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Abstract

The adoption of “human-in-the-loop” paradigms in

computer vision and machine learning is leading to various

applications where the actual data acquisition (e.g., human

supervision) and the underlying inference algorithms are

closely interwined. While classical work in active learn-

ing provides effective solutions when the learning module

involves classification and regression tasks, many practical

issues such as partially observed measurements, financial

constraints and even additional distributional or structural

aspects of the data typically fall outside the scope of this

treatment. For instance, with sequential acquisition of par-

tial measurements of data that manifest as a matrix (or ten-

sor), novel strategies for completion (or collaborative fil-

tering) of the remaining entries have only been studied re-

cently. Motivated by vision problems where we seek to an-

notate a large dataset of images via a crowdsourced plat-

form or alternatively, complement results from a state-of-

the-art object detector using human feedback, we study the

“completion” problem defined on graphs, where requests

for additional measurements must be made sequentially. We

design the optimization model in the Fourier domain of the

graph describing how ideas based on adaptive submodu-

larity provide algorithms that work well in practice. On a

large set of images collected from Imgur, we see promising

results on images that are otherwise difficult to categorize.

We also show applications to an experimental design prob-

lem in neuroimaging.

1. Introduction

The problem of missing or partially observed data is

ubiquitous in science — an issue that is becoming more rel-

evant within the translational/operational aspects of modern

computer vision and machine learning. Occasionally, we

may be restricted by the number of distinct types of mea-

surements (feedback or supervision) that can be acquired

per participant due to budget constraints. In other situations,

a subset (or even a majority) of features/responses may be

missing in a portion of the data due to logistic reasons. Sep-

arately, equipment malfunction, human negligence or fa-

tigue, noise and other factors common in data acquisition

lead to scenarios where a subset of the data to be analyzed is

missing, partially observed or systematically corrupted. Oc-

casionally, this phenomena may be prospective — a design

choice where the experiment can acquire extensive supervi-

sion only for a few samples. Alternatively, it may be a nui-

sance that must be accounted for in a retrospective manner

(e.g., 10% of participants labeled merely half of the objects

in the image). As the number of computer vision and ma-

chine learning systems deployed in the real world continues

to grow and “human-in-the-loop” paradigms become main-

stream, such issues will emerge as a first order constraint

that should inform the design of algorithms.

Example 1. We are tasked with collecting human anno-

tations on 1M+ images, via a crowdsourced platform. The

allocated budget, unfortunately, is only enough for 500K

image-wise annotations. Assume that 250K randomly se-

lected images in the corpus have already been annotated in

the first phase. We may ask an interesting question: based

on image features calculated (e.g., using a deep network

[33, 36, 17]) on the full dataset, if we could only acquire

partial data based on financial constraints, can we come

up with a “policy” to decide which subset of 250K images

should we request user feedback on? Is one ‘order’ of re-

quests (policy) better than the other? If we know that we

will run a simple logistic regression using the annotations

what properties of the data will ensure that we obtain guar-

antees on the downstream machine learning model?

Example 2. Consider the setting where we have access

to an (already trained) model for object detection. When we

use this system on images obtained via a platform such as

Reddit or Imgur, it works well but fails for η% of the im-

ages. Let us assume that the already learned system offers

good specificity, i.e., when the model is highly confident, its

predictions correlate with ground truth labels. Separately,

we also have auxiliary information (e.g., comments, cap-

tions associated with each image). While not perfect, such

secondary data provide some sense of associations between

images. If this were a partially observed distribution (with

η% of missing observations), can we provide new object
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probabilities on images where a state of the art object de-

tectors failed? Now, if human supervision were available to

annotate a small portion, η% of images, in which order of

images will we ask the human to intervene? Thinking of

object-wise probabilities as a multivariate “signal”, can the

signal on the remaining subset be “completed”?

Example 3. In a neuroimaging study, we may be pro-

vided a set of relatively cheaper measurements (e.g., MRI

scans) on all subjects in a cohort. Let us assume that these

measurements are correlated with a more expensive and

highly informative acquisition such as a PET scan; sum-

maries obtained from the less expensive scans are useful but

have higher variability [35]. What can be gleaned from the

data statistics of the cheaper set of imaging measures? How

can such information guide the sequential order in which

more expensive data will be collected on the remaining par-

ticipants with budget constraints? Can we guarantee that the

statistical power of the downstream model will improve?

