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Abstract

This work presents an iterative re-alignment approach
applicable to visual sequence labelling tasks such as ges-
ture recognition, activity recognition and continuous sign
language recognition. Previous methods dealing with video
data usually rely on given frame labels to train their clas-
sifiers. Looking at recent data sets, these labels often
tend to be noisy which is commonly overseen. We pro-
pose an algorithm that treats the provided training labels
as weak labels and refines the label-to-image alignment on-
the-fly in a weakly supervised fashion. Given a series of
frames and sequence-level labels, a deep recurrent CNN-
BLSTM network is trained end-to-end. Embedded into an
HMM, the resulting deep model corrects the frame labels
and continuously improves its performance in several re-
alignments. We evaluate on two challenging publicly avail-
able sign recognition benchmark data sets featuring over
1000 classes. We outperform the state-of-the-art by up to
10% absolute and 30% relative.

1. Introduction

Sequence data is difficult to annotate, when trying to at-
tribute a label to each frame. Large amounts of continuous
data usually contain labelling ambiguities and are not free of
errors. The community needs to find ways how to deal with
that. Sequence data annotations should be expected to vary
in quality and weakly supervised approaches could cope
with that. Evaluation metrics could judge on the sequence
level rather than at exact frame matches, favouring those ap-
proaches that generalise over annotation imperfections. In
this work we are proposing an iterative re-alignment algo-
rithm to overcome such challenges. The presented approach
has a direct impact on training classifiers for challenging se-
quence tasks like gesture or sign language recognition and
relevant neighbouring fields.

Even though Long Short Term Memory (LSTM) mod-

els achieve outstanding results in speech recognition, hand
writing recognition, machine translation, image captioning
and image translation, until now they have not been suc-
cessfully trained on real-life continuous gesture and sign
language recognition tasks distinguishing a large number
of classes. Our experimental evidence suggests that la-
bel to video re-alignments are needed to permit such suc-
cessful training. Natural continuous sign language, as op-
posed to its artificial counterparts, poses a truly challenging
large-scale classification task with inherent segmentation.
The stream of continuous sign gestures constitutes overlap-
ping context- and user-dependent interactions that make use
of multi-modal channels which can often be observed in
non-synchronous realisations. In this paper, we introduce
new guidelines for outperforming the current state-of-the-
art in the field of human gesture and sign language recogni-
tion. We propose a multilayer bi-directional LSTM that is
trained end-to-end with a deep Convolutional Neural Net-
work (CNN). The joint model is embedded into a Hidden-
Markov-Model (HMM) for iterative refinement and final
recognition outperforming the state of the art on two pub-
licly available benchmark data sets by a large margin. As
such we make several contributions addressing short com-
ings in the current state-of-the-art:

1. We empirically validate the importance of re-
alignments for continuous gesture and sign language
recognition tasks and propose an iterative re-alignment
algorithm based on a hybrid CNN-BLSTM embedded
into a HMM.

2. To promote reproducibility on the selected corpora we
will make the best alignments publicly available !.

3. To the best of our knowledge, we are the first to suc-
cessfully train end-to-end CNN-BLSTMs for contin-
uous gesture and sign language tasks distinguishing
over 1000 classes.

! http://www-i6.informatik.rwth-aachen.de/ koller/RWTH-PHOENIX/
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4. We find that whole frame images outperform tracked
hands.

This paper is organised as follows: after discussing
the state-of-the-art and its short-comings in Section 2, we
present the approach in Section 3. In Section 4, we show all
empirical experiments to back our proposition. Finally, we
end with conclusions and future work in Section 5

2. Related Work

This work introduces new guidelines for outperforming
the current state-of-the-art in the field of human gesture and
sign language recognition. Namely, our proposition relies
on an iterative re-alignment algorithm. Iteratively refining
the provided training labels allows to take full advantage of
deep recurrent CNN-BLSTM models which until now have
not been successfully applied to comparable tasks that fea-
tures real-life, heavily co-articulated gesture and sign lan-
guage data with a large number of classes.

