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Abstract

A novel algorithm to segment a primary object in a video

sequence is proposed in this work. First, we generate can-

didate regions for the primary object using both color and

motion edges. Second, we estimate initial primary object re-

gions, by exploiting the recurrence property of the primary

object. Third, we augment the initial regions with missing

parts or reducing them by excluding noisy parts repeatedly.

This augmentation and reduction process (ARP) identifies

the primary object region in each frame. Experimental re-

sults demonstrate that the proposed algorithm significantly

outperforms the state-of-the-art conventional algorithms on

recent benchmark datasets.

1. Introduction

Primary object segmentation (POS) is the task to seg-

ment a single primary object from the background in a video

sequence, where the primary object means the most fre-

quently appearing and salient object in the video. POS is

applicable to many vision tasks, including video summa-

rization, action recognition, and object class learning. POS,

however, is challenging due to many difficulties, such as

object deformation, occlusion, and background clutters. Es-

pecially, without user annotations or any prior information

about a primary object (e.g. its class), it is difficult to sepa-

rate the primary object from the background.

POS is closely related to video object segmenta-

tion (VOS). VOS can be classified into three categories:

semi-supervised, multiple, and unsupervised VOS. Semi-

supervised VOS [17, 22, 23, 26, 28, 35] requires manual an-

notations at the first frame to segment target objects in sub-

sequent frames. Multiple VOS [2, 7, 13, 14, 18, 19, 25, 32]

does not demand user annotations about objects, but yields

multiple segment tracks. In other words, multiple VOS

cannot identify the primary object among the multiple

tracks without the ground-truth. In contrast, unsupervised

VOS [5, 9, 16, 20, 30, 33, 36] aims to find only a single seg-

ment track, corresponding to a primary object, automati-

cally. Thus, unsupervised VOS has the same purpose as

POS does. In this regard, we use the terms ‘POS’ and ‘un-

supervised VOS’ exchangeably. Without manual annota-

tions or ground-truth about a primary object, POS is more

challenging than semi-supervised or multiple VOS.

In general, POS methods estimate initial regions of pri-

mary objects, and refine the initial results using primary ob-

ject cues, e.g. colors or positions. Object proposals are of-

ten used to find initial primary object regions [16,36]. How-

ever, the conventional techniques [16, 36] strongly depend

on the objectness score of each proposal, which is computed

in each frame, without exploiting the recurrence property

of the primary object. For the refinement of initial regions,

many POS methods [9,16,20,36] extend the interactive im-

age segmentation technique [24] to the VOS task. They

construct Gaussian mixture models (GMMs) for a primary

object and the background, respectively, based on initial re-

gion estimates. However, these GMMs may fail to model

temporally varying object and background information ac-

curately and are vulnerable to incorrect initial estimates.

In this work, we propose a novel POS algorithm to yield

a segment track for a primary object in a video sequence.

First, we generate a pool of candidate regions for the pri-

mary object. To this end, both color and motion edges are

used to increase the recall rates of static and moving objects.

Second, we estimate initial regions for the primary object,

by exploiting the recurrence property of the primary object.

Third, instead of the GMM-based refinement, we refine the

initial regions by augmenting them with missing parts or re-

ducing them by excluding noisy parts. This augmentation

and reduction process (ARP) is performed based on a cost

function. By minimizing the cost function iteratively, we

achieve the POS. Experimental results demonstrate that the

proposed algorithm significantly outperforms the state-of-

the-art semi-supervised, multiple, and unsupervised VOS

algorithms on the DAVIS [21] and FBMS [2] benchmark

datasets.
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2. Related work

2.1. Video Object Segmentation

Semi-Supervised VOS: Semi-supervised VOS requires

user annotations about target objects. An object is manually

delineated in the first frame and then tracked in successive

frames [23, 26, 28, 35]. Varas et al. [28] employ a region-

based particle filter to track a target object. Ramakanth

et al. [23] adopt the seam carving to detect object bound-

aries. Yang et al. [35] propagate annotated segments using

the occluder-occluded relationship. Tsai et al. [26] consider

VOS and optical flow estimation simultaneously, and re-

fine optical flow vectors using segmentation results. Also,

in [17, 22], user annotations are utilized to construct ap-

pearance models for objects. Perazzi et al. [22] construct a

support vector machine (SVM) classifier for a target object.

