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Abstract

Existing zero-shot learning (ZSL) models typically learn

a projection function from a feature space to a semantic em-

bedding space (e.g. attribute space). However, such a pro-

jection function is only concerned with predicting the train-

ing seen class semantic representation (e.g. attribute pre-

diction) or classification. When applied to test data, which

in the context of ZSL contains different (unseen) classes

without training data, a ZSL model typically suffers from

the project domain shift problem. In this work, we present a

novel solution to ZSL based on learning a Semantic AutoEn-

coder (SAE). Taking the encoder-decoder paradigm, an en-

coder aims to project a visual feature vector into the se-

mantic space as in the existing ZSL models. However, the

decoder exerts an additional constraint, that is, the projec-

tion/code must be able to reconstruct the original visual fea-

ture. We show that with this additional reconstruction con-

straint, the learned projection function from the seen classes

is able to generalise better to the new unseen classes. Im-

portantly, the encoder and decoder are linear and sym-

metric which enable us to develop an extremely efficient

learning algorithm. Extensive experiments on six bench-

mark datasets demonstrate that the proposed SAE outper-

forms significantly the existing ZSL models with the addi-

tional benefit of lower computational cost. Furthermore,

when the SAE is applied to supervised clustering problem,

it also beats the state-of-the-art.

1. Introduction

A recent endeavour of computer vision research is to

scale the visual recognition problem to large-scale. This

is made possible by the emergence of large-scale datasets

such as ImageNet [52] and the advances in deep learning

techniques [31, 53, 57, 55]. However, scalability remains an

issue because beyond daily objects, collecting image sam-

ples for rare and fine-grained object categories is difficult

even with modern image search engines. Taking the Im-

ageNet dataset for example, the popular large-scale visual

recognition challenge (ILSVRC) [52] mainly focuses on the
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Figure 1. The proposed semantic autoencoder leverages the se-

mantic side information such as attributes and word vector, while

learning an encoder and a decoder.

task of recognising 1K classes, a rather small subset of the

full ImageNet dataset consisting of 21,814 classes with 14M

images. This is because many of the 21K object classes are

only composed of a handful of images including 296 classes

with only one image.

Humans can identify approximately 30,000 basic object

categories [9] and many more sub-classes, e.g. breeds of

dogs and combination of attributes and objects. Impor-

tantly, humans are very good at recognising objects with-

out seeing any visual samples. In machine learning, this

is considered as the problem of zero-shot learning (ZSL).

For example, a child would have no problem recognising

a “zebra” if he/she has seen horses before and also learned

that a “zebra” is like a horse with black-and-white stripes.

Inspired by humans’ ZSL ability, there is a recent surge of

interest in machine learning based ZSL for scaling up vi-

sual recognition to unseen object classes without the need

for additional data collection [66, 48, 19, 49, 2, 13, 58, 1,

54, 22, 23, 40, 11].

Zero-shot recognition relies on the existence of a labelled

training set of seen classes and the knowledge about how

each unseen class is semantically related to the seen classes.

Seen and unseen classes are usually related in a high di-

mensional vector space, which is called semantic embed-
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ding space. Such a space can be a semantic attribute space

[25] or a semantic word vector space [19, 56]. In the se-

mantic embedding space, the names of both seen and un-

seen classes are embedded as vectors called class proto-

types [20]. The semantic relationships between classes can

then be measured by a distance, e.g. the prototypes of ze-

bra and horse should be close to each other. Importantly,

the same space can be used to project a feature representa-

tion of an object image, making visual recognition possible.

Specifically, most existing ZSL methods learn a projection

(mapping) function from a visual feature space to a seman-

tic embedding space using the labelled training visual data

consisting of seen classes only. At test time for recognising

unseen objects, this mapping function is then used to project

the visual representation of an unseen class image into the

same semantic space where both seen and unseen classes

reside. The task of unseen class recognition is then realised

by a simple nearest neighbour (NN) search – the class la-

bel of the test image is assigned to the nearest unseen class

prototype in the projected semantic space.

