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Abstract

In this work we train in an end-to-end manner a con-

volutional neural network (CNN) that jointly handles low-,

mid-, and high-level vision tasks in a unified architecture.

Such a network can act like a ‘swiss knife’ for vision tasks;

we call it an “UberNet” to indicate its overarching nature.

The main contribution of this work consists in handling

challenges that emerge when scaling up to many tasks. We

introduce techniques that facilitate (i) training a deep archi-

tecture while relying on diverse training sets and (ii) train-

ing many (potentially unlimited) tasks with a limited mem-

ory budget.

This allows us to train in an end-to-end manner a unified

CNN architecture that jointly handles (a) boundary detec-

tion (b) normal estimation (c) saliency estimation (d) se-

mantic segmentation (e) human part segmentation (f) se-

mantic boundary detection, (g) region proposal generation

and object detection. We obtain competitive performance

while jointly addressing all tasks in 0.7 seconds on a GPU.

Our system will be made publicly available.

1. Introduction

Computer vision involves a host of tasks, such as bound-

ary detection, semantic segmentation, surface estimation,

object detection, image classification, to name a few. While

Convolutional Neural Networks (CNNs) [32] have been

shown to be successful at effectively handling most vision

tasks, in the current literature most works focus on indi-

vidual tasks and devote all of a CNN’s power to maximiz-

ing task-specific performance. In our understanding a joint

treatment of multiple problems can result not only in sim-

pler and faster models, but will also be a catalyst for reach-

ing out to other fields. One can expect that such all-in-one,

“swiss knife” architectures will become indispensable for

general AI, involving, for instance, robots that will be able

to recognize the scene they are in, identify objects, navigate

towards them, and manipulate them.

The problem of using a single network to solve multi-

ple tasks has been recently pursued in the context of deep
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Figure 1: We train in an end-to-end manner a CNN that

jointly performs tasks spanning low-, mid- and high- level

vision; all results are obtained in 0.7 seconds per frame.

learning for computer vision. In [50] a CNN is used for joint

localization, detection and classification, [17] propose a net-

work that jointly solves surface normal estimation, depth es-

timation and semantic segmentation, while [20] train a sys-

tem for joint detection, pose estimation and region proposal

generation. More recently [41] study the effects of shar-

ing information across networks trained for complementary

tasks, [6] propose the introduction of inter-task connections

that improves performance through task synergy and [47]

propose an architecture for a host of face-related tasks.

Inspired by these works, in Sec. 2 we introduce a CNN

architecture that jointly handles multiple tasks by using a

shared trunk which feeds into many task-specific branches.

Our contribution consists in introducing techniques that en-

able training to scale up to a large number of tasks.

Our first contribution enables us to train a CNN from

diverse datasets that contain annotations for distinct tasks.
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This problem emerges once we aim at breadth, since no sin-

gle dataset contains ground truth for all possible tasks. As

described in Sec. 3, we use a sample-dependent loss that

only penalizes deviations from the ground truth available

per training sample. We combine this loss function with

Stochastic Gradient Descent, and propose an asynchronous

variant of back-propagation that moves away from the idea

of a fixed minibatch for all tasks, and instead updates task-

specific network parameters only once we have observed

sufficient training samples that pertain to that task. This al-

lows us to perform end-to-end CNN training, while using

the union of the diverse datasets as a single training set.

Our second contribution addresses the limited mem-

ory currently available on the Graphics Processing Units

(GPUs) used for deep learning. As the number of tasks in-

creases, the memory demands of back-propagation can in-

crease linearly in the number of tasks, placing a limit on

the number of tasks that one can handle. We build on re-

cent developments in deep learning with low-memory com-

plexity [12, 21] and develop an algorithm that allows us to

perform end-to-end network training with a memory com-

plexity that is independent of the number of tasks.