If we ignore the online aspect of the problems above, it is

reasonable to think of examples 1 to 3 above via the lens of

matrix completion [10, 5, 6, 37, 6, 4, 16]. Indeed, each sub-

ject/participant can be given as a column in a matrix which

is partially observed (potentially corrupted) and the task is

to “complete” the matrix — often, using a low rank reg-

ularizer (or its variants). However, we see that even the

entry-level assumptions used in low rank matrix comple-

tion are violated, for instance, the restricted isometry prop-

erty (RIP) and incoherent sampling. Shoehorning matrix

completion schemes directly to the problem yields unsatis-

factory results, as we will describe shortly.

Graph representation. Instead of a matrix, it is perhaps

more natural to express the data in terms of a graph. Indi-

vidual participants are nodes and their measurements can be

assumed to be an observed multivariate signal of dimension

p on each node. If we assume some auxiliary information

yields associations between these nodes, then the partially

observed setting models the situation that at some nodes we

do not observe the signal at all, see Fig. 1.

This “discrete” space (i.e., graph) version of completion

problems has only been studied/formalized within the last

two years. In [28], the idea of collaborative filtering was

generalized to graphs where a smoothness assumption was

imposed using the Laplacian of the graph. Separately, a ran-

dom sampling scheme with a bandlimited assumption was

introduced in [27] where the authors define a probability

distribution for sampling at each node of a graph by ana-

lyzing the eigenvalues/eigenvectors of the Laplacian of the

graph. These methods essentially model the graph com-

pletion problem (an example demonstrated in Fig. 1) using

a diffusion process by propagating observed measurements

to their neighboring vertices where the measurements are

unobserved. They utilize the spectrum of the Laplacian of

a graph to simulate the diffusion process in the native space

Figure 1: An example of graph completion on Armadillo mesh, given

edge weights based on curvature. Left: noisy signal on the mesh, Middle:

partial observation on the signal, Right: recovery of the signal on the mesh.

(i.e., a graph), and solve an optimization problem in the

graph space to obtain the optimal solution. These are im-

portant results which provide baselines for our experiments.

Key Ideas. The starting point of our proposed algorithm

is to perform harmonic analysis on the given graph. Simi-

lar to the “low rank” property (for matrix completion), we

also make use of parsimony/sparsity, albeit in terms of rep-

resentations obtained in the Fourier/wavelet space of the

graphs. Recall that measurements/signals are represented

as a smooth function in their graph space but their represen-

tations in a dual space may be sparse, which is an impor-

tant advantage of the frequency analysis [20]. We exploit

a similar idea, in the graph setting using the graph Fourier

transform. The “online” version of the completion problem

is defined using the frequency space of this graph. When we

acquire a measurement on a vertex, the “value of informa-

tion” for the remaining set of unobserved vertices changes

to impact our “policy” to acquire the next measurement.

This strategy is related to the idea of diminishing returns

but is an “adaptive” variation. While such an online sce-

nario has been studied for a general matrix or tensor setting

[21, 22, 25], no algorithms are available for graphs. We

show how recent work on submodular maximization can be

adapted for analysis of measurements on a graph in this on-

line manner utilizing the graph Fourier representation.

In this paper, we provide a framework for deciding the

optimal policy of selecting vertices on a graph for an accu-

rate and efficient recovery of a signal by exploring its dual

representation. The contributions of this paper are: 1) we

propose an algorithm for sequentially selecting vertices on a

graph using adaptive submodularity, 2) we provide an algo-

rithm for sequentially recovering signals on graph vertices

using the graph Fourier transform, 3) we demonstrate exten-

sive results on large-scale image datasets as well as a neu-

roimaging dataset. On the image data, we estimate object

labels on images where state-of-the-art object detectors fail.

On the neuroimaging data, we estimate expensive summary

measures from brain scans using other cheaper measures.

2. Background: Fourier and Wavelet Trans-

forms in Non-Euclidean Spaces

The Fourier and wavelet transforms have been exten-

sively studied almost exclusively in Euclidean spaces. Re-

cently, several groups have demonstrated the analogs of

these transforms in non-Euclidean spaces [8, 14], which are
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fundamental for our proposed algorithm. We therefore pro-

vide a brief description in this section.

2.1. Fourier and Wavelet Transforms

The Fourier transform transforms a signal f(x) in x to

f̂(ω) in the frequency space ω using sin() basis functions as

f̂(ω) = 〈f, ejωx〉 =
∫
f(x)e−jωxdx. The concept under-

lying the wavelet transform is similar but it utilizes a local-

ized oscillating basis function (i.e., mother wavelet) for the

transform. While the Fourier basis has an infinite support,

a wavelet ψ is localized in both time and frequency space

[26]. A mother wavelet with scale s and translation a pa-

rameters is written as ψs,a(x) =
1

s
ψ(x−a

s
), where changing

s and a varies the dilation and location of ψs,a respectively.