The training seen classes and testing unseen classes are

different. Although they can be considered as two overlap-

ping domains with some degrees of shared semantics, there

exists significant domain differences, e.g. the visual appear-

ance of the same attributes can be fairly different in unseen

classes. Existing ZSL models mostly suffer from the pro-

jection domain shift problem [21]. This is, if the projection

for visual feature embedding is learned only from the seen

classes, the projections of unseen class images are likely to

be misplaced (shifted) due to the bias of the training seen

classes. Sometimes this shift could be far away from the

correct corresponding unseen class prototypes, making the

subsequent NN search inaccurate.

In this work, we present a novel approach to zero-

shot learning based on the encoder-decoder paradigm [43].

Specifically, an encoder projects a visual feature represen-

tation of an image into a semantic representation space such

as an attributes space, similar to a conventional ZSL model.

However, we also consider the visual feature projection as

an input to a decoder which aims to reconstruct the original

visual feature representation. This additional reconstruction

task imposes a new constraint in learning the visual → se-

mantic projection function so that the projection must also

preserve all the information contained in the original visual

features, i.e. they can be recovered by the decoder [10]. We

show that this additional constraint is very effective in mit-

igating the domain shift problem. This is because although

the visual appearance of attributes may change from seen

classes to unseen classes, the demand for more truthful re-

construction of the visual features is generalisable across

seen and unseen domains, resulting in the learned project

function less susceptible to domain shift.

More precisely, we formulate a semantic autoencoder

with the simplest possible encoder and decoder model ar-

chitecture (Fig. 1): Both have one linear projection to or

from a shared latent embedding/code layer, and the encoder

and decoder are symmetric so that they can be represented

by the same set of parameters. Such a design choice is mo-

tivated by computational efficiency – the true potential of a

ZSL model is when applied to large-scale visual recognition

tasks where computational speed is essential. Even with this

simple formulation, solving the resultant optimisation prob-

lem efficiently is not trivial. In this work, one such solver is

developed whose complexity is independent of the training

data size therefore suitable for large-scale problems.

Our semantic autoencoder differs from conventional au-

toencoder [50] in that the latent layer has clear semantic

meaning: It corresponds to the semantic space and is sub-

ject to strong supervision. Therefore our model is not un-

supervised. Beyond ZSL learning, it can also be readily

used for solving other problems where a discriminative low-

dimensional representation is required to cluster visually

similar data points. To demonstrate its general applicability,

our SAE model is formulated for the supervised clustering

problem [41, 33].

Our contributions are: (1) A novel semantic encoder-

decoder model is proposed for zero-shot learning. (2)

We formulate a semantic autoencoder which learns a low-

dimensional semantic representation of input data that can

be used for data reconstruction. An efficient learning al-

gorithm is also introduced. (3) We show that the proposed

semantic autoencoder can be applied to other problems such

as supervised clustering. Extensive experiments are carried

out on six benchmarks for ZSL which show that the pro-

posed SAE model achieves state-of-the-art performance on

all the benchmarks.

2. Related Work

Semantic space A variety of zero-shot learning models

have been proposed recently [66, 48, 19, 49, 2, 13, 58, 1,

54, 22, 23, 40, 11]. They use various semantic spaces. At-

tribute space is the most widely used. However, for large-

scale problems, annotating attributes for each class becomes

difficult. Recently, semantic word vector space has started

to gain popularity especially in large-scale zero-shot learn-

ing [19, 56]. Better scalability is typically the motivation

as no manually defined ontology is required and any class

name can be represented as a word vector for free. Beyond

semantic attribute or word vector, direct learning from tex-

tual descriptions of categories has also been attempted, e.g.

Wikipedia articles [18, 35], sentence descriptions [44].

Visual → Semantic projection Existing ZSL models dif-

fer in how the visual space → semantic space projection

function is established. They can be divided into three

groups: (1) Methods in the first group learn a projec-

tion function from a visual feature space to a semantic
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space either using conventional regression or ranking mod-

els [25, 2] or via deep neural network regression or rank-

ing [56, 19, 44, 35]. (2) The second group chooses the re-

verse projection direction, i.e. semantic → visual [54, 28].

The motivation is to alleviate the hubness problem that

commonly suffered by nearest neighbour search in a high-

dimensional space [42]. (3) The third group of methods

learn an intermediate space where both the feature space

and the semantic space are projected to [36, 67, 13]. The

encoder in our model is similar to the first group of models,

whilst the decoder does the same job as the second group.

The proposed semantic autoencoder can thus be considered

as a combination of the two groups of ZSL models but with

the added visual feature reconstruction constraint.