Märki et al. [17] optimize the two-class (i.e. foreground or

background) labeling problem in the bilateral space.

Multiple VOS: Multiple VOS algorithms do not require

any manual annotation, but they provide multiple segment

tracks. They yield motion segmentation results [2, 7, 18, 19,

25] or video object proposals [13, 14, 32].

Shi and Malik [25] construct a graph based on motion

characteristics and divide a frame into segments using the

normalized cuts. Brox and Malik [2] form sparse long-term

trajectories and cluster them. Ochs and Brox [18] convert

the clusters of sparse trajectories in [2] into dense segmen-

tation results, by solving a variational problem. Ochs and

Brox [19] adopt the spectral clustering to segment point tra-

jectories. Fragkiadaki et al. [7] analyze discontinuities be-

tween neighboring trajectories to segment moving objects.

Object proposals are sampled [13,32] or matched [14] to

generate video object proposals. Lee et al. [13] cluster ob-

ject proposals, extracted from an entire sequence, and rank

each cluster according to the average objectness score of the

elements. They select high rank clusters to yield segment

tracks. Xiao and Lee [32] form a proposal group, by gather-

ing the k-nearest neighbors of each proposal, and then train

an SVM classifier using the proposal group to extract a seg-

ment track. Li et al. [14] extract several figure-ground seg-

ments in a frame and match those segments in subsequent

frames to provide multiple segment tracks.

For the performance assessment, these multiple VOS al-

gorithms [2,7,13,14,18,19,25,32] require the ground-truth

to choose the best segment track among multiple tracks,

since they do not consider which track is the most salient.

POS: POS automatically discovers a single primary seg-

ment track in a video sequence. Many POS algorithms [9,

16, 20, 30, 36] formulate the segmentation as the two-class

labeling problem by constructing models for the primary

object and the background, e.g. GMMs. To construct those

models, they obtain initial regions of the primary object us-

ing motion boundaries [20], object proposals [16, 36], or

saliency maps [9, 30, 33].

Papazoglou and Ferrari [20] generate motion boundaries

for each frame to separate moving objects, but they may

fail to segment static objects. Ma and Latecki [16] con-

struct a locally connected graph of object proposals, and

select primary object proposals for all frames by optimiz-

ing the maximum weight clique problem. Zhang et al. [36]

design a layered directed acyclic graph of object proposals

and find an optimal path in the graph. However, these meth-

ods [16, 36] do not consider the recurrence characteristic

of a primary object, since they depend on proposal scores,

which are computed frame-by-frame.

Wang et al. [30] estimate saliency maps using geodesic

distances and delineate salient objects. Jang et al. [9] es-

timate initial probability distributions of foreground and

background using boundary priors, and refine the probabil-

ity distributions by optimizing a hybrid of the Markov, spa-

tiotemporal, and antagonistic energies. Yang et al. [33] de-

sign a graph, which performs the segmentation and appear-

ance modeling simultaneously. Also, Faktor and Irani [5]

propose a non-local consensus voting scheme. They per-

form random walk simulation on a non-locally connected

graph for all frames, by employing a saliency map as the

initial distribution of the walker. However, these saliency-

dependent techniques [5, 9, 30] may face difficulties, when

the saliency maps are inaccurate due to background clutters

or background motions.