Using ψs,a as basis, a wavelet transform of a function f(x)
yields wavelet coefficients Wf (s, a) defined as

Wf (s, a) = 〈f, ψ〉 =
1

s

∫

f(x)ψ∗(
x− a

s
)dx (1)

where ψ∗ is the complex conjugate of ψ.

In the frequency space, ψs behave as band-pass filters

covering different bandwidths corresponding to scales s.
When these band-pass filters do not handle low-frequency

bands, a scaling function φ (i.e., a low-pass filter) is intro-

duced. In the end, a transform of f with the scaling function

φ results in a smooth representation of the original signal

and filtering at multiple scales s of the mother wavelet ψs

offers a multi-resolution view of the given signal. In both

cases for the Fourier and wavelet transforms, there exist in-

verse transforms that reconstruct the original signal f(x)
using their coefficients and the basis functions.

2.2. Fourier and Wavelet Transforms for Graphs

The Euclidean space is typically represented as a regular

lattice, therefore one can easily construct a mother wavelet

with a certain shape to define a wavelet transform. On the

other hand, in non-Euclidean spaces that are generally rep-

resented by a set of vertices and their arbitrary connections,

the construction of a mother wavelet is ambiguous due to

the definition of dilation and translation of ψs,a. Because

of these issues, the classical Fourier/wavelet transform has

not been suitable for analyzing data in complex space until

recently when [14, 8] proposed these transforms for graphs.

The core idea for constructing a mother wavelet ψs

on the nodes of a graph comes from its representation in

the frequency space. By constructing different shapes of

band-pass filters in the frequency space and transforming

them back to the original space, we can implement mother

wavelets that maintain the traditional properties of wavelets.

Such an implementation requires a set of “orthonormal”

bases and a kernel (filter) function. The orthonormal bases

span the analog of the frequency space in the non-Euclidean

setting and the kernel function denotes the representation of

ψs in the frequency space. In this sense, when the non-

Euclidean space is represented as a graph, we can adopt

spectral graph theory [7] for orthonormal bases and design

a g() in the space spanned by the bases.

In general, a graph G = {V,E} is represented by a set of

vertices V of size N and a set of edges E that connects the

vertices. An adjacency matrix AN×N is the most common

way to represent a graph G where each element aij denotes

the connection in E between the ith and the jth vertices

by a corresponding edge weight. Another matrix, a degree

matrix DN×N , is a diagonal matrix where the ith diagonal

element is the sum of edge weights connected to the ith
vertex. From these two matrices, a graph Laplacian is then

defined as L = D − A. Note that L is a self-adjoint and

positive semi-definite operator, therefore provides pairs of

eigenvalues λl ≥ 0 and corresponding eigenvectors χl, l =
1, · · · , N which are orthonormal to each other. The bases

χ can be used to define the graph Fourier transform of a

function f(n) defined on the vertices n as

f̂(l) =
N
∑

n=1

f(n)χ∗

l (n) and f(n) =
N
∑

l=1

f̂(l)χl(n) (2)

where χ∗ is a conjugate of χ. Here, the graph Fourier co-

efficient f̂(l) is obtained by the forward transform and the

original function f(n) can be reconstructed by the inverse

transform. If a signal f(n) lives in the spectrum of the first

k eigenvectors, we say that f(n) is k-bandlimited. This

transform offers a way to look at a signal defined on graph

vertices in a dual space which is an analog of the frequency

space in the Fourier transform.

A mother wavelet ψ then can be defined using the graph

Fourier transform. First, a kernel function g : R+ → R
+

(i.e., band-pass filter) is designed in the dual space, then this

operation is localized by an impulse function δn at vertex n:

ψs,n(m) =
N∑

l=1

g(sλl)χ
∗

l (n)χl(m). (3)

Here, the scale parameter s is independent from χ and de-

fined inside of g() using the scaling property of Fourier

transform [32]. Examples of localized ψs on a mesh are

shown in Fig. 2 comparing with a χ3 (not localized).