Projection domain shift The projection domain shift

problem in ZSL was first identified by Fu et al. [21]. In

order to overcome this problem, a transductive multi-view

embedding framework was proposed together with label

propagation on graph which requires the access of all test

data at once. Similar transdutive approaches are proposed

in [47, 28]. This assumption is often invalid in the context of

ZSL because new classes typically appear dynamically and

unavailable before model learning. Instead of assuming the

access to all test unseen class data for transductive learning,

our model is based on inductive learning and it relies only

enforcing the reconstruction constraint to the training data

to counter domain shift.

Autoencoder There are many variants of autoencoders in

the literature [5, 27, 34, 59, 46, 51]. They can be roughly

divided into two groups which are (1) undercomplete au-

toencoders and (2) overcomplete autoencoders. In general,

undercomplete autoencoders are used to learn the underly-

ing structure of data and used for visualisation/clustering

[62] like PCA. In contrast, overcomplete autoencoders are

used for classification based on the assumption that higher

dimensionnal features are better for classification [15, 8, 7].

Our model is an undercomplete autoencoder since a seman-

tic space typically has lower dimensionality than that of a

visual feature space. All the autoencoders above focus on

learning features in a unsupervised manner. On the con-

trary, our approach is supervised while keeping the main

characteristic of the unsupervised autoencoders, i.e. the

ability to reconstruct the input signal.

Semantic encoder-decoder An autoencoder is only one

realisation of the encoder-decoder paradigm. Recently deep

encoder-decoder has become popular for a variety of vision

problems ranging from image segmentation [4] to image

synthesis [64, 45]. Among them, a few recent works also

exploited the idea of applying semantic regularisation to

the latent embedding space shared between the encoder and

decoder [64, 45]. Our semantic autoencoder can be easily

extended for end-to-end deep learning by formulating the

encoder as a convolutional neural network and the decoder

as a deconvolutional neural network with a reconstruction

loss.

Supervised clustering Supervised clustering methods ex-

ploit labelled clustering training dataset to learn a projection

matrix that is shared by a test dataset unlike conventional

clustering such as [60, 29]. There are different approaches

of learning the projection matrix: 1) metric learning-based

methods that use similarity and dissimilarity constraints

[32, 30, 63, 16], and 2) regression-based methods that use

‘labels’ [41, 33]. Our method is more closely related to

the regression-based methods, because the training class la-

bels are used to constrain the latent embedding space in

our semantic autoencoder. We demonstrate in Sec 5.2 that,

similar to the ZSL problem, by adding the reconstruction

constraint, significant improvements can be achieved by our

model on supervised clustering.

3. Semantic Autoencoder

3.1. Linear autoencoder

We first introduce the formulation of a linear autoen-

coder and then proceed to extend it into a semantic one.

In its simplest form, an autoencoder is linear and only

has one hidden layer shared by the encoder and decoder.

The encoder projects the input data into the hidden layer

with a lower dimension and the decoder projects it back

to the original feature space and aims to faithfully recon-

struct the input data. Formally, given an input data matrix

X ∈ R
d×N composed of N feature vectors of d dimensions

as its columns, it is projected into a k-dimensional latent

space with a projection matrix W ∈ R
k×d, resulting in a

latent representation S ∈ R
k×N . The obtained latent rep-

resentation is then projected back to the feature space with

a projection matrix W∗ ∈ R
d×k and becomes X̂ ∈ R

d×N .

We have k < d, i.e. the latent representation/code reduces

the dimensionality of the original data input. We wish that

the reconstruction error is minimised, i.e. X̂ is as similar as

possible to X. This is achieved by optimising against the

following objective:

min
W, W∗

�X−W∗WX�2F (1)

3.2. Model Formulation

A conventional autoencoder is unsupervised and the

learned latent space has no explicit semantic meaning. With

the proposed Semantic AutoEncoder (SAE), we assume

that each data point also has a semantic representation,

e.g., class label or attributes. To make the latent space in

the autoencoder semantically meaningful, we take the sim-

plest approach, that is, we force the latent space S to be

the semantic representation space, e.g., each column of S is

now an attribute vector given during training for the corre-

sponding data point. In other words, the latent space is not
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Figure 2. Different ways of learning embedding space: (a) F → S,

(b) S → F, and (c) Both (our SAE). ’F’ – Feature space, and ’S’ –

Semantic space.

latent any more during training. The learning objective thus

becomes:

min
W, W∗

�X−W∗WX�2F s.t. WX = S (2)

To further simplify the model, we consider tied weights

[10], that is:

W∗ = W�

The learning objective is then rewritten as follows:

min
W

�X−W�WX�2F s.t. WX = S (3)

Now we have only one projection matrix to estimate, in-

stead of two (see Fig. 2(c)).