Re-aligning the labels using the deprecated GMM-
HMM approach has long time been a common procedure in
speech recognition. In the recent speech literature some ef-
forts can be observed performing re-alignments with GMM-
free systems [33] purely based on deep neural networks,
which is related to our presented approach. However, in
gesture recognition and neighbouring fields not much work
exists that exploits re-alignments. Most approaches simply
rely on the provided frame labels or divide the input se-
quence length by the number of modelled states or classes
performing a non-optimal flat segmentation, as in [41].

LSTMs [19] have been discovered nearly two decades
ago. Since then, they have had large success in many human
language related technologies e.g. as bidirectional LSTM
based acoustic models [32, 44, 15] or language models [35]
in speech recognition, in neural machine translation [36, 7]
or handwriting recognition [16].

In related computer vision tasks, such as action or ac-
tivity recognition, LSTMs seem to yield much less gain or
are even outperformed by pooled multi-stream feed forward
architectures [28]. We argue though, seconding Pigou et
al. [29], that current general video classification data sets
constitute challenges where the detection of specific ob-
jects in the scene is often sufficient for successful classifica-
tion. However, when it comes to gesture and sign language
recognition temporal sequence information, e.g. motion, is
often critical. Looking at the state of the art in these fields,
we note that in the last three years (particularly after 2015)
several works successfully exploited different variants of
LSTMs. But all prior work has some short comings prevent-
ing it from exploiting the full benefits of the architecture and
transferring it to more challenging problems: Most works
do not train the LSTMs jointly with CNNss in an end-to-end
fashion [2, 26, 42, 43], their architecture is not deep [38] or

they do not employ bidirectional LSTMs [ 10, 2, 42, 43, 28].
All previous work has been evaluated on a low number of
classes [29, 38, 26, 12], sometimes with low input dimen-
sionality not requiring image processing (the data sets pro-
vide tracked skeletons) [26, 12]. No work exists that mod-
els truly continuous data with overlapping classes as it is the
case in natural gesturing and sign language recognition. To
the best of our knowledge, in the fields of activity, action,
gesture and sign language recognition, we are the first to
successfully report the end-to-end training of CNN-LSTM
networks for challenging continuous recognition tasks dis-
tinguishing over 1000 classes. Recently however, we learnt
about works in lip-reading that employed LSTMs [&] and
Gated Recurrent Units (GRUs) [1] to successfully distin-
guish a large number of classes as well. The latter paper
employs Connectionist Temporal Classification (CTC) [16],
which is related to the presented approach in this work, but
differs in several points. CTC can be regarded as a spe-
cial case of the hybrid full-sum HMM alignment, whereas
we propose a viterbi best path alignment. Moreover, CTC
has a specific HMM topology (1 state with no repetition
followed by a tied blank state) and we follow the standard
automatic speech recognition (ASR) bakis topology with 3
states and 2 repetitions. Furthermore, in CTC training the
actual re-alignment is commonly applied for every mini-
batch, whereas we realign every 4 epochs. A big advantage
of our approach is that it doesn’t require the LSTMs to cover
a full input sequence, instead we can define the sequence
and perform ‘chopping’ of the input. This allows to use
much more complex visual models that have larger memory
footprints. Refer to [5] for details on the comparison of the
two approaches. In terms of sign language recognition, our
work is related to [23] but differs in our proposed iterative
label re-alignment strategy and the recurrent CNN-BLSTM
models.

3. Iterative Re-Alignment of Labels and Video

Following a recent line of works [25, 41, 23] that make
use of hybrid neural network and HMM modelling [6, 3]
for gesture and sign language recognition, we also opt for
a hybrid architecture. However, unlike the previous men-
tioned publications, we embed a CNN-BLSTM in a HMM
and propose an iterative re-alignment algorithm in the fol-
lowing subsection. An overview of the presented algorithm
can be seen in Figure 1.

