To address this, we

perform the max-pooling operation within a spatial window
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Ni centered at a pixel i after the non-linear gating:

Dk
i = maxj∈Ni

exp(−S(Pj−Wk
s
, Pj−Wk

t

)/Wk
λ), (11)

where W
k
λ is a learnable parameter for scale k. The max-

pooling layer provides an effect similar to using pixel-

varying sampling patterns, providing robustness to non-

rigid deformations. The descriptor for each pixel then un-

dergoes L2 normalization. Finally, the proposed descriptor

Di =
⋃

kD
k
i is built by concatenating feature responses

across all scales. Fig. 3 displays an overview of the FCSS

descriptor construction.

3.4. WeaklySupervised Dense Feature Learning

A major challenge of semantic correspondence estima-

tion with CNNs is the lack of ground-truth correspondence

maps for training data. Constructing training data without

manual annotation is difficult due to the need for semantic

understanding. Moreover, manual annotation is very labor

intensive and somewhat subjective. To overcome this, we

propose weakly-supervised learning scheme based on cor-

respondence consistency between image pairs. Unlike ex-

isting CNN-based descriptor learning methods which use

a set of patch pairs [41, 50, 19], we use a set of image

pairs for training. Such an image-wise learning scheme ex-

pedites feature learning by reducing the computational re-

dundancy that occurs when computing convolutional acti-

vations for two adjacent pixels in the image. Our approach

is conceptually similar to [7], but we learn the descriptor in

a weakly-supervised manner that leverages correspondence

consistency between each image pair so that the positive and

negative samples are actively determined during training.

Correspondence Consistency Intuitively, the correspon-

dence relation from a source image to a target image should

be consistent with that from the target image to the source

image. After forward-propagation with the training image

pairs to obtain F(I;W) and F(I ′;W), the best match i∗

for each pixel i is computed by comparing feature descrip-

tors from the two images through nearest neighbor (NN)

search [15]:

i∗ = argmini′ ‖F(Ii;W)−F(I ′i′ ;W)‖2. (12)

W = {Wk
c ,W

k
s ,W

k
t ,W

k
λ | k = 1, ...,K} represents

all network parameters. After running NN search twice for

the source and target images respectively, we check the cor-

respondence consistency and identify the pixel pairs with

valid matches as positive samples. Invalid matches are also

used to generate negative samples. We randomly select the

positive and negative samples during training. Since the

negative samples ensue from erroneous local minima in the

energy cost, they provide the effects of hard negative min-

ing during training [41]. The feature learning begins by ini-

tializing the shifting transform with randomly selected sam-
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Figure 4. Weakly-supervised learning of the FCSS descriptor us-

ing correspondence consistency between object locations.

pling patterns. We found that even initial descriptors gener-

ated from the random patterns provide enough positive and

negative samples to be used for weakly-supervised feature

learning. A similar observation was also reported in [25].

To boost this feature learning, we limit the correspon-

dence candidate regions according to object location priors

such as an object bounding box containing the target ob-

ject to be matched, which are provided in most benchmarks

[13, 12, 6]. Similar to [53, 52, 18], it is assumed that true

matches exist only within the object region as shown in Fig.

4. Utilizing this prior mitigates the side effects that may

occur due to background clutter when directly running the

k-NN, and also expedites the feature learning process.

Correspondence Contrastive Loss For training the net-

work with image pairs I and I ′, the correspondence con-

trastive loss [7] is defined as

L(W) =
1

2N

∑
i∈Ω

li‖F(Ii;W)−F(I ′i′ ;W)‖2

+(1− li)max(0, C − ‖F(Ii;W)−F(I ′i′ ;W)‖2),

(13)

where i and i′ are either a matching or non-matching pixel

pair, and li denotes a class label that is 1 for a positive pair

and 0 otherwise. Ω represents the set of training samples,

and N is the number of training samples. C is the maximal

cost. The loss for a negative pair approaches zero as their

distance increases. By back-propagating the partial deriva-

tive of L(W), the overall network can be learned.

4. Experimental Results and Discussion

4.1. Experimental Settings

For our experiments, we implemented the FCSS descrip-

tor using the VLFeat MatConvNet toolbox [36]. For convo-

lutional similarity networks in the CSS layers, we used the

ImageNet pretrained VGG-Net [42] from the bottom conv1

to the conv3-4 layer, with their network parameters as initial

values. Three CSS layers are located after conv2-2, conv3-

2, and conv3-4, thus K = 3. Considering the trade-off

between efficiency and robustness, the number of sampling
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Methods FD3D. JODS PASC. Avg.