The wavelet transform of a function f(n) on graph ver-

tices n at scale s then can be written using the bases ψ
defined as in (3), and it follows the conventional defini-

tion of the wavelet transform yielding wavelet coefficients

Wf (s, n) at scale s and location n as

Wf (s, n) = 〈f, ψs,n〉 =
N
∑

l=1

g(sλl)f̂(l)χl(n). (4)

This transform offers a multi-resolution view of a signal de-

fined on graph vertices just like the traditional wavelet trans-

form in the Euclidean space (e.g., pixels) by multi-scale fil-

tering. Our method to be introduced shortly will use the

graph Fourier transform and wavelets on graphs to formal-

ize adaptive vertex selection strategy and graph completion.
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Figure 2: Examples of basis functions on a dog shaped mesh. Left:

χ3 (not localized), Middle: two ψ1 (localized) at the back and on a paw,

Right: ψ5 (localized and condensed).

3. Our Proposed Algorithm

Consider a setting where there exists an unknown ban-

dlimited signal f of p features defined on N graph vertices

(in an identical state space). In other words, at each vertex

v, we can in principle obtain a p-dimensional feature. How-

ever in reality, we may be able to observe the signal only

at m≪N different vertices of the graph due to budget con-

straints. In this setting, there are two core questions we may

ask related to the recovery of the signal f at all vertices: 1)

how to efficiently recover the signal on every vertex and 2)

how to select the best m vertices (and in which order) to

acquire the additional measurements. We tackle these prob-

lems by formulating an adaptive submodular function de-

rived from the frequency space of the graph. We provide our

solutions to the two questions by showing that our formula-

tion is adaptive submodular and proposing an algorithm to

recover the full signal. Notice the distinction from classical

active learning (also see [20, 21, 22]) that our specification

is agnostic to the subsequent task (e.g., classification).

3.1. Signal Recovery in Graph Fourier Space

Suppose we have collected data from m number of ver-

tices Y ∈ R
m×p from a full (unknown) function f ∈

R
N×p. Here, our objective is to recover the original sig-

nal f based on the partial observation Y . We denote the set

of selected indices as W = {w1, w2, · · · , wm}, and define

a projection matrix P that maps f to Y (i.e., Pf = Y ):

Pi,j =

{

1 if j = wi

0 o.w.
. (5)

Based on the data Y from the selected data points (i.e., ver-

tices), a naive signal recovery algorithms may solve for

Z
∗ = argmin

Z∈RN×p

||PZ − Y ||2ℓ2 (6)

which minimizes the error between the observation and the

estimation and typically used with a smoothness constraint.

However, such a formulation operates in the native space

of RN×p without utilizing the bandlimited property of sig-

nals. It can be also computationally challenging to deal with

other constraints that requires full diagonalization of L. We

therefore take this problem into its graph Fourier space us-

ing a set of orthonormal bases Uk = [χ1, χ2, · · · , χk] and

search for a solution in the dual space spanned by Uk. One

of the most fundamental properties of the Fourier represen-

tation is its sparsity. In many cases, even a very dense form

of signals in its original domain can be reconstructed with

a few sin() functions. Signals in the image space tend to be

smooth among pixels that are spatially close, on the other

hand, their frequency representations are independent from

such a spatial constraint [20]. Such an observation is crucial

for methods for low-rank estimation of signal/measurement

and has been utilized in machine learning and computer vi-

sion literature [6, 4]. In this regime, we would want to ob-

tain a bandlimited solution that is sparse within the range of

k-band. Transforming (6) into the space spanned by Uk and

imposing ℓ1-norm constraint for the sparsity, we obtain

Ẑ
∗ = argmin

Ẑ∈Rk×p

||PUkẐ − Y ||
2
ℓ2

+ ξ||Ẑ||ℓ1 (7)

where ξ controls the sparsity and its solution is easily ob-

tainable using a LASSO solver [34]. The optimal solu-

tion Ẑ∗ here is an estimation of sparse encoding of the

original signal f in the frequency space, and its repre-

sentation in the original space can be empirically recov-

ered by performing the inverse graph Fourier transform as

Z∗(n) =
∑k

l=1
Ẑ∗
k(l)χl(n). Note that in (7), we avoid im-

posing a smoothness constraint that has been used in other

approaches [28, 27], since our solution is already smooth

due to its low-rank and bandlimited properties. However,

the smoothness criteria may still be useful when our as-

sumption (i.e., sparsity) in the dual domain does not hold.

3.2. Performing Adaptive Selection of Vertices

In order for our signal recovery process to obtain the best

estimation possible, the optimal sequential selection of ver-

tices to construct the projection matrix P is critical. For

this task, we approach this problem from an adaptive sub-

modular perspective. Let us first clarify some notations to

describe adaptive submodularity.