3.1. Recognition Basics

The target in all sequence learning tasks is to predict a
sequence of output symbols wf, given an input sequence
of images 7 = w1,..., 2. To train the sequence clas-
sifier in a supervised setting either a direct frame-labelling
is available or the target label sequence w is given and a
monotonous occurrence of the corresponding events in the
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Figure 1. Overview of iterative re-alignment algorithm used to re-
fine the training labels.

video material can be assumed. Our followed hybrid mod-
elling approach makes use of the statistical paradigm with
Bayes’ decision rule, which has been successfully applied
to speech recognition, hand writing recognition and statis-
tical machine translation for decades now. The target ob-
jective is to maximise the true class posterior probability
distribution Pr(wi|zT) over the whole utterance. Deci-
sion theory allows to split up the class posterior probability
in the class prior Pr(w?") and the class-conditional proba-
bility Pr(x¥|wl"), which we can then model by different
information sources. p(w{) will be modelled by a n-gram
language model, whereas p(z¥|wi") will be modelled by a
CNN-LSTM:
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Expressing the class-conditional probability in terms of
a HMM adds the hidden variable s7 :
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where the sum in Equation 2 expresses all viable paths
that lead to the same output sequence wi¥. Equation 3 and
4 constitute reformulations with help of the chain rule. As-
suming s to be non-observable and a first order Markov
process leads to Equation 5. After applying the viterbi ap-
proximation, which considers just the most likely path and
plugging everything into Equation 1, we get:

T
argmax {p(w) max H p(x4], 8¢,

w)p(sest—1, w)} (6)
wyY 51 4=
To be able to use a strong vision model we replace the
emission probability p(x|s¢,w) ) of the HMM by an em-
bedded discriminative CNN-LSTM. Its outputs constitute
posterior probabilities. Therefore, to keep the approach
fully Bayesian, a conversion of the posteriors to class-
conditional likelihoods following Bayes’ rule is needed:

p(Stawmet)

7
p(se,wl) @

p(x]st, w{v) = p(xy) -

where p(s¢, wl) can be approximated by the state la-
bel counts in our frame-state-alignment used to train the
CNN-LSTM. In the implementation, we add several hyper-
parameters allowing to control the impact of the language
model () and the state prior («)). Neglecting the constant
frame prior p(z), we finally optimise the following equa-
tion to find the best output sequence:

p St,'ZU|fEt
argmax max p(Se|s¢—1, ()
gw { H Sta t| et )}

p(s¢|s¢—1) constitutes the state transition model, which
we model pooled across all output classes. Only the ergodic
garbage class has separate transition probabilities, such that
it can always account for frames in between the output sym-
bols. The employed HMM is in bakis structure, which is
a left-to-right structure with forward, loop and skip tran-
sitions across at most one state. Furthermore, we imple-
ment each gesture class with six states, where two subse-
quent states share the same class probabilities. Additional
to forward, loop and skip we model an exit penalty, which
is added whenever a full symbol (gesture class) is emit-
ted. These penalties, jointly with above mentioned y and
« represent the hyper-parameters in this approach, which
are optimised on an independent development set using a
grid search. All HMM experiments are conducted through
RASR [31], a freely available and open-sourced speech
recognition framework. We employ histogram and thresh-
old pruning of the search space for better performance and
memory consumption. All experiments are evaluated on
word error rate (WER) which measures the number of nec-
essary insertion, substitution and deletions to turn the recog-
nised sentence to the reference sentence.

#deletions + #insertions + #substitutions

WER = -
#reference observations

€))
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3.2. Iterative EM Re-Alignment

CNNSs have shown an incredible improvement in gesture
and sign language processing [23]. But in these tasks mo-
tion seems to play a very important role and only relying
on the generative HMM state sequence to capture tempo-
ral change may not be enough. Recurrent networks such as
LSTMs have access to the whole or at least a sub-sequence
and therefore may remedy that shortcoming. However, our
experiments shifting feed forward to recurrent networks
quickly revealed that it is not easy to benefit from the added
modelling complexity. The fixed frame-state alignment be-
ing good for feed forward CNNs has proven non-optimal to
train the LSTMs.

In this work, we propose an iterative re-alignment al-
gorithm that helps to overcome these problems. The ba-
sic idea relies on Expectation Maximisation (EM) [9]. We
initialise the algorithm with a provided frame labelling or
a frame-state-alignment generated by standard CNN train-
ing. We then iteratively perform first a maximisation step,
which corresponds to fitting our CNN-LSTM model to the
data and then an expectation step, in which the previously
trained model is embedded in a hybrid HMM recognition
as described in the previous section. However, not a full
recognition is performed, but rather a forced alignment:
We force the word sequence w)' to match the given tran-
scription in our training data and search for the most likely
state sequence s7. As depicted in Figure 1, after each suc-
cessful re-alignment the following iteration of CNN-LSTM
training benefits from the new frame-state labels and it also
uses the previous iteration’s model weight for initialisation.
After each iteration we perform a recognition of the de-
velopment data. Here, we optimise the mentioned hyper-
parameters to obtain the best results. The same hyper-
parameters are then used to re-align the next iteration.