2.2. Primary Object Discovery

Similar to POS, primary object discovery (POD) [10,15,

34] also attempts to identify the locations of a primary ob-

ject in a video sequence. However, it locates the primary

object with bounding boxes, instead of pixel-wise delin-

eation. POD algorithms also use saliency maps [15, 34] or

object proposals [10]. Luo et al. [15] and Yang et al. [34]

generate candidate boxes based on saliency scores in each

frame, and then find the optimal path maximizing the sum

of the saliency scores. Yang et al. [34] employ six kinds

of saliency maps to overcome the limitations of individual

saliency cues. Koh et al. [10] discover a primary object by

combining object proposals based on the evolutionary pri-

mary object model.

3. Proposed Algorithm

We segment a primary object in a sequence of video

frames I = {I(1), . . . , I(T )}, based on the assumption that

the primary object appears in most frames. The output is a

set of pixel-wise binary maps to delineate the primary ob-

ject in the corresponding frames.

Figure 1 shows an overview of the proposed algorithm.

First, we generate a pool of candidate regions for each

frame. Second, we select initial primary object regions,
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Figure 1. An overview of the proposed algorithm.

by exploiting the recurrence property of a primary object.

Third, we refine the initial regions, by augmenting and re-

ducing those regions progressively.

3.1. Generating Candidate Regions

Candidate Regions: After over-segmenting each frame

into superpixels, we generate a pool of candidate regions

by merging neighboring superpixels recursively [27, 29].

For the over-segmentation, we extract two ultrametric

contour maps (UCMs) [1] for each frame. The original

UCM method [1] generates a contour map using color

edges. In this work, we extract another UCM using mo-

tion edges as well. The motion edges are obtained by the

learning-based detector [31] using optical flow data [8].

Figure 2 illustrates these UCMs. Contours are more con-

centrated around the moving car in the motion-based UCM

in Figure 2(c) than they are in the color-based UCM in Fig-

ure 2(b). Each region, delineated by a closed boundary in

a UCM, becomes a superpixel. Thus, we have color-based

superpixels and motion-based superpixels, which are shown

in Figures 2(e) and (f), respectively. We initialize the set of

candidate regionsQ(t) for frame I(t), by gathering all these

superpixels.

Note that each boundary, shared by neighboring super-

pixels, is associated with the boundary strength in the UCM

method. We recursively merge neighboring superpixels ac-

cording to their boundary strengths, and include the merged

superpixel into Q(t). More specifically, let us consider the

color-based superpixels first. We determine the pair of su-

perpixels, sm and sn, which share the weakest boundary.

Then, to improve the diversity of candidate regions in Q(t),

we generate additional candidate regions as follows:

• We put the union of superpixels sm ∪ sl into Q(t) for

each sl ∈ Nm, whereNm denotes the set of the neigh-

boring superpixels of sm.

• Similarly, we put the union of superpixels sn ∪ sl′ into

Q(t) for each sl′ ∈ Nn.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 2. Candidate region generation for frame 26 in the “Drift-

turn” sequence: (a) input frame I(t), (b) color-based UCM, (c)

motion-based UCM, (d) the ground-truth, (e) color-based super-

pixels, (f) motion-based superpixels, and (g) the set of candidate

regions Q(t).

We then merge sm and sn into a single superpixel sm ∪ sn.

After the merging, we select the pair of superpixels with the

weakest boundary and repeat the process. This recursive

merging terminates, when all superpixels are merged into

a single cluster. Next, using the motion-based superpixels,

we perform the same process to further expand the set Q(t)

of candidate regions.

Foreground Confidence: After expanding Q(t), we mea-

sure the foreground confidence c
(t)
i of each candidate region

q
(t)
i in Q(t), which is defined as

c
(t)
i = φ

(t)
i + ψ

(t)
i (1)
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where φ
(t)
i and ψ

(t)
i are the appearance confidence and the

edge confidence, respectively.

To determine the appearance confidence φ
(t)
i , we ob-

tain a saliency map for frame I(t) using the preprocessing

technique in [9]. Based on the boundary prior, [9] esti-

mates the initial foreground distribution, which we regard

as the saliency map. We then compute φ
(t)
i by averaging

the saliency values within the candidate region q
(t)
i .