These techniques make it particularly easy to append

tasks to a CNN, requiring only the specification of an ad-

ditional dataset and a loss function per task. Our network is

systematically evaluated on the following tasks: (a) bound-

ary detection (b) normal estimation (c) saliency estimation

(d) semantic segmentation (e) semantic part segmentation

(f) semantic boundary detection and (g) proposal generation

and object detection.

Our present, VGG-based [51] system operates in 0.7 sec-

onds per frame on a Titan-X GPU and delivers results that

are comparable, and often even better than the state-of-the-

art on these tasks. This system is being extended to exploit

more recent models, such as ResNet [24] and ResNeXt [55]

architectures; code, models, and supplemental materials

with more extensive evaluations will become available at

http://www0.cs.ucl.ac.uk/staff/I.Kokkinos/ubernet/

2. UberNet architecture

In Fig. 2 we show the architecture of our network.

As in [32, 39, 45, 50], we use a ‘fully-convolutional’

network, namely a CNN that provides a field of re-

sponses, rather than a single classification at its out-

put. For all experiments reported in this paper we use

the VGG-16 network [51] and pool features from layers

conv1 2, conv2 2, conv3 3, conv4 3, conv5 3, fc7, which

are shown as C1, . . . ,C6 in Fig. 2 (please consult the

project website for results with more architectures). Modi-

fying slightly [3, 38], we process these intermediate layers

with batch normalization [25] so as to bring the intermedi-

ate neuron responses in a common range.

For every task we use separate skip layers [23,29,50,56]

C1 C2 C3 C4 C5 C6

B1 B2 B3 B4 B5

E1

1
E1

2
E1

3
E1

4
E1

5
E1

6
· · · · · · · · · · · · · · · · · ·ET

1
ET

2
ET

3
ET

4
ET

5
ET

6

...

FT

F1

L
T

L
1

C1 C2 C3 C4 C5 C6

B1 B2 B3 B4 B5

E1

1
E1

2
E1

3
E1

4
E1

5
E1

6
· · · · · · · · · · · · · · · · · ·ET

1
ET

2
ET

3
ET

4
ET

5
ET

6

...

FT

F1

L
T

L
1

Input Image

C1 C2 C3 C4 C5 C6

B1 B2 B3 B4 B5

E1

1
E1

2
E1

3
E1

4
E1

5
E1

6
· · · · · · · · · · · · · · · · · ·ET

1
ET

2
ET

3
ET

4
ET

5
ET

6

...

FT

F1

L
T

L
1

↓ 1
2

↓ 1
2

ST

S1

... L
T

L
1

Figure 2: UberNet architecture: an image pyramid is

formed by successive down-sampling operations, and each

image is processed by a CNN with tied weights; the re-

sponses of the network at consecutive layers (Ci) are pro-

cessed with Batch Normalization (Bi) and then fed to task-

specific skip layers (Et
i); these are combined across net-

work layers (F t) and resolutions (St) and trained using

task-specific loss functions (Lt), while the whole architec-

ture is jointly trained end-to-end. For simplicity we omit

the interpolation and detection layers mentioned in the text.

that combine the responses of multiple intermediate layers

to form the network output. As in [29,56] we keep the task-

specific memory and computation budget low by applying

linear operations within these skip layers, and fuse skip-

layer results through additive fusion with learned weights.

We leave for future work the inclusion of additional task-

specific convolutional filters [18, 42, 43, 49] or structured

prediction operations [8, 10, 30, 37, 57]. We approriately

place interpolation layers to ensure that results from dif-

ferent skip layers have commensurate dimensions and use

atrous convolution [10, 45] to evaluate high-level neurons

more densely.

As in [11, 26, 29, 45] we construct an image pyramid

and pass the multi-resolution versions of the image through

CNNs with shared weights - the highest resolution image is

set to have the smallest side equal to 621 pixels, as in [19],

while the other layers are successively downsampled by a

factor of two. This multi-resolution processing is incor-

porated in the network definition, allowing for end-to-end

training. As in [11, 29] we use loss layers both at the out-

puts of the individual scales and the final responses.
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For each task we use a task-specific loss, including the

cross-entropy loss for discrete labelling tasks (semantic seg-

mentation, human parts, saliency), the Multiple Instance

Learning loss of [29] for (semantic) boundary detection,

and a combination of ℓ2 normalization prior to an ℓ1 loss

penalty for normal estimation. For object detection as in

[48] we use a ‘Region Proposal Network’ and a ‘Faster-

RCNN’ branch, omitted form the diagram for simplicity.