3.3. Recurrent CNN-LSTM

In this work, we deal with the recognition of challenging
real-life gesture and sign language video data. We therefore
aim at joining a powerful and deep CNN with several bi-
directional LSTM layers [17, 27]. In order to train the full
network end-to-end, the CNN architecture of choice should
have a low memory footprint, while still being very deep.
After comparing different CNN architectures [34, 24, 37],
we opted for the 22 layer deep GoogleNet [37] architecture,
which we initially pre-train on the 1.4M images from the
ILSVRC-2012 [30]. The main building blocks of this archi-
tecture are Inception modules which are fusion of multiple
convolutional layers with different receptive fields applied
to the output of a 1x1 convolution layer which serves as
a dimensionality reduction tool. Finally, in addition to the
last classifier, GoogleNet also makes use of two auxiliary
classifiers at in lower layers which are added to the final
loss with a weight of 0.3. The pre-trained standalone CNN

achieves a top-1 accuracy of 68.7% and a top-5 accuracy
of 88.9% in the ILSVRC. The network uses ReLUs as non-
linearity in its convolutional layers and 70% dropout ratio
is set to prevent over-fitting.

LSTMs are RNN variants that were invented to over-
come the vanishing gradient problem [4] and as such can
learn long time dependencies much better than vanilla
RNNs. As the gradients are fully differentiable, we can
train the recurrent network with Back Propagation Through
Time (BPTT) [40]. We use stochastic gradient descent with
an initial learning rate Ay = 0.001 for CNN-LSTM archi-
tectures and A\g = 0.01 for CNN networks. We employ a
polynomial scheme to decrease the learning rate \; for it-
eration ¢ as the training advances while reaching \; = 0
for the maximum number of iterations %,,,, = 100k (being
roughly 4 epochs) in our experiments.

i\ 0
) (10)

Ai = Ao - (1 — -
Zmaa:

Our CNN-LSTM implementation is based on [20]. The em-
ployed bi-directional CNN-LSTM-HMM architecture is de-
picted in Figure 2. All images are directly feed as inputs
to a deep CNN architecture. All hand patches in our ex-
periments are tracked in a similar fashion as the dynamic
programming based approach of [1 1]. Furthermore all hand
related experiments use the right hand which is the signers
dominant hand. Both hand and full frame image inputs to
the CNN are of the size 256x256 pixels. Each input is nor-
malised by subtraction of the pixel-wise mean of all images
in the training set. The resulting image is then cropped at a
random position to a new size of 224x224 pixels.

4. Experiments

We conduct our experiments on the RWTH-PHOENIX-
Weather 2014 [14] data set with more than a million frames
and a vocabulary size of 1,081 unique words. This data
set is recorded from a public television broadcast and con-
tains sentences performed by 9 different signers. In this data
set, in addition to the training set, two independent evalua-
tion sets are provided each amounting to almost 10% of the
training set in size. It is important to note that the these
sets are not signer-independent, meaning all signers appear
in all 3 sets. A 4-gram language model with a perplexity
of 46.9 is trained on and used for experiments on this data
set. Additionally, we created a signer independent subset
of PHOENIX 2014 and a signer-independent 4-gram lan-
guage model with a perplexity of 60.4 measured on the dev
set. Due to a sensible amount of data, we chose to leave out
signer 5 for signer independent experiments.

4.1. Uni-modal vs. Multi-modal

Given the success of previous work [22, 23] with man-
ual (hand) features, we start our experiments using right
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Figure 2. End-to-end CNN-LSTM architectures with two BLSTM
layers.

Train Dev Test
Signers 9 9 9
Duration [hours] 8.88 0.84 0.99
Frames 799,006 75,186 89,472
Sentences 5,672 540 629
Running glosses 65,227 5,540 6,504
Vocabulary 1,081 467 500

Table 1. Statistics of Phoenix-2014 data set.