Also, we determine the edge confidence ψ
(t)
i , based on

the color-based edge score map E
(t)
c [4] and the motion-

based edge score map E
(t)
m [31], which were used to gener-

ate the UCMs above. Then, ψ
(t)
i is given by

ψ
(t)
i =

1
√

|Bi|

∑

x∈Bi

(

βcE
(t)
c (x) + βmE

(t)
m (x)

)

(2)

where Bi is the set of the boundary pixels of the region q
(t)
i .

As in [11,12], we assume that an edge score map is more re-

liable if its scores are distributed more compactly. Thus, we

set the weighting parameters βc and βm in (2) adaptively ac-

cording to the corresponding spatial variances. Specifically,

the spatial variance vc of the color edge map E
(t)
c is

vc =

∑

x
‖x− µc‖

2 × E
(t)
c (x)

∑

x
E

(t)
c (x)

(3)

where the summation is over all pixels x in the map, and µc

is the centroid given by

µc =

∑

x
x× E

(t)
c (x)

∑

x
E

(t)
c (x)

. (4)

We also compute the variance vm of the motion edge map

E
(t)
m similarly. Then, we set βc and βm to be inversely pro-

portional to the corresponding variances;

βc =
vm

vc + vm
, βm =

vc

vc + vm
. (5)

Next, we rank the candidate regions in Q(t) according

to their foreground confidence levels. We select the top

20 candidate regions and discard the other ones. To boost

the recall rate of the primary object for frame I(t), we also

warp the selected candidate regions at I(t−1) and I(t+1) to

I(t) using pixel-wise optical flow vectors [8], respectively.

We then rearrange Q(t) = {q
(t)
1 , q

(t)
2 , . . . , q

(t)
N } so that it

consists of the top 20 candidate regions in I(t) and the 40

warped regions from I(t−1) or I(t+1). Thus,N = 60. Also,

we define the confidence vector c(t), whose ith element is

the foreground confidence c
(t)
i of q

(t)
i in Q(t).

Figure 2(g) shows the candidate regions in Q(t), sorted

in the raster scan order according to the foreground confi-

dence levels. We see that many candidate regions contain

(a) frame 16 (b) frame 26 (c) frame 36

Figure 3. The initial primary object regions for frames 16, 26, and

36 in the “Drift-turn” sequence. In the top row, the ground-truth

boundaries of the primary object are depicted in yellow.

both the car (i.e. primary object) and the signboard. If we

rely on the foreground confidence levels only, both objects

can be regarded as primary due to their distinctive colors

and dominant motions. Therefore, we should also exploit

the recurrence property of the primary object to separate it

accurately, as will be discussed in Section 3.2.

Feature Description: We describe the feature f
(t)
i of each

candidate region q
(t)
i in Q(t) using the bag-of-visual-words

approach [6]. Given the video sequence I, we quantize the

average LAB colors of all superpixels into 100 codewords,

and associate each pixel with the nearest codeword. We

then construct the histogram of the codewords for the pixels

within q
(t)
i , and normalize it into the feature vector f

(t)
i .

3.2. Selecting Initial Primary Object Regions

Among the candidate regions in Q(t), we choose the

main region q
(t)
δ and regard it as the initial primary object

region in frame I(t). Noisy environments, such as back-

ground clutters and non-primary objects, make it difficult

to decide the main region. To overcome this issue, we ex-

ploit the recurrence property that a primary object appears

repeatedly in a video sequence. In other words, we decide

the main region by finding recurring candidate regions in

the sequence.

The main region is discovered in the feature space.