SIFT [31] 0.632 0.509 0.360 0.500

DAISY [46] 0.636 0.373 0.338 0.449

LSS [40] 0.644 0.349 0.359 0.451

DASC [25] 0.668 0.454 0.261 0.461

DeepD. [41] 0.684 0.315 0.278 0.426

DeepC. [50] 0.753 0.405 0.335 0.498

MatchN. [19] 0.561 0.380 0.270 0.404

LIFT [49] 0.730 0.318 0.306 0.451

VGG [42] 0.756 0.490 0.360 0.535

VGG w/S-CSS† 0.762 0.521 0.371 0.551

VGG w/S-CSS 0.775 0.552 0.391 0.573

VGG w/M-CSS 0.806 0.573 0.451 0.610

FCSS 0.830 0.656 0.494 0.660

Table 1. Matching accuracy for various feature descriptors with

fixed SF optimization on the Taniai benchmark [45]. VGG w/S-

CSS† denotes results with randomly selected sampling patterns.

Methods FG3D. JODS PASC. Avg.

DFF [48] 0.495 0.304 0.224 0.341

DSP [24] 0.487 0.465 0.382 0.445

SIFT Flow [31] 0.632 0.509 0.360 0.500

Zhou et al. [52] 0.721 0.514 0.436 0.556

Taniai et al. [45] 0.830 0.595 0.483 0.636

Proposal Flow [18] 0.786 0.653 0.531 0.657

FCSS w/DSP [24] 0.527 0.580 0.439 0.515

FCSS w/SF [31] 0.830 0.656 0.494 0.660

FCSS w/PF [18] 0.839 0.635 0.582 0.685

Table 2. Matching accuracy compared to state-of-the-art corre-

spondence techniques on the Taniai benchmark [45].

patterns is set to 64, thus the total dimension of the descrip-

tor is L = 192. Before each CSS layer, convolutional ac-

tivations are normalized with a L2 norm [43]. To learn the

network, we employed the Caltech-101 dataset [13] exclud-

ing testing image pairs used in experiments. The number of

training samples N is 1024. C is set to 0.2. The learned

parameters are used for all the experiments. Our code with

pretrained parameters will be made publicly available.

In the following, we comprehensively evaluated our de-

scriptor through comparisons to state-of-the-art handcrafted

descriptors, including SIFT [34], DAISY [46], HOG [8],

LSS [40], and DASC [25], as well as recent CNNs-based

feature descriptors, including MatchNet (MatchN.) [19],

Deep Descriptor (DeepD.) [41], Deep Compare (DeepC.)

[50], UCN [7], and LIFT [49]1. The performance was

measured on Taniai benchmark [45], Proposal Flow dataset

[18], PASCAL-VOC dataset [6], and Caltech-101 bench-

mark [13]. To additionally validate the components of the

FCSS descriptor, we evaluated the initial VGG-Net (conv3-

1Since MatchN. [19], DeepC. [50], DeepD. [41], and LIFT [49] were

developed for sparse correspondence, sparse descriptors were first built by

forward-propagating images through networks and then upsampled.

Error threshold (pixels)
5 10 15

Fl
ow

 a
cc

ur
ac

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIFT
DAISY
LSS
DASC
DeepD.
DeepC.
MatchN.
LIFT
VGG
VGGw/S-CSS
VGGw/M-CSS
FCSS

(a) FG3DCar

Error threshold (pixels)
5 10 15

Fl
ow

 a
cc

ur
ac

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SIFT
DAISY
LSS
DASC
DeepD.
DeepC.
MatchN.
LIFT
VGG
VGGw/S-CSS
VGGw/M-CSS
FCSS

(b) JODS

Error threshold (pixels)
5 10 15

Fl
ow

 a
cc

ur
ac

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SIFT
DAISY
LSS
DASC
DeepD.
DeepC.
MatchN.
LIFT
VGG
VGGw/S-CSS
VGGw/M-CSS
FCSS

(c) PASCAL

Error threshold (pixels)
5 10 15

Fl
ow

 a
cc

ur
ac

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SIFT
DAISY
LSS
DASC
DeepD.
DeepC.
MatchN.
LIFT
VGG
VGGw/S-CSS
VGGw/M-CSS
FCSS
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Figure 5. Average flow accuracy with respect to endpoint error

threshold on the Taniai benchmark [45].