We provide additional details on architecture alongside with

an analysis of task-specific choices on the project website.

3. Multi-Task Training using Diverse Datasets

Having outlined our network architecture, we now turn

to jointly training in an end-to-end manner the shared CNN

trunk and the task-specific layers.

Even though earlier works on multi-task CNNs for vi-

sion [15, 17, 20] directly minimize the sum of task-specific

losses with backpropagation, there is no dataset with com-

mon annotations for tasks as diverse as human part segmen-

tation, normal estimation, and saliency estimation.

One approach to addressing this consists in imputing

missing data by exploiting domain-specific knowledge, e.g.

by using bounding box information to constrain semantic

segmentation [14, 44]. This however may not be possible

for arbitrary tasks, e.g. normal estimation.

Instead, we simply set to zero the loss of tasks for images

that have no task-specific ground truth - which amounts to

interleaving tasks, as in [7]. Our training objective is the

sum of per-task losses and regularization terms applied to

task-specific, as well as shared layers:

L(w0,1,...,T )=R(w0)+

T
∑

t=1

γt(R(wt)+Lt (w0,wt)) , (1)

where t indexes tasks, w0 denotes shared CNN weights, wt

are task-specific weights, γt determines the relative impor-

tance of task t, R(w∗) = λ
2
‖w∗‖2 is an ℓ2 regularization,

and Lt (w0,wt) is the task-specific loss:

Lt (w0,wt) =
1

N

N
∑

i=1

δt,iLt

(

f it (w0,wt),y
i
t

)

. (2)

In Eq. 2 we use i to index training samples, Lt for the re-

sulting task-specific loss between the network prediction f it
and ground truth yi

t for the i-th example, wt to indicate the

task-specific network parameters, and δt,i ∈ {0, 1} to indi-

cate whether example i has ground truth for task t.

The advantage of using this objective is that it allows us

to simply take the union of datasets constructed for differ-

ent tasks and train a single network that jointly solves all

tasks - setting δt,i = 0 allows an image i to ‘not care’ about

any task i for which it does not contain ground truth, en-

suring that we only penalize the network’s predictions for

Asynchronous SGD

dw0 ← 0,dw1 ← 0, . . . ,dwT ← 0
c0 ← 0, c1 ← 0, . . . , cT ← 0
for m = 1 to N ·#epochs do

Sample i ∼ U [1, N ]
{Pick tasks for which sample i contains ground truth}
T = {0} ∪ {t : δt,i = 1}
for t ∈ T do

if t = 0 {Shared Parameters} then

gw0 =
∑

t δt,iγt∇w0
Lt

(

f it (w0,wt),y
i
t

)

else

gwt = γt∇wt
Lt

(

f it (w0,wt),y
i
t

)

end if

ct ← ct + 1,

dwt ← dwt + gwt

if ct = Bt then

{update parameters if we have seen enough}
wt ← wt − ǫ

(

λwt +
1

Bt

dwt

)

ct ← 0, dwt ← 0
end if

end for

end for

Table 1: Pseudocode for asynchronous SGD: for any task

we update its parameters only after observing sufficiently

many samples that contain ground truth for it. Highlighted

in blue are the main differences with respect to SGD.

tasks where we do have ground truth. The disadvantage is

that Stochastic Gradient Descent (SGD) with standard mini-

batching can become problematic, as we now describe.