Based on the recurrence property, we assume that the fea-

ture of the main region q
(t)
δ in I(t) should be similar to those

of the main regions in the other frames. Thus, we obtain the

index δ of q
(t)
δ by

δ = arg min
i:q

(t)
i

∈Q(t)

T
∑

τ=1,τ 6=t

dχ(f
(t)
i ,p(τ)) (6)

where p(τ) denotes the feature vector of the main region

in frame I(τ), and the chi-square distance dχ is adopted to

compare two histograms. Without any prior information, at

the beginning, we set the feature p(τ) by superposing the
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(a) Frame t (b) q
(t)
i (c) q

(t)
i \ q

(t)
δ

(d) r
(t)
i (e) b

(t)
i

(f) q
(t)
δ

(g) q
(t)
j (h) q

(t)
δ

\ q
(t)
j (i) r

(t)
N+j

(j) b
(t)
N+j

Figure 4. Augmentation and reduction of the initial primary object region q
(t)
δ in frame 57 in the “Parkour” sequence.

features of all candidate regions in Q(τ). To take into ac-

count the foreground confidence levels, we combine these

features of the candidate regions using the confidence vec-

tor c(τ) = [c
(τ)
1 , . . . , c

(τ)
N ]T in Section 3.1. Specifically, we

can write the feature vector p(τ) as

p(τ) = F(τ)c(τ) (7)

where F(τ) = [f
(τ)
1 , . . . , f

(τ)
N ] is the matrix whose ith col-

umn is the feature vector of the ith candidate region inQ(τ).

By applying p(τ) in (7) to (6), we obtain the main region

q
(t)
δ for each frame I(t). After obtaining the main regions

for all frames, we update them as follows:

1. We update the feature p(t) for each frame I(t) by

p(t) ← f
(t)
δ .

2. Using the updated features of the main regions, we

choose the main region q
(t)
δ for each frame I(t) via (6).

We repeat these two steps alternately until the features of

the main regions are unchanged. Consequently, we obtain

the initial primary object regions for all frames.

Figure 3 shows the initial primary object regions for

three frames in the “Drift-turn” sequence. In particular, in

Figure 3(b), we see that the initial region for the car is well

selected from the 60 candidate regions in Figure 2(g).

3.3. Refining Primary Object Regions

Initial regions in Section 3.2 roughly delineate primary

objects. They, however, may exclude parts of primary ob-

jects or include noisy regions (background or other objects),

as shown in Figure 4(f). Hence, we attempt to refine the ini-

tial regions, by augmenting them with missing regions and

reducing them by removing noisy regions.

Augmented and Reduced Regions: For each frame I(t),

we have the initial estimate q
(t)
δ of the primary object re-

gion. By augmenting the candidate regions in Q(t) =

{q
(t)
1 , . . . , q

(t)
N }, we obtain R

(t)
aug = {r

(t)
1 , . . . , r

(t)
N }, whose

ith element is given by

r
(t)
i = q

(t)
δ ∪ q

(t)
i = q

(t)
δ ∪ (q

(t)
i \ q

(t)
δ ). (8)

Figure 4(d) illustrates the augmented region r
(t)
i , which is

the union of the original candidate q
(t)
δ in Figure 4(f) and a

possibly missing region q
(t)
i \ q

(t)
δ in Figure 4(c).

We also reduce the candidate regions in Q(t) =

{q
(t)
1 , . . . , q

(t)
N } to obtain R

(t)
red = {r

(t)
N+1, . . . , r

(t)
2N}, whose

element r
(t)
N+j is given by

r
(t)
N+j = q

(t)
δ ∩ q

(t)
j = q

(t)
δ \ (q

(t)
δ \ q

(t)
j ). (9)

Figure 4(i) shows the reduced region r
(t)
N+j . The set differ-

ence q
(t)
δ \ q

(t)
j in Figure 4(h) contains background parts.

By subtracting q
(t)
δ \ q

(t)
j from the original candidate q

(t)
δ in

Figure 4(f), we obtain the background-free region r
(t)
N+j .