Given a set of vertices V with possible states S, we de-

note a function γ : V → S as a realization. We also

denote Γ as a random realization with a prior probability

p(γ) := P[Γ = γ]. Under this setting, we look for a strat-

egy to select a vertex v, observe its state Γ(v) and then select

the next vertex conditioned on the previous observations.

The set of observations until the most recent stage is rep-

resented as partial realization θ and its domain defined as

dom(θ) = {v|∃o, (v, o) ∈ θ}. The selection process de-

fines a policy π = {π1, π2, · · ·πm} which is an ordered set

of m number of selected vertices. Given a policy π, a func-

tion f : 2V ×OV → R depends on the selection of vertices

and its states. Defining V (π,Γ) as the set of vertices under

realization Γ, we can formulate a problem to identify the

optimal strategy with favg = E[f(V (π,Γ)),Γ] as

π∗ ∈ argmax
π

favg(π) s.t. |V (π,Γ)| ≤ k

that is known as adaptive stochastic maximization problem

[13]. With conditional expected marginal benefit defined as

∆(v|θ) = E[f(dom(θ) ∪ {v},Γ)− f(dom(θ),Γ)|Γ], (8)
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it is known that a function f : 2V × SV :→ R is adap-

tive monotone when ∆(v|θ) ≥ 0 and adaptive submodular

when ∆(v|θ) ≥ ∆(v|θ′) with θ ⊆ θ′ [13]. Such a problem

is easily solved approximately by a greedy algorithm that

maximizes ∆(v|θ) at each iteration. For example, if the V
are potential locations to place certain sensors and f() is

a function that computes the area covered by the sensors,

given a probability that some sensors fail at random (i.e.,

p(γ)), one can maximize the total expected area covered by

selected sensors by such an algorithm.

Such a setup can be computationally challenging due to

the size of V and requires an accurate prior probability. We

therefore tackle our problem of selecting the vertices in a

simpler manner by computing a “leverage value” that de-

scribes the importance of each vertex using frequency prop-

erties of a given graph. In our formulation, once a vertex

is selected based on the leverage measure and data are ac-

quired, then its state gets fixed (i.e., placed sensors do not

fail). Notice that such a setting makes the problem deter-

ministic. However, once we observe the state of the ver-

tex and evaluate its contribution to the signal recovery pro-

cess, we will adaptively modify the leverage value for all

remaining vertices to make the next selection. That is, once

a vertex is added to the policy π, we will perform our sig-

nal recovery process as described in section 3.1 to evaluate

how well the signal is recovered at the newly selected ver-

tex which will adaptively affect our next selection. In this

setting, the conditional marginal benefit (no longer an ex-

pectation), given a policy π is defined as

∆(v|π) = f(dom(π) ∪ {v}|π)− f(dom(π)|π) (9)

which is a specific case of (8) with a fixed policy π instead

of a random realization.

Next, in order to define our utility function, we define a

measure that describes a notion of importance at each ver-

tex. At each vertex, we can define the leverage value as

I(n) =

k
∑

l=1

g(λl)χl(n)
2

(10)

which is a reconstruction of δn at vertex n using Uk and a

kernel function g() [31, 3, 1, 15, 19]. The leverage value

I(n) ≥ 0 describes how much energy is preserved at vertex

n at scale s and roughly describes how well a signal can

be recovered at each vertex with limited number of bases.

In order for an accurate signal recovery on the selected ver-

tices, we want to prioritize vertices with high I when select-

ing a vertex v for π. Moreover, we assume that the signals

on neighboring vertices may be similar (i.e., smooth) and

modulate down Is from neighboring vertices of v when it

gets selected. To define the notion of “closeness” between

vertices, we use a diffusion-type distance [9, 18] defined as

Ds,n′(n) =

k
∑

l=1

g(sλl)χl(n
′)χl(n) (11)

which measures how far a vertex n and n′ are at scale s by

an energy propagation process. Using these concepts, given

Ij after j number of selections, the leverage value Ij+1 for

the next selection is defined as

I
j+1 = I

j − ηjD (12)

where ηj is a constant to set Ij+1(πj) = 0. Notice that for

the leverage values Ij(v) and Ij+1(v) on the same vertex v
at j and (j + 1)th iterations, Ij(v) ≥ Ij+1(v) with D > 0.

With the leverage value Ij in hand, we define a utility func-

tion f(π) =
∑|π|

i=1
Ii(πi) which is the sum of I(·) from

each selection. Using the two results below, we show that

our utility function is adaptive monotone and adaptive sub-

modular and can be approximately solved in a greedy way.