Train Dev Test
Signers 8 1 1
Duration [hours] 6.80 0.18 0.30
Frames 612,027 16,460 26,891
Sentences 4,376 111 180
Running glosses 49,966 1,167 1,901
Vocabulary 1,081 239 294

Table 2. Statistics of Phoenix-2014 Signer Independent SIS data
set.

hand patches. As mentioned earlier, we opt for GoogLeNet.
which is initialised by weights learned on the ImageNet data
set and trained on tracked right hand patches using an align-
ment (labels) generated from the approach of [22].

As shown in Table 3 after the first re-alignment, we see
an improvement of 1.7 and 0.9 percentage points on the dev
and test sets, respectively. However, a next re-alignment it-
eration seems to have a smaller impact with an improvement
of 0.4 percentage point in WER on the test set. This initial
significant improvements over the state of the art suggest us-
ing re-alignments within a hybrid DNN-HMM framework
can be quite beneficial.

Considering the multimodal nature of sign language, we
know that using the right hand alone will not lead to the best
possible result. Hence, similar experiments are conducted
using full frames which contain visual information of all
sign language modalities (e.g. Hands, face and etc.). Once
again, Table 3 shows the results of our experiments using
full frames. We can see that already in the first iteration
full frame images outperform the state of the art uni-modal
hand model by 3.9 and 4.7 percentage points on the dev
and test sets, respectively. It is important to note, that when
using right hand patches as features, there is the need for
an additional tracking step. This is in contrast to the full
frame experiment, in which the CNN is not only able to
distinguish the hands on its own, but also recognise other
modalities which leads to better results.

Furthermore, following the same pattern as the right
hand experiments, re-alignments using full frames lead to
an initial improvement in the second iteration and a sta-
bilisation in the third iteration. This confirms that re-
alignments lead to improved performance, but also that the
gain is limited for a few iterations. Considering both the rel-
ative simplicity and increased performance of full frames,
they should be the feature of choice for sign language recog-
nition in the hybrid DNN-HMM approach.

LSTM Re-Alignment Iteration
Input
layers 1 2 3
0 Righthand 38.3  36.6 36.9
0 Full frame  33.7 30.7 29.0

Table 3. Recognition results in WER [%] (the lower the better)
with different numbers of re-alignments using GoogleNet struc-
ture on PHOENIX 2014 Dev for full frame & tracked right hand.

4.2. Temporal context through LSTMs

LSTMs are powerful units at capturing sequential and
temporal information within deep neural networks. In the
context of computer vision, the use of such units is most
often done in isolation and on top of features learned by
a separately trained CNN. In this work however, we opt for
an end-to-end training of a deep CNN-LSTM network. This
results in a network consisting of many convolutional layers
followed by one or more LSTMs layers at the top. In an
initial experiment, a single LSTMs layer is stacked on top
of the last pooling layer of GoogLeNet and followed by a
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final softmax classifier.

4.3. Pre-training and LSTM initialization

As mentioned before, we initialise the network with
weight learned on the ImageNet data set. However, there is
no sequential information on that data set, making it impos-
sible to pre-train LSTMs units on it. The impact of this can
be seen in Table 4 where the CNN-LSTM architecture is ini-
tialised with weights of a CNN (GoogLeNet) only training
on ImageNet. Without any re-alignments, there is an almost
11 percentage point deterioration in WER. However, after
only two re-alignment iterations, the WER of the CNN-
BLSTM network reaches that of a CNN-only network.

LSTM .. Re-Alignment Iteration
Pre-Training
layers 1 2 3
0 ImageNet 33.7  30.7 29.0
1 ImageNet 442 369 33.8
1 Phoenix-2014  33.8 294 29.5

Table 4. CNN-LSTM GoogleNet structure with pre-training on
ImageNet or on Phoenix-2014 (CNN-only) across several itera-
tions of re-alignment. Recognition results in WER [%] (the lower
the better) on PHOENIX 2014 Dev using full frame images.