By combiningR
(t)
aug andR

(t)
red, we form the set of refined

regions

R(t) = R(t)
aug ∪R

(t)
red ∪ {q

(t)
δ }

= {r
(t)
1 , . . . , r

(t)
N , r

(t)
N+1, . . . , r

(t)
2N , r

(t)
2N+1}

(10)

where r
(t)
2N+1 = q

(t)
δ . For each refined region r

(t)
i , we de-

fine a background region b
(t)
i . Specifically, as shown in Fig-

ure 4(e), we place a bounding box surrounding r
(t)
i with a

margin, and exclude r
(t)
i from the bounding box to obtain

the background region b
(t)
i , which is depicted in yellow. We

extract the features f
(t)
r,i and f

(t)
b,i of r

(t)
i and b

(t)
i , respectively,

by employing the feature description scheme in Section 3.1.

Primary Object Regions: To determine whether to aug-

ment or reduce q
(t)
δ in order to delineate the primary object,

we define a cost function,

C(r
(t)
i ) = Cdata(r

(t)
i ) + γ · Cseg(r

(t)
i ), (11)

3446



(a) Input frames (b) Initial regions (c) 1st iteration (d) 2nd iteration (e) 3rd iteration (f) Convergence

Figure 5. Evolution of refined regions in the iterative augmentation and reduction process (ARP). From top to bottom, “Parkour,”

“Motocross-jump,” “Mallard-water,” “Libby,” and “Stroller” sequences. As the iteration goes on, refined regions represent the primary

objects more accurately. In (a), the ground-truth boundaries of the primary objects are depicted in yellow.

where Cdata and Cseg are the data and segmentation costs,

respectively, and γ is an adaptive weight to balance the in-

fluence of the two terms.

The data cost Cdata(r
(t)
i ) in (11) constrains that the re-

fined (i.e. augmented or reduced) region r
(t)
i should be sim-

ilar to the initial primary object regions in all frames. More

specifically, it is defined as

Cdata(r
(t)
i ) =

1

T

T
∑

τ=1

dχ(f
(t)
r,i , f

(τ)
δ ), (12)

where f
(τ)
δ is the feature vector of the initial primary ob-

ject region in frame I(τ). On the other hand, the segmen-

tation cost Cseg(r
(t)
i ) is defined, based on the dissimilarity

between the region r
(t)
i and its background b

(t)
i , as

Cseg(r
(t)
i ) = −dχ(f

(t)
r,i , f

(t)
b,i ). (13)

Notice that, because of the minus sign in (13), the mini-

mization of Cseg(r
(t)
i ) makes the region as dissimilar from

its background as possible.

We minimize the cost function C(r
(t)
i ) in (11) to select

the optimal refined region r
(t)
∗ fromR(t) in (10),

r
(t)
∗ = arg min

r
(t)
i

∈R(t)

C(r
(t)
i ). (14)

Note that the region is augmented if r
(t)
∗ ∈ R

(t)
aug, while it is

reduced if r
(t)
∗ ∈ R

(t)
red.

We perform this augmentation and reduction process

(ARP) iteratively.

1. By employing r
(t)
∗ as the initial region q

(t)
δ (i.e., q

(t)
δ ←

r
(t)
∗ ), we construct again the set of augmented or re-

duced regions,R(t) in (10).

2. Then, we find the optimal r
(t)
∗ again by minimizing

C(r
(t)
i ) in (14).

This is repeated until r
(t)
∗ is unchanged. This refinement

process is theoretically guaranteed to converge, since the

cost function in (11) monotonically decreases at each itera-

tion, and the candidate setR(t) in (10) includes the optimal

solution q
(t)
δ in the last iteration. Figure 5 illustrates how

the optimal refined region r
(t)
∗ evolves as the iteration goes

on. We see that the initial regions in Figure 5(b) are aug-

mented with missing regions or reduced by excluding noisy

regions. Eventually, we obtain the faithful segmentation re-

sults in Figure 5(f). Even a disconnected part of a primary

object is augmented in the “Libby’ sequence.