Considering that we use a minibatch B of size B, plain

SGD for task k would lead to the following update rules:

w′
p = wp − ǫ(λwp + dwp), p ∈ {0, 1, . . . , T} (3)

dw0 =
1

B

∑

i∈B

T
∑

t=1

γtδt,i∇w0
Lt

(

f it (w0,wt),y
i
t

)

, (4)

dwt =
1

B

∑

i∈B

γtδt,i∇wt
Lt

(

f it (w0,wt),y
i
t

)

, (5)

where the weight decay term results from ℓ2 regularization

and ∇w∗
Lt (ŷ, y) denotes the gradient of the loss for task

t with respect to the parameter vector w∗. The difference

between the two update terms is that the common, trunk pa-

rameters, w0 affect all tasks, and as such accumulate the

gradients over all tasks. By contrast, task-specific parame-

ters wt are only affected by those images where δt,i = 1.

A problem of this scheme is that if for a given minibatch
∑

i∈B
δt,i is small, the update for wt will use a noisy gradi-

ent, which in turn leads to poor convergence behavior. We

originally handled this heuristically by increasing the mini-

batch size to 50 images rather that 10, which partially miti-

gates the problem, but is highly inefficient timewise. More
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importantly, this does not allow us to scale up to many tasks

- as the number of tasks increases, the minibatch size would

need to accordingly increase.

We propose instead to give up the idea of having a com-

mon minibatch for all tasks and instead update task-specific

parameters only once sufficiently many task-related images

have been observed. This can be accomplished using the

algorithm described in Table 1 which treats images in a

streaming mode, rather than in batches. Whenever we pro-

cess a training sample that contains ground truth for a task

we increment a counter particular to the task, and add the

current task-specific gradient to a cumulative gradient sum.

Once the task counter exceeds a threshold we update the

task parameters and then reset the counter and cumulative

gradient to zero. The task parameter updates become de-

coupled, resulting in an asynchronous update scheme.

We also note that in the pseudocode we use different ‘ef-

fective batchsizes’, Bp, which can be useful for efficient

training. In particular, for detection tasks it is reported

in [48] that a batchsize of 2 suffices, since every image con-

tains hundreds of examples, while for dense labelling tasks

such as semantic segmentation a batchsize of 10, 20 or even

30 is often used [10,56]. In our training we use an effective

batchsize Bp of 2 for detection, 10 for all other task-specific

parameters, and 30 for the shared CNN features, w0. Us-

ing a larger batch size for the shared CNN features allows

their updates to absorb information from more images, con-

taining multiple tasks, so that task-specific idiosyncracies

will cancel out by averaging. This avoids the ‘moving tar-

get’ problem, where every task quickly changes the shared

representation of the other tasks.

4. Memory-Bound Multi-Task Training

We now turn to handling memory limitations, which be-

come a major problem when training for many tasks. We

build on recent advances in memory-efficient backpropaga-

tion [12,21], where one trades off computation for memory,

but without sacrificing accuracy; we adapt these advances to

multi-task learning and develop an algorithm with a mem-

ory complexity that is independent of the number of tasks.

As shown in Fig. 3, the common implementation of

back-propagation maintains in memory all intermediate

layer activations computed during the forward pass; in the

backward pass each layer can then combine its activations

with the back-propagated gradients and send gradients to

its own parameters and to the layer below. Storing inter-

mediate activations saves computation by reusing the com-

puted activation signals, but requires memory. If we con-

sider that every layer requires N bytes of memory for its

activation and gradient signals, and we have LC layers for

a shared CNN trunk, T tasks, and LT layers per task, the

memory complexity of a naive implementation would be

2N(LC + TLT ), as shown in Fig. 3 for LC = 6, LT = 3.

I

C1 C2 C3 C4 C5 C6

Ca
7

Ca
8 La

Cb
7

Cb
8 Lb

A1 A2 A3 A4 A5 A6

G1 G2 G3 G4 G5 G6

Aa
7

Aa
8

Ga
7

Ga
8 ya

G6 Ab
7

Ab
8

Gb
7

Gb
8 yb

G6

Figure 3: Memory usage in “vanilla” backpropagation for

multi-task training: lookup operations are indicated by

black arrows, storage operations are indicated by orange

and blue arrows for the forward and backward pass, respec-

tively. During the forward pass each layer stores its activa-

tion signals in the bottom boxes. During the backward pass

these activation signals are combined with the recursively

computed gradient signals (top boxes).