Lemma 1. Given current policy π = {π1, π2, · · · , πj} of

size j, f(π) =
∑j

i=1
Ii(πi) is adaptive monotone.

Proof. The conditional benefit of adding a vertex v having
observed π is

∆(v|π) = f(dom(π) ∪ {v}|π)− f(dom(π)|π)

=

j∑

i=1

Ii(πi) + Ij+1(v)−

j∑

i=1

Ii(πi)

= Ij+1(v) ≥ 0

This lemma shows that the benefit of adding a vertex v is

always non-negative and f(π) follows the traditional defi-

nition of monotonicity (i.e., f(A) ≤ f(B) holds whenever

A ⊆ B) with positive I .

Lemma 2. Given two policies π of size j and π′ of size j′

where π ⊆ π′, our utility function f(π) =
∑j

i=1
Ii(πi) is

adaptive submodular.

Proof. The difference between the conditional benefits
from the two observations (i.e., policies) π and π′ is

∆(v|π)−∆(v|π′) = f(dom(π) ∪ {v}|π)− f(dom(π)|π)

− (f(dom(π′) ∪ {v}|π′)− f(dom(π′)|π′))

= Ij+1(v)− Ij
′
+1(v) ≥ 0

This result shows that the utility function f(π) satisfies an

adaptive analog of the traditional definition of submodular-

ity [12] (i.e., f(A ∪ {v}) − f(A) ≥ f(B ∪ {v}) − f(B)
when A ⊆ B ⊆ V and v ∈ V \ B) and it can be used to

formulate an adaptive submodular optimization problem.
Given our adaptive submodular utility function at hand,

we define this iterative process as Select and Recover (SR)
method by formulating the following problem:

π
∗ ∈ argmax

π

j
∑

i=1

I
i(πi) (13)

s.t. I
i+1 = I

i − ηiD, j ≤ m.
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Such an adaptive submodular problem is solved by a greedy

algorithm that comes with performance guarantees [13].

Once we obtain the the optimal π∗, we can finalize a set

of selected vertices W and a projection matrix P which are

the key ingredients for our signal recovery step. Using W ,

we go through the process as described in section 3.1 and

obtain the estimation of the unknown signal. This whole

pipeline is summarized in the Algorithm 1 below, where we

solve LASSO at each iteration which is easily scalable.

Algorithm 1: Select and Recover (SR) Method

Input : vertex set V , orthonormal bases Uk, total number

of selection m and D update parameter α

Output: Z: recovered signal

1 π ← ∅, s← 0
2 Derive I1(n) using Uk as in (10)

3 for i = 1 to m do

4 Selection step: v∗ = argmaxv ∆(v|π)
5 π ← π ∪ {v∗}
6 Observe f(dom(π))
7 Recovery step: obtain Z∗ as in section 3.1

8 s← α|f(πi)− Z
∗(πi)|

9 Ii+1 ← Ii − ηiDs

10 end

11 Return Z∗

4. Experimental Results

In this section, we demonstrate various experimental re-

sults using our framework on three different datasets. The

first unique dataset consists of images and comments that

we collected from Imgur (http://www.imgur.com),

where we qualitatively evaluate our framework for labeling

objects in images where object detectors failed. The sec-

ond dataset is publicly available MSCOCO, where we make

quantitative evaluations for a multi-label learning problem

with human-specified object labels. The basic schematic of

how the SR method works on these datasets is shown in

Fig. 3. The last experiment focuses on Alzheimer’s disease

(AD) image dataset that consist of participants with Pitts-

burgh compound B positron emission tomography (PIB-

PET) scans and Cerebrospinal fluid (CSF) data. Here, we

use the CSF measures and SR method to predict PIB imag-

ing measures where CSF data is much cheaper to acquire.
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Figure 3: Our workflow on image datasets. Left: images and text, Mid-

dle: a graph derived from the text and a policy π (yellow vertices), Right:

recovered object labels on unobserved vertices (red vertices).

4.1. Object Label Estimation over Object Detection

Dataset. We used MSCOCO categories to select a sub-

set of categories on Imgur which provided images and com-

ments, which gave us an interesting dataset to evaluate our

algorithm. For each image, we obtained the top 10 com-

ments upvoted by the community. We also created a dictio-

nary of most commonly used words on Imgur (e.g., upvoted

and downvoted) which were removed from the comments.

We removed those categories that provided no images and

the images with fewer than 10 comments. Our eventual

dataset consisted of 10K images with 75 categories.