4) [42] (VGG), the VGG-Net with learned single-scale CSS

layer (VGG w/S-CSS) and learned multi-scale CSS layers

(VGG w/M-CSS)2. As an optimizer for estimating dense

correspondence maps, we used the hierarchical dual-layer

BP of the SIFT Flow (SF) optimization [31], whose code

is publicly available. Furthermore, the performance of the

FCSS descriptor when combined with other powerful op-

timizers was examined using the Proposal Flow (PF) [18]

and the deformable spatial pyramid (DSP) [24].

4.2. Results

Taniai Benchmark [45] We first evaluated our FCSS de-

scriptor on the Taniai benchmark [45], which consists of

400 image pairs divided into three groups: FG3DCar [29],

JODS [37], and PASCAL [20]. As in [45], flow accuracy

was measured by computing the proportion of foreground

pixels with an absolute flow endpoint error that is smaller

2In the ‘VGG w/S-CSS’ and ‘VGG w/M-CSS’, the sampling patterns

were only learned with VGG-Net layers fixed.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Qualitative results on the Taniai benchmark [45]: (a) source image, (b) target image, (c) SIFT [34], (d) DASC [25], (e) DeepD.

[41], (f) MatchN. [19], (g) VGG [42], and (h) FCSS. The source images were warped to the target images using correspondences.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Qualitative results on the Proposal Flow benchmark [18]: (a) source image, (b) target image, (c) DAISY [46], (d) DeepD. [41],

(e) DeepC. [50], (f) LIFT [49], (g) VGG [42], and (h) FCSS. The source images were warped to the target images using correspondences.

Methods
PCK

α = 0.05 α = 0.1 α = 0.15

SIFT [31] 0.247 0.380 0.504

DAISY [46] 0.324 0.456 0.555

LSS [40] 0.347 0.504 0.626

DASC [25] 0.255 0.411 0.564

DeepD. [41] 0.187 0.308 0.430

DeepC. [50] 0.212 0.364 0.518

MatchN. [19] 0.205 0.338 0.476

LIFT [49] 0.197 0.322 0.449

LIFT† [49] 0.224 0.346 0.489

VGG [42] 0.224 0.388 0.555

VGG w/S-CSS 0.239 0.422 0.595

VGG w/M-CSS 0.344 0.514 0.676

FCSS 0.354 0.532 0.681

Table 3. Matching accuracy for various feature descriptors with

SF optimization on the Proposal Flow benchmark [18]. LIFT†

denotes results of LIFT [49] with densely sampled windows.

than a certain threshold T , after resizing images so that

its larger dimension is 100 pixels. Table 1 summarizes the

matching accuracy for various feature descriptors with the

SF optimization fixed (T = 5 pixels). Interestingly, while

both the CNN-based descriptors [41, 50, 19, 49] and the

handcrafted descriptors [34, 40, 46, 25] tend to show simi-

lar performance, our method outperforms both of these ap-

proaches. Fig. 5 shows the flow accuracy with varying error

thresholds. Fig. 6 shows qualitative results. More results

are available in the supplementary materials.

Table 2 compares the matching accuracy (T = 5 pixels)

Methods
PCK

α = 0.05 α = 0.1 α = 0.15

DSP [24] 0.239 0.364 0.493

SIFT Flow [31] 0.247 0.380 0.504

Zhou et al. [52] 0.197 0.524 0.664

Proposal Flow [18] 0.284 0.568 0.682

FCSS w/DSP [24] 0.302 0.475 0.602

FCSS w/SF [31] 0.354 0.532 0.681

FCSS w/PF [18] 0.295 0.584 0.715

Table 4. Matching accuracy compared to state-of-the-art corre-

spondence techniques on the Proposal Flow benchmark [18].

with other correspondence techniques. Taniai et al. [45] and

Proposal Flow [18] provide plausible flow fields, but their

methods have limitations due to their usage of handcrafted

features. Thanks to its invariance to intra-class variations

and precise localization ability, our FCSS achieves the best

results both quantitatively and qualitatively.