We propose instead an algorithm that trades off com-

putation time with memory complexity, adapting the work

of [12, 21] to exploit the particularities of our multi-task

setup.

In a first stage, shown in Fig. 4(a), we perform a forward

pass through the common trunk of the network and store

the activations of only a subset of the layers - for a common

trunk of depth LC ,
√
LC activations are stored, lying

√
LC

layers apart, while the other intermediate activations, shown

in grey, are discarded as soon as they are used. These stored

activations help start the backpropagation at a deeper layer

of the network, acting like anchor points for the computa-

tion: as shown in Fig. 4(d,e), back-propagation for any sub-

network requires the activation of its lowest level, and the

gradient signal at its highest layer. Since the subnetworks

are of length
√
LC themselves, we need a total of 2

√
LC

memory units for the trunk.

So far we are entirely along the lines of [12, 21] - how-

ever these algorithms would treat the whole multi-task net-

work as a single processing pipeline, meaning that for T

tasks of length LT each the complexity would grow as√
LC + TLT . While substantially lower, this can still be-

come unmanageable as the number of tasks T grows.

We observe however that after the branching point of the

different tasks (layer 6 in our figure), the computations de-

couple: each task-specific branch can work on its own, as

shown in Fig. 4(b,c) and return a gradient signal to layer 6.

These gradient signals are accumulated over tasks, since our

cost is additive over the task-specific losses. This means that

each task can be removed from memory once it has commu-

nicated its gradient signals to the shared CNN trunk. For a

task-specific network depth of LT , the memory complex-

ity is reduced from
√
LC + TLT to

√
LC + LT , becoming

independent of the number of tasks.
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(c) Low-memory backpropagation - task b
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Figure 4: Low-memory multi-task backpropagation: For

the common trunk we store a subset of activations in mem-

ory, which serve as ‘anchor’ points for backpropagation on

smaller networks. Each task ‘cleans up’ its branch once vis-

ited, resulting in a memory complexity that is independent

of the number of tasks.

This modification of the algorithm has allowed us to

tackle an increasing number of tasks with our network with-

out encountering any memory issues. Using a 12GB GPU

card we have been able to use a three-layer pyramid, with

the largest image size being 921x621, while using skip-

layer connections for all network layers, pyramid levels, and

tasks. The largest dimension that would be possible with-

out the memory-efficient option for our present number of

tasks (7) would be 321x321 - and that would only decrease

as more tasks are used. We had originally run several ex-

periments with lower-resolution images, or cropped frames

and witnessed in all cases substantial deterioration of detec-

tion performance - namely a drop in mean Average Preci-

sion from 78% to 67 − 72%, apparently due to the missing

context, poor resolution, and bounding box distortion due

to object cropping. By contrast, our algorithm avoids any

compromises in spatial resolution, and accuracy, while be-

ing scalable to an arbitrary number of tasks.

Apart from reducing memory demands, we also reduce

computation time by lazy evaluation: if a training sample

does not contain ground truth for certain tasks, these tasks

will not contribute any gradient term to the common CNN

trunk. The computation over such task-specific branches is

therefore avoided, which results in a substantial acceleration

of training, and can help scale up to many tasks.

5. Experiments

Our experimental evaluation has two objectives: The

first one is to show that the generic UberNet architecture in-

troduced in Sec. 2 successfully addresses a broad range of

tasks. The second is to explore the effects of incorporating

more tasks on individual task performance.

Regarding individual task performance, we compare pri-

marily to results obtained by methods that rely on the VGG

network [51]. More recent works e.g. on detection [16]

and semantic segmentation [10] have shown improvements

through the use of deeper ResNets [24], but we consider the

choice of network to be orthogonal to this section’s goals.