Despite the improvement from using re-alignments, we
want to keep the number of necessary re-alignments as low
as possible. One way of addressing this would be to use
the weights of training a CNN-only network on the same
data set. So initially, a CNN-only GoogLeNet is initialised
by weights learned on the ImageNet data set and trained on
PHOENIX 2014. The resulting weights are then used to
initialise the CNN-LSTM model. Table 4, shows that this
results in WERs on par with the CNN-only model. After
one re-alignment step the CNN-LSTM model outperforms
the same iteration of CNN-only model by 1.3 percentage
points in WER. Despite this, the CNN-only model reaches
a better WER by the third iteration.

4.4. LSTM vs. BLSTM vs. 2BLSTM

The initial end-to-end CNN-LSTM experiment shows
that there is gain to be made from using LSTM layers,
however there is a need for further investigation of the ex-
act LSTM configuration. A LSTM unit has access to in-
formation from the current sequence position as well as
the preceding features. In contrast, a bi-directional LSTM
(BLSTM) unit provides access to the upcoming sequence
information too. This is possible by fusion of two LSTM
units, one of which processes the sequence from the begin-
ning and towards the end, while the other does the same
from the end and towards the beginning. This way at each
time-step the BLSTM unit has access to both preceding and
upcoming data. We compare the CNN-LSTM architecture

with both CNN-BLSTM (a single BLSTM layer) and CNN-
2BLSTM (two consecutive BLSTM layers). The CNN-
BLSTM has the worse performance compared to CNN-only
and other LSTM based experiments. The CNN-2BLSTM
method, on the other hand, outperforms all other approaches
on all iterations, bringing the WER down to 27.1 on the dev
set of the PHOENIX 2014 data set.

Re-Alignment Iteration
:;ig\: Bi-Direct. — g2 3 ;
0 - 337 307 290 29.1
1 no 33.8 294 295 29.7
1 yes 344 302 302 300
2 yes 327 295 271 272

Table 5. CNN-LSTM GoogleNet structure pre-trained on Phoenix-
2014 (CNN-only) with varying LSTM or BLSTM layers across
several iterations of re-alignment. Recognition results in WER [%]
(the lower the better) on PHOENIX 2014 Dev with full frames.

4.5. LSTM size

Additional experiments were also conducted to deter-
mine the influence of the number of LSTMs neurons. So
far, all of our experiments used LSTM layers with 1024 neu-
rons. Using more than 1024 is not feasible considering the
memory consumption of the setup used for our experiments.
However, we were able to repeat the CNN-2BLSTM setup
using LSTM layers with 512 neurons, the result of which is
shown in Table 5. As can be seen, even though the 512 neu-
ron model manages to outperform CNN-only experiments,
the lower number of neurons leads to inferior WERSs on al-
most all iterations.

BLSTM  Number of Re-Alignment Iteration

layers  Hidden Units 1 2 3 4
2 512 328 292 279 285
2 1024 327 295 271 272

Table 6. CNN-BLSTM GoogleNet structure pre-trained on
Phoenix-2014 (CNN-only) with two layers and varying num-
ber of hidden units per layer across several iterations of re-
alignment. Recognition results in WER [%] (the lower the better)
on PHOENIX 2014 Dev with full frames.

4.6. Signer Independent Recognition

In the scope of this work, we are presenting signer in-
dependent experiments on PHOENIX 2014, where we test
on a single individual which has not been seen during train-
ing. As there are no previous alignments available for this
task, we start by linearly segmenting our data set. Fig. 3
shows the WER as a function of the training iterations. Af-
ter 10 iterations, the algorithm has converged and we reach
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Figure 3. Showing signer independent recognition results in WER
[%] (the lower the better) for signer 5 on the RWTH-PHOENIX-
Weather 2014 SIS corpus. The employed CNN-2BLSTM hybrid
system is initialised by linearly segmenting the corpus data.

a WER of 45.1% on Dev and 44.1% on Test. Comparing
these numbers to the best error rates on the PHOENIX 2014
multisigner, being 27.1% Dev and 26.8% Test, we note that
the signer independent setting poses a much more difficult
problem. Multisigner performance is nearly 20% absolute
better than signer independent recognition.