Setup. A graph of 10K vertices (i.e., images) with to-

tal of 49995k edges was generated by calculating the pair-

wise similarity between the comments from each image. To

compute the similarities, the comments were first cleaned

(i.e., removing stopwords, URLs and non-alphabetical let-

ters) using natural language toolkit (NLTK) [2] and vec-

tor embedding using Word2Vec [30]. Then, the sanitized

comments were used to compute Word’s Mover’s Distance

(WMD) [23] using HTCondor distributed computing soft-

ware. In our case, the WMD ranged in (4, 16) and we used

a Gaussian kernel to transform the WMD into similarity

measure within (0, 1). In order to assign object labels in

each image, we used You Only Look Once (YOLO) [29],

a deep learning framework pretrained on MSCOCO images

and categories. After thresholding the confidence level at

40%, we ended up with 6329 images with at least one label.

We applied SR framework (using α = 1 and ξ = 0.01)

on this graph with the object labels as measurements on the

vertices as in Fig. 3. Note that our framework works in

an online manner. We first select a vertex (i.e., an image)

π1 and obtain corresponding image labels as in section 3.2

and then run the recovery process as in section 3.1 which

will inform how the next vertex π2 should be selected. Af-

ter running this procedure m times until πm, we obtain our

policy π to be used for final image label recovery. We will

demonstrate our results withm = 50% of the total samples,

i.e., selection of 5000 (of 10K) vertices to obtain image la-

bels and perform estimation over all vertices including the

5000 vertices where our model has not obtained a measure-

ment (class/object label). Note that we do not have ground

truth (i.e., true object labels) for this dataset. We therefore

show various interesting qualitative results on the images

where YOLO did not detect objects with high confidence.

Results. Our representative results on object label esti-

mation on the unselected images are demonstrated in Fig. 4.

Note that we were not able to assign any labels for ob-

jects in these images using YOLO, since these objects were

severely occluded/scaled, not in traditional shape or arti-

ficial objects. However, our framework successfully sug-

gested labels for some of the unlabeled images with our 75

predefined categories. For the images where both YOLO

and our method did not yield any labels, post-hoc analysis

suggested that many of these images contained little visual

context. More results are shown in the appendix.

There were some failure cases where our method as-
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{cell phone}

{bird}

{book}

{horse}

{cat}

{person, horse}

{dog}
{car}{person}

Figure 4: Various results on object label estimation from our Imgur experiment. YOLO did not confidently assign any labels on these images (i.e., below

40% confidence) using our 75 categories. However, our framework suggested that there were some objects in these image. The images represent nodes and

the lines denote edges in our framework, and there are strong relationships between images with same object labels.

signed false labels that generally falls in one of the follow-

ing cases: 1) SR predicted “persons” but only a small part

of a person (e.g., hand, arm or finger) was seen, 2) SR de-

tected objects that had images of texts describing the object,

3) similar/related objects exist in the image but not exact

(e.g., car center labeled as ‘car’). Some of these examples

which are still interesting are shown in Fig. 5.

4.2. Multi­label Learning on MSCOCO Dataset

Dataset. We used the MSCOCO dataset where ∼328000
images with 82 different object categories and relevant cap-

tions were available [24]. We retrieved the first 80 im-

ages from 80 different categories and their correspond-

ing captions to generate a smaller dataset to evaluate our

SR method. When overlapping images between categories

were discarded, our dataset included 5440 images.

Setup. A graph using MSCOCO data was generated

based on the captions from the 5440 images (i.e., 5440

Figure 5: Examples of images where our method assigns false labels.

We assigned car for body shop (left), sheep instead of sheep shaped chair

(middle) and person instead of a person shaped apple (right).

nodes). The edges were defined using WMD in the same

way as in section 4.1. Measurements at each vertex were

given as a binary 1 × 80 vector representing object labels

where non-zero elements indicate whether the correspond-

ing objects exist in the image. Concatenating 5440 of them,

we get a f5440×80 matrix which served as the ground truth.

Depending on the sampling ratio, m number of rows of the

matrix were selected according to our policy π to obtain ob-

ject labels, and we recovered the measurements on all rows.

Notice that the ground truth labels are skewed, i.e., 0s dom-

inates over 1s since there are only a few objects in each

image. Therefore, to evaluate our algorithm, we computed

the number of errors that SR makes as well as mean preci-

sion of the prediction. We compared our results with two

other baseline methods 1) Puy et a.l [27] and 2) Rao et al.