3.3. Optimisation

To optimise the objective in Eq. (3), first we change

Eq. (3) to the following form:

min
W

�X−W�S�2F s.t. WX = S (4)

by substituting WX with S. Solving an objective with a

hard constraint such as WX = S is difficult. Therefore, we

consider to relax the constraint into a soft one and rewrite

the objective as:

min
W

�X−W�S�2F + λ�WX− S�2F (5)

where λ is a weighting coefficient that controls the impor-

tance of first and second terms, which correspond to the

losses of the decoder and encoder respectively. Now Eq. (5)

has a standard quadratic formulation, and it is convex func-

tion which has global optimal solution.

To optimise it, we simply take a derivative of Eq. (5)

and set it zero. First, we re-organise Eq. (5) using trace

properties Tr(X) = Tr(X�) and Tr(W�S) = Tr(S�W):

min
W

�X� − S�W�2F + λ�WX− S�2F (6)

Algorithm 1 SAE in MATLAB

function W = SAE(X,S,lambda)

% SAE - Semantic AutoEncoder

% Input:

% X: dxN data matrix.

% S: kxN semantic matrix.

% lambda: regularisation parameter.

%

% Return:

% W: kxd projection matrix.

A = S*S';

B = lambda*X*X';

C = (1+lambda)*S*X';

W = sylvester(A,B,C);

end

Then, we can obtain the derivative of Eq. (6) as follows:

−S(X� − S�W) + λ(WX− S)X� = 0

SS�W + λWXX� = SX� + λSX� (7)

If we denote A = SS�, B = λXX�, and C = (1 +
λ)SX�, we have the following formulation:

AW +WB = C, (8)

which is a well-known Sylvester equation which can be

solved efficiently by the Bartels-Stewart algorithm [6]. In

MATLAB, it can be implemented with a single line of code:

sylvester1. Importantly, the complexity of Eq. (8) de-

pends on the size of feature dimension (O(d3)), and not

on the number of samples; it thus can scale to large-scale

datasets. Algorithm 1 shows a 6-line MATLAB implemen-

tation of our solver.

4. Generalisation

4.1. Zero-Shot Learning

Problem definition Let Y = {y1, ... ,ys} and Z =
{z1, ... , zu} denote a set of s seen and u unseen class

labels, and they are disjoint Y ∩ Z = ∅. Similarly

SY = {s1, ... , ss} ∈ R
s×k and SZ = {s1, ... , su} ∈

R
u×k denote the corresponding seen and unseen class se-

mantic representations (e.g. k-dimensional attribute vector).

Given training data with N number of samples XY =
{(xi,yi, si)} ∈ R

d×N , where xi is a d-dimensional visual

feature vector extracted from the i-th training image from

one of the seen classes, zero-shot learning aims to learn a

classifier f : XZ → Z to predict the label of the image

coming from unseen classes, where XZ = {(xi, zi, si)} is

the test data and zi and si are unknown.

SAE for zero-shot learning Given semantic representa-

tion S such as attributes, and the training data XY, using

1https://uk.mathworks.com/help/matlab/ref/sylvester.html
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our SAE, we first learn the encoder W and decoder W� by

Algorithm 1. Subsequently, zero-shot classification can be

performed in two spaces:

1) With the encoder projection matrix W: We can embed

a new test sample xi ∈ XZ to the semantic space by

ŝi = Wxi. After that, the classification of the test data

in the semantic space can be achieved by simply cal-

culating the distance between the estimated semantic

representation si and the projected prototypes SZ :

Φ(xi) = argmin
j

D(̂si,SZj
) (9)

where SZj
is j-th prototype attribute vector of the j-th

unseen class, D is a distance function, and Φ(·) returns

the class label of the sample.