4.7. Generalisability

Given the success of the presented approach, we con-
ducted the same experiments on another sign language data
set. SIGNUM [39] is a medium sized data set of sentences
performed by a single signer in a controlled environment.
Extra effort has been made by the signer to make all ges-
tures and movements visually visible and easily understand-
able. This makes recognition of sentences in this data set
easier compared to other data sets containing real-world
data. A 3-gram language model with a perplexity of 97.6
is trained on and used for experiments on this data set. All
sentences in this data set are pre-arranged, leading to rela-
tively strong language model. Note, that the state-of-the-art
WER on this is 7.4%.

Train Test
Signers 1 1
Duration [hours] 3.85 1.05
Frames 416,620 114,230
Sentences 1,809 531

Running glosses 11,109 2,805

Vocabulary 455 -
Table 7. Statistics on SIGNUM data set. OOV refers to words not
found in the train sets vocabulary

Once again we can see that using full frame images leads
to a 1.7 percentage point improvement in WER (compared

to [23]). This is increased by applying re-alignments lead-
ing to a WER which is 2.4 percentage points better than the
state of the art. Same as before, re-alignments lead to an im-
provement but the results stabilise after a few iterations. In
the third iteration, the CNN-2BLSTM setup achieves an im-
provement of 0.5% WER absolute and nearly 10% relative
over the CNN-only architecture.

LSTM Bi-Direct. Re-Alignment Iteration
layers 1 2 3

0 - 57 50 53

2 yes 65 50 4.8

Table 8. CNN-only versus CNN-2BLSTM GoogleNet structure
pre-trained on SIGNUM (CNN-only) across several iterations of
re-alignment. Recognition results in WER [%] (the lower the bet-
ter) on SIGNUM single singer using full frames.

4.8. Overview

Table 9 shows a comparison of our results to the state-
of-the-art. As can be seen, the iterative use of re-alignments
is instrumental to achieving the best possible WER on both
CNN-only and CNN-2BLSTM methods. Furthermore, ad-
ditional improvements are gained by incorporating BLSTM
units leading to an end-to-end CNN-2BLSTM architecture.
On the PHOENIX 2014 data set, our approach outperforms
the state-of-the-art on both dev and test sets by up to 5.9
percentage points absolute or 15.2% relative without re-
alignments and 12.0 percentage points absolute or 30.9%
relative with re-alignments. Similarly, the state-of-the-art
on SIGNUM is improved by 2.4 percentage points absolute
or 32.4% relative. The results ‘CNN’ and ‘CNN-2BLSTM’
without any re-alignments constitute performances with
legacy-style GMM-HMM alignments.

5. Conclusion

This work presents an iterative re-alignment algorithm
based on a hybrid CNN-BLSTM embedded into a HMM,
which is applicable to visual sequence labelling tasks such
as gesture recognition, activity recognition and continuous
sign language recognition. In this work, we empirically
validate the importance of such re-alignments for contin-
uous gesture and sign language recognition tasks. Because
of this, we are able to successfully train end-to-end CNN-
BLSTMs for challenging real-life continuous gesture and
sign language tasks distinguishing over 1000 classes. To the
best of our knowledge, we are the first to achieve this in the
context of large vocabulary sign language or gesture recog-
nition. We evaluate on two challenging publicly available
sign recognition benchmark data sets featuring over 1000
classes. We outperform the state-of-the-art by up to 10% ab-
solute and 30% relative. Embedded into a HMM, the result-
ing deep model corrects the frame labels and continuously
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PHOENIX 2014 SIGNUM

Dev Test Test

[39] - - 12.7

[18] - - 11.9

[13] - - 10.7

[21] 57.3 55.6 10.0

[22] 47.1 45.1 7.6

[23] 38.3 38.8 7.4

CNN 33.7 333 5.7

CNN re-aligned 29.0 29.4 5.0
CNN-2BLSTM 32.7 329 6.5
CNN-2BLSTM re-aligned 27.1 26.8 4.8

Table 9. Overview of presented approach against best published

results.

Continuous sign language recognition results in WER

[%] (the lower the better) on PHOENIX 2014 Multisigner and
SIGNUM. CNN-2BLSTM refers to a CNN jointly trained with
2 layers of bidirectional LSTMs.

improves its performance in several re-alignments. Further,
we find that whole frame images outperform tracked hands,
which used to be the method of choice until now. In terms
of future work, it could be promising to compare the algo-
rithm to connectionist temporal classification. Also, more
work tackling signer independency is needed.
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