Finally, after ARP converges, the proposed algorithm

yields the setR∗ of the primary object regions for all frames

as output,

R∗ = {r
(1)
∗ , r

(2)
∗ , . . . , r

(T )
∗ }. (15)
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(a) frame 62 (b) frame 63 (c) frame 64

Figure 6. Temporally inconsistent initial regions in the “Mallard-

water” sequence. In the top row, the ground-truth object bound-

aries are depicted in yellow. The bottom row depicts the initial

primary object regions.

Notice that a higher weight γ in (11) allows refined re-

gions to be more different from initial primary object re-

gions. Before the iterative ARP, we decide γ for an input

video sequence, by analyzing the temporal consistency of

initial primary object regions in different frames. When the

video sequence yields inconsistent initial regions, as exem-

plified in Figure 6, those initial regions should be signif-

icantly modified with a high γ to provide satisfactory seg-

mentation results. In contrast, consistent initial regions need

be modified only slightly with a low γ. To quantify the

temporal consistency, we obtain a warped region q
(t,t−1)
δ

by mapping the pixels within q
(t−1)
δ in the previous frame

I(t−1) to the current frame I(t) using optical flow vectors.

Then, we measure the intersection over union (IoU) ratio

between q
(t)
δ and q

(t,t−1)
δ . We obtain the average λ of these

IoU ratios over all frames, and then set γ as

γ = exp

(

−
λ

σ2

)

, (16)

where σ2 = 0.6. Consequently, we set γ to represent the

overall inconsistency of the initial primary object regions.

4. Experimental Results

We compare the proposed algorithm with the conven-

tional algorithms on the DAVIS dataset [21] and the FBMS

dataset [2]. We use the same parameters in all experiments.

4.1. Evaluation on the DAVIS Dataset

The DAVIS dataset is a recent benchmark for evaluat-

ing VOS algorithms. It consists of 50 video sequences with

3,455 annotated frames. These sequences are challenging

due to appearance change, fast-motion, occlusion, and so

forth. Each sequence contains either a single object or two

spatially connected objects, e.g. a horse and its rider, which

appear repeatedly in the sequence. We also regard such con-

nected objects as a single primary object.

For the assessment of segmentation results, we measure

the region similarity J and the contour accuracy F in [21].

Table 1. Comparison of the conventional GMM-based refinement

techniques [20, 36] and the proposed augmentation and reduction

process (ARP). ‘IR’ means that initial primary object regions in

Section 3.2 are used as segmentation results.

Measure IR IR+ [20] IR+ [36] IR+ARP

J
Mean 0.719 0.580 0.670 0.763

Recall 0.855 0.665 0.810 0.892

F
Mean 0.680 0.523 0.613 0.711

Recall 0.802 0.541 0.740 0.828

The region similarity J is defined as the IoU ratio J =
|Sp∩Sgt|
|Sp∪Sgt|

, where Sp and Sgt are an estimated segment and

the ground-truth, respectively. Also, the contour accuracy

F computes the F-measure that is the harmonic mean of the

contour precision and recall rates.

Impacts of ARP: We analyze the impacts of the proposed

ARP refinement in Section 3.3. Note that ARP refines

initial primary object regions, by augmenting them with

missing parts or reducing them by excluding noisy parts.

We compare ARP with the conventional refinement tech-

niques [20, 36]. They determine the class label (i.e. fore-

ground or background) of each pixel or superpixel using

the foreground and background GMMs [24], which are con-

structed from initial regions. Table 1 compares the J and

F scores of the initial regions (IR) in Section 3.2 and the re-

fined results of these initial regions, obtained by the conven-

tional techniques and the proposed ARP. In Table 1, ‘Mean’

denotes the average score, while ‘Recall’ measures the pro-

portion of the frames whose scores are larger than 0.5. We

see that the conventional techniques [20, 36] rather degrade

the VOS performance. This is because the GMMs are con-

structed from incomplete initial regions, unlike manual an-

notations. In such cases, the GMMs cannot model tempo-

rally varying objects and their background information re-

liably. In contrast, the proposed ARP improves the VOS

performance significantly.