2) With the decoder projection matrix W�: Similarly, we

can embed the prototype representations to the visual

feature space by x̂i = WT si where si ∈ SZ and

x̂i ∈ X̂Z is the projected prototype. Then, the clas-

sification of the test data in the feature space can be

achieved by calculating the distance between the fea-

ture representation xi and the prototype projections in

the feature space X̂Z :

Φ(xi) = argmin
j

D(xi, X̂Zj
) (10)

where X̂Zj
is j-th unseen class prototype projected in

the feature space.

In our experiments we found that the two testing strategies

yield very similar results (see Sec. 5.1). We report results

with both strategies unless otherwise specified.

4.2. Supervised Clustering

For supervised clustering we are given a set of train-

ing data with class labels only, and a test set that share the

same feature representation as the training data and need to

be grouped into clusters. Let Y = {y1, ... ,ys} be a set

of s training class labels. Denote SY = {s1, ... , ss} ∈
R

s×k as the corresponding semantic representations. Given

a training data set with N number of samples XY =
{(xi,yi, si)} ∈ R

d×N , where xi is a d-dimensional visual

feature vector extracted from the i-th training image we aim

to learn a projection function f : XY → SY from the train-

ing data and then apply the same projection function to a set

of test data XZ before clustering can be carried out.

Using our SAE, the projection function is our encoder

W. With only the training class label, the semantic space

is the label space, that is, si is an one-hot class label vec-

tor with only the element corresponding to the image class

assuming the value 1, and all other elements set to 0. After

the test data is projected into the training label space, we

use k-means clustering as in existing work [41, 33] for fair

comparison. The demo code of our model is available at

https://elyorcv.github.io/projects/sae.

4.3. Relations to Existing Models

Relation to ZSL models Many existing ZSL models learn

a projection function from a visual feature space to a se-

mantic space (see Fig. 2(a)). If the projection function is

formulated as linear ridge regression as follows:

min
W

�WX− S�2F + λ�W�2F , (11)

we can see that comparing Eq. (11) with Eq. (5), this is

our encoder with an additional regularisation term on the

project matrix W.

Recently, [54] proposed to reverse the projection direc-

tion: They project the semantic prototypes into the features

space:

min
W

�X−W�S�2F + λ�W�2F (12)

so this is the decoder of our SAE but again with the regular-

isation term to avoid overfitting (see Fig. 2(b)).

Our approach can thus be viewed as the combination of

both models when ridge regression is chosen as the project

function and without considering the �W�2F regularisation.

This regularisation is unnecessary in our model due to the

symmetric encoder-decoder design – since W∗ = W�, the

norm of the encoder projection matrix �W�2F cannot be big

because it will then produce large-valued projections in the

semantic space, and after being multiplied with the large-

norm decoder project matrix, will result in bad reconstruc-

tion. In other words, the regularisation on the norm of the

projection matrices have been automatically taken care of

by the reconstruction constraint [10].

Relation to supervised clustering models Recently,

[41, 33] show that regression can be used to learn a maha-

lanobis distance metric for supervised clustering. Specifi-

cally, given data X with corresponding labels, the so-called

‘encoded labels’ S are generated and normalised as S =
S(S�S)−1/2 ∈ R

s×N , where s is the number of training

labels [33]. Then linear regression is employed to obtain a

projection matrix W for projecting the data from the feature

space to the label space. At test time, W is applied to test

data. Then, k-means clustering is applied to the projected

data. Again, these models can be considered as the encoder

of our SAE. We shall show that with the decoder and the

additional reconstruction constraint, the learned code and

distance metric become more meaningful, yielding superior

clustering performance on the test data.
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Small-scale datasets Large-scale datasets