Proposal Flow Benchmark [18] We also evaluated our

FCSS descriptor on the Proposal Flow benchmark [18],

which includes 10 object sub-classes with 10 keypoint an-

notations for each image. For the evaluation metric, we used

the probability of correct keypoint (PCK) between flow-

warped keypoints and the ground truth [33, 18]. The warped

keypoints are deemed to be correctly predicted if they lie

within α · max(h,w) pixels of the ground-truth keypoints

for α ∈ [0, 1], where h and w are the height and width of

the object bounding box, respectively.

The PCK values were measured for various feature de-
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Figure 8. Visualizations of dense flow field with color-coded part segments on the PASCAL-VOC part dataset [6]: (a) source image, (b)

target image, (c) source mask, (d) LSS [38], (e) DeepD. [41], (f) DeepC. [50], (g) LIFT [49], (h) FCSS, and (i) target mask.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9. Visualizations of dense flow fields with mask transfer on the Caltech-101 dataset [13]: (a) source image, (b) target image, (c)

source mask, (d) SIFT [34], (e) DASC [25], (f) MatchN. [19], (g) LIFT [49], (h) FCSS, and (i) target mask.

Methods IoU
PCK

α = 0.05 α = 0.1

FlowWeb [24] 0.43 0.26 -

Zhou et al. [52] - - 0.24

Proposal Flow [18] 0.41 0.17 0.36

UCN [7] - 0.26 0.44

FCSS w/SF [31] 0.44 0.28 0.47

FCSS w/PF [18] 0.46 0.29 0.46

Table 5. Matching accuracy on the PASCAL-VOC part dataset [6].

scriptors with SF optimization fixed in Table 3, and for dif-

ferent correspondence techniques in Table 4. Fig. 7 shows

qualitative results for dense flow estimation. Our FCSS

descriptor with SF optimization shows competitive perfor-

mance compared to recent state-of-the-art correspondence

methods. When combined with PF optimization instead,

our method significantly outperforms the existing state-of-

the-art descriptors and correspondence techniques.

PASCAL-VOC Part Dataset [6] Our evaluations also in-

clude the dataset provided by [53], where the images are

sampled from the PASCAL part dataset [6]. With human-

annotated part segments, we measured part matching ac-

curacy using the weighted intersection over union (IoU)

score between transferred segments and ground truths, with

weights determined by the pixel area of each part. To eval-

uate alignment accuracy, we measured the PCK metric us-

ing keypoint annotations for the 12 rigid PASCAL classes

[47]. Table 5 summarizes the matching accuracy compared

to state-of-the-art correspondence methods. Fig. 8 visual-

izes estimated dense flow with color-coded part segments.

From the results, our FCSS descriptor is found to yield the

highest matching accuracy.

Methods LT-ACC IoU LOC-ERR

DSP [24] 0.77 0.47 0.35

SIFT Flow [31] 0.75 0.48 0.32

Proposal Flow [18] 0.78 0.50 0.25

VGG [42] w/SF [31] 0.78 0.51 0.25

FCSS w/SF [31] 0.80 0.50 0.21

FCSS w/PF [31] 0.83 0.52 0.22

Table 6. Matching accuracy on the Caltech-101 dataset [13].

Caltech-101 Dataset [13] Lastly, we evaluated our FCSS

descriptor on the Caltech-101 dataset [13]. Following the

experimental protocol in [24], we randomly selected 15

pairs of images for each object class, and evaluated match-

ing accuracy with three metrics: label transfer accuracy (LT-

ACC) [30], the IoU metric, and the localization error (LOC-

ERR) of corresponding pixel positions. Table 6 summarizes

the matching accuracy compared to state-of-the-art corre-

spondence methods. Fig. 9 visualizes estimated dense flow

fields with mask transfer. For the results, our FCSS descrip-

tor clearly outperforms the comparison techniques.

5. Conclusion

We presented the FCSS descriptor, which formulates lo-

cal self-similarity within a fully convolutional network. In

contrast to previous LSS-based techniques, the sampling

patterns and the self-similarity measure were jointly learned

within the proposed network in an end-to-end and multi-

scale manner. The network was additionally trained in a

weakly-supervised manner, using correspondence consis-

tency between object bounding boxes in the training image

pairs. We believe FCSS can potentially benefit instance-

level object detection and segmentation, thanks to its robust-

ness to intra-class variations and precise localization ability.
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