Quantitative Comparison: Table 2 compares the pro-

posed algorithm with the conventional semi-supervised

VOS [3, 17, 22, 23], multiple VOS [2, 7, 13], and POS [5,

9, 20, 30, 36] algorithms. We obtain the results of the con-

ventional algorithms from the DAVIS dataset website [21],

except for [9, 36]. For [9, 36], we compute the results using

the source codes, provided by the respective authors.

In terms of the region similarity J , the proposed algo-

rithm outperforms all conventional algorithms significantly.

For example, the proposed algorithm yields 0.122 and 0.098

higher ‘Mean’ J score than the state-of-the-art POS [5]

and semi-supervised VOS [17] algorithms, respectively. In

terms of the contour similarity F , the proposed algorithm

also provides much better performance. It is worth pointing

out that the proposed algorithms even surpasses the semi-

supervised and multiple VOS algorithms, even though the

proposed algorithm does not require any manual annota-
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Table 2. Comparison of the proposed algorithm with the conventional algorithms on the DAVIS dataset in terms of the region similarity J

and the contour similarity F .

Semi-supervised VOS Multiple VOS POS

Measure [3] [23] [22] [17] [2] [7] [13] [20] [36] [30] [5] [9] Proposed

J
Mean 0.358 0.556 0.631 0.665 0.543 0.501 0.569 0.575 0.466 0.426 0.641 0.531 0.763

Recall 0.388 0.606 0.778 0.764 0.636 0.560 0.671 0.652 0.467 0.386 0.731 0.611 0.892

F
Mean 0.346 0.533 0.546 0.656 0.525 0.478 0.503 0.536 0.445 0.383 0.593 0.504 0.711

Recall 0.329 0.559 0.604 0.774 0.613 0.519 0.534 0.579 0.421 0.264 0.658 0.558 0.828

Figure 7. Primary object segmentation results of the proposed algorithm on the DAVIS dataset: “Breakdance,” “Motocross-jump,” “Soc-

cerball” and “Drift-run” sequences from top to bottom. Segmentation regions and boundaries are depicted in red and yellow, respectively.

Table 3. Comparison of IoU scores on the test sequences in the

FBMS dataset.

Video [20] [36] [5] [9] Proposed

Average 0.555 0.473 0.445 0.542 0.598

tions or ground-truth to identify primary objects.

Qualitative Results: Figure 7 shows examples of POS re-

sults on the DAVIS dataset. We see that the proposed al-

gorithm yields accurate segment tracks for primary objects,

even though those objects suffer from appearance deforma-

tion (“Breakdance”), fast motion (“Motocross-jump”), and

occlusion (“Soccerball”). Furthermore, the proposed algo-

rithm can deal with fast camera motion in the “Drift-run”

sequence.

4.2. Evaluation on the FBMS Dataset

The FBMS dataset [2] is another benchmark for VOS. It

consists of 59 video sequences, which are divided into 29

training and 30 test video sequences. We assess the POS

algorithms using the test set. We obtain the results of the

conventional POS algorithms [5, 9, 20, 36] using the source

codes, provided by the respective authors. Table 3 lists the

average IoU scores on the test set. As compared with the

conventional POS algorithms [20], [36], [5], and [9], the

proposed algorithms improves the average IoU by 0.043,

0.125, 0.153, and 0.056, respectively. Due to the page limi-

tation, we provide more experimental results in the supple-

mental materials.

5. Conclusions

We proposed a novel POS algorithm based on ARP. We

first generated candidate regions for each frame using color

and motion edges. We then estimated initial regions for

the primary object, based on the recurrence property of

the primary object. Finally, we adopted the iterative ARP

to refine the initial regions and delineate the primary ob-

ject in each frame. Experimental results demonstrated that

the proposed algorithm efficiently segments primary ob-

jects and significantly outperforms the state-of-the-art semi-

supervised, multiple, and unsupervised VOS algorithms on

the DAVIS and FBMS datasets.
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