Method SS AwA CUB aP&Y SUN Method SS ImNet-1 ImNet-2

DAP [25] A 60.1 - 38.2 72.0 | 44.5 Rohrbach et al. [48] W 34.8 –

ESZSL [49] A 75.3 48.7 24.3 82.1 | 18.7 Mensink et al. [58] W 35.7 –

SSE [66] A 76.3 30.4 46.2 82.5 | – DeViSE [19] W 31.8 12.8

SJE [2] A+W 73.9 50.1 - – | 56.1 ConSE [40] W 28.5 15.5

JLSE [67] A 80.5 41.8 50.4 83.8 | – AMP [23] W 41.0 13.1

SynCstruct [13] A 72.9 54.4 - – | 62.7 SS-Voc [22] W – 16.8

MLZSC [11] A 77.3 43.3 53.2 84.4 | – PST [47] W 34.0 –

DS-SJE [44] A/D - 50.4/56.8 - – | –

AMP [11] A+W 66.0 - - – | –

DeViSE [19] A/W 56.7/50.4 33.5 - – | –

RRZSL [54] A 80.4 52.4 48.8 84.5 | –

Ba et al. [35] A/W 69.3/58.7 34.0 - – | –

MTMDL [65] A/W 63.7/55.3 32.3 - – | –

SS-voc [22] A/W 78.3/68.9 - - – | –

SAE (W) A 84.7 61.4 55.4 91.0 | 65.2 SAE (W) W 46.1 26.3

SAE (W�) A 84.0 60.9 54.8 91.5 | 65.2 SAE (W�) W 45.4 27.2

Table 2. Comparative ZSL classification accuracy (%, hit@5 for large-scale datasets). For SS (Semantic Space), ‘/’ means ‘or’ and ‘+’

means ‘and’. For CUB, 10 sentence description per image are also used in [44] as input to a language model (word-CNN-RNN) to compute

semantic space (‘D’). For the SUN dataset, the results are for the 707/10 and 645/72 splits respectively, separated by ‘|’. ‘-’ means that no

reported results are available. W parametrises the projection function of the encoder and W
� the decoder.

Dataset #instances SS SS-D # seen/unseen

AwA [25] 30,475 A 85 40 / 10

CUB [12] 11,788 A 312 150 / 50

aP&Y [3] 15,339 A 64 20 / 12

SUN [24] 14,340 A 102 645 / 72 (∗)

ImNet-1 [52] 1,2 ×10
6 W 1,000 800 / 200

ImNet-2 [52] 218,000 W 1,000 1,000 / 360

Table 1. Benchmark datasets for evaluation. Notation: ‘SS’ – se-

mantic space, ‘SS-D’ – the dimension of semantic space, ‘A’ –

attribute, and ‘W’ – word vector. (∗) – another split of 707/10 is

also used for SUN [26, 67].

5. Experiments

5.1. Zero-Shot Learning

Datasets Six benchmark datasets are used. Four of them

are small-scale datasets: Animals with Attributes (AwA)

[25], CUB-200-2011 Birds (CUB) [12], aPascal&Yahoo

(aP&Y) [3], and SUN Attribute (SUN) [24]. The two

large-scale ones are ILSVRC2010 [17] (ImNet-1), and

ILSVRC2012/ILSVRC2010 [52] (ImNet-2). In ImNet-2,

as in [22], the 1,000 classes of ILSVRC2012 are used as

seen classes, while 360 classes of ILSVRC2010, which are

not included in ILSVRC2012, for unseen classes. The sum-

mary of these datasets is given in Table 1.

Semantic spaces We use attributes as the semantic space

for the small-scale datasets, all of which provide the at-

tribute annotations. Semantic word vector representation

is used for large-scale datasets. We train a skip-gram text

model on a corpus of 4.6M Wikipedia documents to obtain

the word2vec2 [38, 37] word vectors.

Features All recent ZSL methods use visual features ex-

tracted by deep convolutional neural networks (CNNs). In

our experiments, we use GoogleNet features [57] which is

the 1024D activation of the final pooling layer as in [2].

The only exception is for ImNet-1: For fair comparison

with published results, we use Alexnet [31] architecture,

and train it from scratch using the 800 seen classes, result-

ing in 4096D visual feature vectors computed using the FC7

layer.

Parameter settings Our SAE model has only one free pa-

rameter: λ (see Eq. (5)). As in [67], its values is set by

class-wise cross-validation using the training data. The di-

mension of the embedding (middle) layer always equals to

that of the semantic space. Only SUN dataset has multiple

splits. We use the same 10 splits used in [13], and report the

average performance.

Evaluation metric For the small-scale datasets, we use

multi-way classification accuracy as in previous works,

while for the large-scale datasets flat hit@K classification

accuracy is used as in [19]. hit@K means that the test im-

age is classified to a ‘correct label’ if it is among the top K

labels. We report hit@5 accuracy as in other works, unless

otherwise stated.