Furthermore, due to the multitude of tasks addressed by our

system and limited space it is impossible to provide an in-

depth analysis of all results on a per-task level. We provide

an extensive presentation of results with different networks

and task-specific choices in the project website, and focus

here on the main interesting results.

Regarding multi-task performance we neet to cater for

(a) a common initialization, and (b) a consistent construc-

tion of the training set. A common initialization requires

having at our disposal parameters for both the convolutional

labelling tasks, and the region-based object detection task.

For this we form a ‘frankenstein’ network where we stitch

together two distinct variants of the VGG network that have

both been pretrained on MS-COCO. In particular we use the

network of [10] for semantic segmentation (‘COCO-S’) and
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Method mAP

F-RCNN, [48] VOC 2007++ 73.2

F-RCNN, [48] MS-COCO + VOC 2007++ 78.8

Ours, 1-Task 78.7

Ours, 2-Task 80.1

Ours, 7-Task 77.8

Table 2: Mean Average Precision (AP) performance (%) on

the PASCAL VOC 2007 test set.

the network of [48] for detection, (‘COCO-D’), and subse-

quently finetune.

Turning to (b), the consistent training set construction,

we note that our multi-task network is trained with a union

of datasets corresponding to the multiple tasks that we want

to solve. Even though using larger task-specific datasets

could boost performance for the individual tasks, we train

the single-task networks only with the subset of the multi-

task dataset that pertains to the particular task. For instance,

human part segmentation requires putting aside part of the

PASCAL Validation set, since that is used to test part seg-

mentation. This sacrifices some task-specific performance

for other tasks (e.g. detection, or semantic segmentation)

but facilitates comparison between our single- and multi-

task training results. We use a particular proportion of im-

ages per dataset, moderately favoring the high-level tasks;

we elaborate on datasets in the supplemental material.

5.1. Experimental Evaluation

Object Detection: A main concern has been to ensure

that we have high performance in object detection, since it

is one of the dominant computer vision problems.

We start our experiments by verifying that we can repli-

cate the results of [48], while using the UberNet architec-

ture with all its modifications (differences are detailed in the

supplement). Here we used the COCO-D initialization de-

scribed above, and train on the VOC2007++ dataset of [48],

composed of the union of the VOC2007 and VOC2012

trainval sets. As shown in the first, ‘Ours 1-Task’ row of

Table 2, we have effectively identical performance with the

method of [48] that uses the same initialization.

We then measure the performance of the network ob-

tained by training for the joint segmentation and detection

task, which, as mentioned in Sec. 5 will serve as our start-

ing point for all ensuing experiments. We observe that

by jointly training on detection and segmentation we get

a small boost in performance, which is indicating that the

additional supervision signal for semantic segmentation can

help improve the performance of the detection sub-network.

However, when moving to seven tasks, performance

drops, yet remains comparable to the strong baseline of

[48]. This is also observed in the tasks described below.

Semantic Segmentation: The next task that we consider

is semantic segmentation. Even though a really broad range

of techniques have been used for the problem (see e.g. [10]

for a recent comparison), we only compare to the meth-

ods lying closest to our own, which in turns relies on the

‘Deeplab-Large Field of View (FOV)’ architecture of [9].

The results of the two-task architecture reported in Ta-

ble 3 indicate that we get effectively the same performance

as Deeplab Large-FOV. This is quite surprising given that

for this two-task network, as detailed above, our starting

point has been a ‘frankenstein’ network that uses the detec-

tion network parameters up to the fifth convolutional layer,

rather than the segmentation parameters.

Turning to the multi-task network performance, we ob-

serve that performance drops as the number of tasks in-

creases. Still, even without using CRF post-processing, we

fare comparably to a strong baseline, such as [44].