[28], which are the state-of-art methods for graph comple-

tion. For the signal recovery step, we used α = 1, ξ = 0.01
and only 60% of the total bases in our algorithm for estima-

tion while other methods required all of them.

Result. After recovering the object labels for all images,

we thresholded the estimation at 0.15 to make the recov-

ered labels binary (i.e., 1 if a recovered signal is > 0.15
and 0 otherwise). Since baseline methods are stochastic, we

ran them 100 times and computed the mean of evaluation

scores with optimzed parameters. Table 1 shows the num-

ber of mistakes (out of 435200 estimations) with respect to
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the size of our policy (or the total number of samples). As

the number of samples that we select increases, the errors

decrease in all three methods and our method makes the

fewest errors. We also report mean precision over all cat-

Sampling Ours (SR) Puy et al. Rao et al.

20% 19531 21274.6 23992.6

30% 17246 19503.3 20427.7

40% 15003 17862.2 17762.4

60% 8992 10689.6 11906.9

Table 1: # of errors (out of 435200) in the recovered measurements

egories instead of accuracy in Fig. 6. Here, the precision

increases as the size of the policy increases and our result

shows higher precision than those from the baselines as well

as in [20] reaching up to 0.84 with 60% of total vertices.

Figure 6: Mean precision over all categories w.r.t sampling ratio. As the

number of samples increase, precision increases. SR (red) shows higher

precision than Puy et al (green) and Rao et al (blue) at all sampling rates.

4.3. Estimation of PIB Measures using CSF

Dataset. Our AD dataset includes 79 participants where

both PIB-PET scans and CSF are available. The voxel in-

tensities of PIB-PET scans measure amyloid plaque pathol-

ogy in the brain which is highly related to brain function as

do the CSF measures, and these two measures are known to

be highly (negatively) correlated [11]. We parcellated the

brain into multiple regions of interests (ROI) and took the

mean of the PIB measures in 16 selected ROIs to obtain ROI

specific PIB measures. From the CSF data, we obtained var-

ious protein levels for each participant. More details of the

dataset are given in the appendix.

Setup. The PIB images and the CSF measures involve

different costs where PET scans are much more expensive,

and CSF measures are often acquired as a surrogate for

PET scans. In this experiment, we try to estimate PET

image-derived measures based on CSF measures from the

full cohort and PET image-derived measures on a subset

of participants. A graph using CSF measures from each

participant (i.e., vertex) was created by measuring similar-

ity (i.e., edge) between participants using a Gaussian ker-

nel exp(−(x − y)2/σ2) with σ = 1. Then we applied

our framework as in Alg. 1 to decide a policy to obtain

PIB imaging measures from v ∈ π on the 16 ROIs and re-

cover the measures over all (remaining) participants. We

used ξ=0.01 for the sparsity parameter, k=50 number of

eigenvectors and α=1 for the signal recovery step.

Result. We show the ℓ2-norm of the error between

the ground truth and the recovered measures for evalua-

tion. Again, we ran the baseline methods 500 times to com-

pute the mean of errors due to their stochasticity. We ran

the experiments by varying m and reported the results with

m = {30%, 50%} of the total samples. As summarized in

Fig. 7, our result (in red) shows much lower error than the

baseline methods. When we used these estimation results

to identify whether each participants had elevated amyloid

burden (i.e., whether mean of PIB measures over all ROIs is

> 1.18), our estimation offered 91.1% accuracy while [27]

and [28] provided 88.6% and 87.6%.

Figure 7: ROI-wise mean ℓ2−norm error between recovered signals and

the ground truth using SR (red), Puy et al.(green) and Rao et al.(blue). Top:

using 30% of the total samples, Bottom: using 50% of the total samples.

5. Conclusion
Motivated by various instances in modern computer vi-

sion that involve an interplay between the data (or supervi-

sion) acquisition and the underlying inference methods, we

study the problem of adaptive completion of a multivari-

ate signal obtained sequentially, on the vertices of graph.

By expressing the optimization in the frequency domain of

the graph, we show how a simple algorithm based on adap-

tive submodularity yields impressive results across diverse

applications. On large-scale vision datasets, our proposal

complements object detection algorithms by solving a com-

pletion problem (using auxiliary information). The model

provides promising evidence how neuroimaging studies un-

der budget constraints can be conducted (in a sequential

manner) with minimal deterioration in statistical power.

Our open source distribution will enable applications to

other settings in vision which involves partial measurements

and/or sequential observations of data structured as a graph.
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