Competitors 14 existing ZSL models are selected for the

small-scale datasets and 7 for the large-scales ones (much

fewer existing works reported results on the large-scale

datasets). The selection criteria are: (1) recent work: most

of them are published in the past two years; (2) competi-

tiveness: they clearly represent the state-of-the-art; and (3)

2 https://code.google.com/p/word2vec/
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representativeness: they cover a wide range of models (see

Sec. 2).

Comparative evaluation From the results in Table 2 we

can make the following observations: (1) Our SAE model

achieves the best results on all 6 datasets. (2) On the small-

scale datasets, the gap between our model’s results to the

strongest competitor ranges from 3.5% to 6.5%. This is

despite the fact that most of the compared models use far

complicated nonlinear models and some of them use more

than one semantic space. (3) On the large-scale datasets,

the gaps are even bigger: On the largest ImNet-2, our model

improves over the state-of-the-art SS-Voc [22] by 8.8%. (4)

Both the encoder and decoder projection functions in our

SAE model (SAE (W) and SAE (W�) respectively) can

be used for effective ZSL. The encoder projection function

seems to be slightly better overall.

Projection AwA CUB aP&Y SUN

F → S 60.6 41.1 30.5 71.5

F ← S 80.4 52.4 48.8 84.5

SAE 84.7 61.4 55.4 91.0
Table 3. The importance of adding the reconstruction constraint.

Both compared methods are based on ridge regression and differ

in the projection direction between the visual and semantic spaces.

Attributes are used. The encoder is used.

Ablation study The key strength of our model comes

from the additional reconstruction constraint in the au-

toencoder formulation. Since most existing ZSL models

use more sophisticated projection functions than our lin-

ear mapping, in order to evaluate how important this ad-

ditional constraint is, we consider ZSL baselines that use

the same simple projection functions as our model. As dis-

cussed in Sec. 4.3, without the constraint both the encoder

and decoder can be considered as conventional ZSL models

with linear ridge regression as projection function, and they

differ only in the project directions. Table 3 shows than,

when the projection function is the same, adding the ad-

ditional reconstruction constraint makes a huge difference.

Note that comparing to the state-of-the-art results in Table

2, simple ridge regression is competitive but clearly inferior

to the best models due to its simple linear projection func-

tion. However, when the two models are combined in our

SAE, we obtain a much more powerful model that beats all

existing models.

Generalised Zero-Shot Learning Another ZSL setting

that emerges recently is the generalised setting under which

the test set contains data samples from both the seen and

unseen classes. We follow the same setting of [14]. Specif-

ically, we hold out 20% of the data samples from the seen

classes and mix them with the data samples from the un-

seen classes. The evaluation metric is now Area Under

Seen-Unseen accuracy Curve (AUSUC), which measures

how well a zero-shot learning method can trade-off be-

Method AwA CUB

DAP [25] 0.366 0.194

IAP [25] 0.394 0.199

ConSE [40] 0.428 0.212

ESZSL [49] 0.449 0.243

SynCstruct [13] 0.583 0.356

SAE 0.579 0.448

Table 4. Comparative evaluation on generalised zero-shot learning

on AwA and CUB. Encoder is used.

tween recognising data from seen classes and that of un-

seen classes [14]. The upper bound of this metric is 1. The

results on AwA and CUB are presented in Table 4 compar-

ing our model with 5 other alternatives. We can see that on

AwA, our model is slightly worse than the state-of-the-art

method SynCstruct [13]. However, on the more challeng-

ing CUB dataset, our method significantly outperforms the

competitors.

Computational cost We evaluate the computational cost

of our method in comparison with three linear ZSL models

SSE [66], ESZSL [49] and AMP [23] which are among the

more efficient existing ZSL models. Table 5 shows that for

model training, our SAE is at least 10 times faster. For test-

ing, our model is still the fastest, although ESZSL is close.

Method Training Test

SSE [66] 1312 9.20

ESZSL [49] 16 0.08

AMP [23] 844 0.23

SAE 1.3 0.07

Table 5. Evaluating the computational cost (in second) on AwA.

Encoder is used.

5.2. Supervised Clustering

Datasets Two datasets are used. A synthetic dataset is

generated following [33]. Specifically, the training set is

composed of 3-dimensional samples divided into 3 clusters,

and each cluster has 1,000 samples. Each of these clus-

ters is composed of two subsclusters as shown in Fig. 3(a).