Remaining dense labelling and regression tasks:

From the results provided for the remaining tasks in Tables

4-8, we observe a similar behavior. Namely, when trained

in the single-task setting the UberNet architecture has a per-

formance that can directly compete, or sometimes even out-

perform comparable state-of-the-art systems recently devel-

opped for the individual tasks (similar results for certain of

these tasks have also been obtained independently in [1]).

This can be attributed to the use of skip layers and multi-

ple resolutions, which were originally shown in [29, 56] to

substantially help boundary detection.

However, when turning to the seven-task architecture,

we typically have a moderate, yet systematic drop in per-

formance with respect to the respective single-task network.

This may seem to be in contrast to the experimental finding

for the two-task network, and also the general tenet of multi-

task training, according to which learning to solve one task

can help performance in others. We argue however that this

can be anticipated given (a) the diversity of the tasks and (b)

the limited parameter ‘budget’ of our common CNN trunk.

We explore this in some larger depth below and comment

on possible remedies in the conclusion.

Balancing diverse tasks: The performance of our net-

work on the set of tasks it adresses depends on the weights

assigned to the different task losses in Eq. 1. A large weight

for one task can skew the network’s internal representation

in favor of the particular task and neglect the rest.

To study this, we focus in particular on the normal esti-

mation task, which has one of the most interesting behav-

iors. Starting from Table 8, we report multiple results for the

single-task training case, obtained by setting different val-

ues to the normal task’s weight γt in Eq. 1. Since this is in

the single-task setting, γ only sets the tradeoff between the

loss and the regularization. We observe that γ substantially

affects performance. A large value leads to results compet-

itive with the current state-of-the-art, while a low weight

6134



In
p

u
t

B
o

u
n

d
ar

ie
s

S
al

ie
n

cy
S

u
rf

ac
e

N
o

rm
al

s
S

.
B

o
u

n
d

ar
ie

s
S

.
S

eg
m

en
ta

ti
o

n
O

b
je

ct
D

et
ec

ti
o

n
H

u
m

an
P

ar
ts

Figure 5: Qualitative results of our network. The first three rows indicate outputs for low- and mid-level, category-agnostic

tasks; the bottom four rows indicate performance for high-level tasks developed around the 20 categories of PASCAL VOC.

harms performance.

Turning now to multiple tasks, in Table 9 we report how

performance changes when we increase the weight of the

normal estimation task (γ = 1 being the default option).

Even though jointly training for semantic segmentation and

object detection originally improved detection accuracy, we

now observe that the performance measures of the different

tasks act like communicating vessels: improving normal es-

timation harms other tasks and vice versa.

Discussion of results: We outline possible interpreta-

tions of our results and associated future research directions.

Firstly, what is happening can be understood as an in-

stance of “catastrophic forgetting” - we start from a network

that is fine-tuned for detection and semantic segmentation,
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Method mIoU

Deeplab -COCO + CRF [44] 70.4

Deeplab Multi-Scale [29] 72.1

Deeplab Multi-Scale -CRF [29] 74.8

Ours, 1-Task 72.4

Ours, 2-Task 72.3

Ours, 7-Task 68.7

Table 3: Semantic segmentation: mean

Intersection Over Union (IOU) accu-

racy on PASCAL VOC 2012 test.

Method mean IoU

Deeplab L-FOV [54] 51.78

Deeplab L-FOV-CRF [54] 52.95

Multi-scale averaging [11] 54.91

Attention [11] 55.17

Auto Zoom [54] 57.54

Ours, 1-Task 51.98

Ours, 7-Task 48.82

Table 4: Part segmentation: mean IOU

accuracy on the dataset of [13].

Method mAP mMF

Semantic Contours [22] 20.7 28.0

High-for-Low [5] 47.8 58.7

High-for-Low-CRF [5] 54.6 62.5

Ours, 1-Task 54.3 59.7

Ours, 7-Task 44.3 48.2

Table 5: Semantic Boundary Detection:

Mean AP performance (%) and Mean

Max F-Measure Score on the PASCAL

VOC 2010 validation set by [22].