What makes the dataset difficult is that the subclusters of

the same cluster are closer to the subsclusters from differ-

ent categories than to each other when the distance is mea-

sured with Euclidean distance. Furthermore, some samples

are corrupted by noise which put them in the subclusters of

other categories in the feature space. We generate our test

dataset with the similar properties (and the same number

of examples N=3000) as the training set. To make clus-

tering more challenging, the number of samples for each

cluster is made different: 1000, 2000, and 4000 for three

clusters respectively. This dataset is designed to evaluate

how robust the method is against the size of clusters and its

ability to avoid being biased by the largest category. More

details on the dataset can be found in [33, 32, 63]. We also
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Method SAE L2 Xiang et al. [63] Lajugie et al. [32] KISSME [30] ITML [16] LMNN [61] MLCA [33]

Test loss 0.01 3.0 0.7 0.11 0.07 0.08 3.0 0.07

Training Time (in second) 0.020 NT 4378 336 0.5 370 4 0.004

Table 6. Supervised clustering results on synthetic data with clusters of same size. ’NT’– No Training, L2–Euclidean distance. Encoder is

used.

Method SAE L2 Xiang et al. [63] Lajugie et al. [32] KISSME [30] ITML [16] LMNN [61] MLCA [33]

Test loss 0.01 3.0 3.0 0.09 2.02 3.0 3.0 0.09

Training Time (in second) 0.026 NT 21552 2462 2 1260 11 0.005

Table 7. Supervised clustering results on synthetic data with clusters of different sizes and with noise (lower is better). Encoder is used.

Method SAE Lajugie et al. [32] KISSME [30] ITML [16] LMNN [61] MLCA [33]

Test loss 1.19±0.01 1.38±0.02 1.59±0.02 1.50±0.02 1.79±0.02 1.29±0.01

Training Time 93 seconds 5 days 11 minutes 2 hours 1 day 39 seconds

Table 8. Supervised clustering (segmentation) results on Oxford Flowers. Encoder is used.
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Figure 3. (a) Original training dataset, (b) Clustering obtained by k-means with Euclidean distance, (c) MLCA [33], (d) SAE

test our algorithm with a real dataset – Oxford Flowers-17

(848 images) [39]. We follow exactly the same settings of

[33]. Specifically, a ground truth foreground/background

segmentation is provided for every image. To extract fea-

tures, first, images are resized with a height of 100 pixels,

and SIFT and color features (Lab, RGB, and intensity) are

extracted from each 8×8 patch centred at every pixel, re-

sulting a 135D feature vector for each pixel. Each image

has about 104 patches, and the data matrix for the whole

dataset has about 2.2× 106 rows – this is thus a large-scale

problem. The dataset has 5 random split with 200 images

for training, 30 for validation, and the rest for testing.

Evaluation metric We calculate the clustering quality

with a loss defined as ∆ = �Ĉ − C�2 [32, 33], where C

and Ĉ are ground truth and predicted clustering matrix (ob-

tained using k-means) respectively.

Competitors We compare our method with the state-of-

the-art methods which all formulate the supervised cluster-

ing problem as a metric learning problem. These include

Xiang et al. [63], Lajugie et al. [32], KISSME [30], ITML

[16], LMNN [61], and MLCA [33].

Comparative evaluation Table 6 and Table 7 show the

synthetic data results with and without noise respectively. It

can be seen that in terms of clustering accuracy, our method

is much better than all compared methods. On computa-

tional cost, our model is more expensive than MLCA but

much better than all others. Figure 3 visualises the cluster-

ing results. On the real image segmentation data, Table 8

compares our SAE with other methods. Again, we can see

that SAE achieves the best clustering accuracy. The train-

ing time for SAE is 93 seconds, while MLCA is 39 seconds.

Note that the data size is 2.2×106, so both are very efficient.

6. Conclusion

We proposed a novel zero-shot learning model based on

a semantic autoencoder (SAE). The SAE model uses very

simple and computationally fast linear projection function

and introduce an additional reconstruction objective func-

tion for learning a more generalisable projection function.

We demonstrate through extensive experiments that this

new SAE model outperforms existing ZSL models on six

benchmarks. Moreover, the model is further extended to ad-

dress the supervised clustering problem and again produces

state-of-the-art performance.
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