Method MF

MDF [33] 0.764

FCN [34] 0.793

DCL [34] 0.815

DCL + CRF [34] 0.822

Ours, 1-Task 0.835

Ours, 7-Task 0.823

Table 6: Saliency

estimation: Maximal

F-measure (MF) on

PASCAL-S [35].

Method ODS OIS AP

HED-fusion [56] 0.790 0.808 0.811

Multi-Scale [29] 0.809 0.827 0.861

Multi-Scale +sPb [29] 0.813 0.831 0.866

Ours, setup of [29] 0.815 0.835 0.862

Ours, 1-Task 0.791 0.809 0.849

Ours, 7-Task 0.785 0.805 0.837

Table 7: Boundary Detection: maximal

F meaure at the Optimal Dataset Scale,

Optimal Image Scale, and Average Pre-

cision on the BSD dataset [40].

Method Mean Median 11.25◦ 22.5◦ 30◦

VGG-Cascade [17] 22.2 15.3 38.6 64.0 73.9

VGG-MLP [2] 19.8 12.0 47.9 70.0 77.8

VGG-Design [53] 26.9 14.8 42.0 61.2 68.2

Ours, 1-Task γ = 50 21.4 15.6 35.3 65.9 76.9

Ours, 1-Task γ = 5 23.3 17.6 31.1 60.8 72.7

Ours, 1-Task γ = 1 23.9 18.1 29.8 59.7 71.9

Ours, 7-Task γ = 1 26.7 22.0 24.2 52.0 65.9

Table 8: Normal Estimation: Mean and Median An-

gle distance (in radians) and percentage of pixels within

11.25, 22.5, and 30 degrees of the ground truth of [31].

Detection Boundaries Saliency Parts Surface Normals S. Boundaries S. Seg.

mAP ODS OIS AP MF mIoU 11.2◦ 22.5◦ 30.0◦ MF mAP mIoU

γ = 1 77.8 0.785 0.805 0.837 0.822 48.8 24.2 52.0 65.9 44.3 48.2 68.7

γ = 5 76.2 0.779 0.805 0.836 0.820 36.7 23.1 51.0 64.9 33.6 34.2 67.2

γ = 50 73.5 0.772 0.802 0.830 0.814 34.2 27.7 57.3 70.2 28.6 33.2 63.5

Table 9: Impact of the weight used for the normal estimation loss, when training for seven tasks: Improving normal estimation

comes at the cost of decreasing performance in the remaining tasks (higher is better for all tasks).

and as we re-train to solve additional tasks, performance

in the original tasks drops. Remedies to this problem can

include using the original model outputs as supervision sig-

nals [7, 36, 52], or, as advocated in [28], considering the

sensitivity of other tasks when updating shared parameters.

Secondly, our network’s common CNN trunk has a lim-

ited number of parameters and layers. Apart from using

deeper networks, we can add nonlinear layers on top of the

skip layers, or “twin networks” as in [41] to provide an ad-

ditional computation/parameter budget to our network.

Finally, another cause could be the highly diverse na-

ture of the tasks - e.g. normal estimation and human part

segmentation have little in common. Multi-task learning

requires some task relatedness [4] and it is common to pur-

sue some automated identification of tasks which are related

and should be reinforcing each other, e.g. [27, 46].

6. Conclusions

In this work we have introduced two techniques that al-

low us to train in an end-to-end manner a ‘universal’ CNN

that jointly tackles a broad set of computer vision problems

in a unified architecture. We have shown that one can effec-

tively scale up to many and diverse tasks, since the memory

complexity is independent of the number of tasks, and in-

coherently annotated datasets can be combined during train-

ing. This has allowed us to train a single network that can

solve multiple tasks in a fraction of a second with competi-

tive performance.

We hope that these advances will make it possible to

fully reap the benefits of multi-task learning for CNNs in vi-

sion, potentially along the lines outlined in the discussion.

We will be sharing our system’s implementation to foster

research in this direction.
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