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Abstract

We examine the problem of joint top-down active search

of multiple objects under interaction, e.g., person riding a

bicycle, cups held by the table, etc.. Such objects under in-

teraction often can provide contextual cues to each other

to facilitate more efficient search. By treating each detec-

tor as an agent, we present the first collaborative multi-

agent deep reinforcement learning algorithm to learn the

optimal policy for joint active object localization, which ef-

fectively exploits such beneficial contextual information. We

learn inter-agent communication through cross connections

with gates between the Q-networks, which is facilitated by

a novel multi-agent deep Q-learning algorithm with joint

exploitation sampling. We verify our proposed method on

multiple object detection benchmarks. Not only does our

model help to improve the performance of state-of-the-art

active localization models, it also reveals interesting co-

detection patterns that are intuitively interpretable.

1. Introduction

Given an image, the goal of detecting and localizing ob-

jects is to place a bounding box around the instances of a

pre-defined object class, such as cars, faces, person/people

[5, 29, 3, 1]. With the recent advancement [15, 25, 11] of

deep convolutional neural networks (CNN) on object clas-

sification, generic object detection is also attracting more

and more attention with fast increasing detection accuracy

on popular benchmarks [8, 22, 21, 17].

Recent detectors explore the idea of bottom-up object

region proposals [8], where a relatively small set of a few

thousand windows were pre-selected [28] and evaluated.

Acceleration were made by sharing computation and pool-

ing over the feature maps from the CNN layers [7, 10].

These works were further accelerated by integrating the sep-

arate region proposal step and the classification step into

one network [22, 17] by using so-called “anchors” which

correspond to regular prototype grid in the image space.

However, the number of windows to be evaluated remains
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(a) Single agent detection (b) Joint agent detection

Figure 1. Joint agent detection compared with single agent detec-

tion [2]. The bounding box trajectories are indicated by gradual

color change. Blue is for person and red is for bicycle. Successful

detections are highlighted in bold green. Both objects were de-

tected within 15 iterations by joint detection while single agent de-

tection failed to locate the bicycle even after 200 iterations. (Only

the first 30 iterations were illustrated for visualization purpose).

several thousand. Therefore, the speed of such region-based

methods depends on a heavy use of fast GPUs. When com-

putation power is limited, e.g. only CPUs were available,

these pipelines are inevitably slow.

Active search methods provide a promising complemen-

tary top-down scheme to reduce the number of windows to

be evaluated [19, 9, 2, 32, 18].When searching or localiz-

ing objects, biological vision systems are believed to have a

sequential process with changing retinal fixations that grad-

ually accumulate evidence of certainty [14, 16]. It is there-

fore highly desirable, both biologically and computation-

ally, to explore computational models that facilitate object

search in such top-down behavior.

Typically, these models learn policies to search for an ob-

ject by sequentially translating and/or reshaping the bound-

ing box detector. One can view such a search process as

an agent searching for the rewarding ground truth bound-

ing boxes and exploit reinforcement learning (RL) algo-

rithms to learn a good policy. In general, these methods can

achieve reasonably good performance using only dozens of

steps (effectively the number of windows evaluated).

We examine the problem of joint active search of multi-

ple objects under interaction. On one hand, it is interesting

to consider such a collaborative detection “game” played
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by multiple agents under an RL setting; on the other hand,

it seems especially beneficial in the context of visual object

localization where different objects often appear with cer-

tain correlated patterns, e.g. person riding a bicycle, cups

held on top of the table etc. Such objects under interaction

often can provide contextual cues to each other [31]. These

cues have good potential to facilitate more efficient search

policies. We make an initial effort to validate such an hy-

pothesis/intuition by devising a computational model.

We present a collaborative multi-agent deep RL algo-

rithm to learn the optimal policy for joint active object lo-

calization. Our proposal follows existing wisdom to exploit

RL methods but allows for collaborative behaviors among

multiple agents in order to utilize contextual information.

In this regard, two key questions are open. i) How to make

communications effective in between different agents; and

ii) how to jointly learn good policies for all agents.

We propose to learn inter-agent communication through

gated cross connections between the Q-networks. This is fa-

cilitated by a novel multi-agent deep Q-learning algorithm

with joint exploitation sampling and a virtual agent based

implementation. Finally, we verify our proposed method

on multiple object detection benchmarks. Our model helps

to improve the performance of state-of-the-art active local-

ization models and it also reveals interesting co-detection

patterns that are intuitively interpretable.

In Section 2, we discuss literatures related to our work.

In Section 3, we present the details of the proposed cross Q-

network structure and a novel multi-agent deep Q-learning

algorithm that effectively facilitate training of the crossed

Q-networks. In Section 4, we present comprehensive ex-

periments on multiple popular benchmarks. Section 5 con-

cludes this paper. Here, we summarize our major contribu-

tions as follows.

• To our best knowledge, this work presents the first col-

laborative deep RL solution for joint active object lo-

calization.

• We propose a novel multi-agent Q-learning solution

that facilitates learnable inter-agent communication

with gated cross connections between the Q-networks.

• Our proposal effectively exploits beneficial contextual

information between related objects and consistently

improve the performance of state-of-the-art active lo-

calization models.

2. Related Work

Active search. The idea of active search for localization

is not brand new. To name a few, “saccade and fixate” bio-

logical pattern were explored in the field of visual attention

[14, 16, 30]. In [4], Dollar et al. proposed to estimate pose

through cascaded regression steps learnt through gradient

descent etc. Latest works on object localization managed to

exploit the power of deep learning and achieved more com-

petitive results [19, 9, 2, 32, 18].

In [19], Mnih et al. proposed a recurrent neural network

(RNN) based localization network that accumulatively finds

numbers from the cluttered translated MNIST dataset. In

[9], Garcia et al. proposed to explore statistical relations

between consecutive windows and based their model on

R-CNN [8] for generic object detection. In [32], Yoo et

al. proposed “AttentionNet” where at each current win-

dow, a CNN was trained to predict quantized weak direc-

tions for the next step to simulate a gradual attention shift.

In [2, 18], the authors explicitly deployed deep RL and

achieved promising performance with much fewer window

evaluations than main stream region proposal methods.

However, none of these works examine the problem of

joint active search of multiple objects. In order to exploit

beneficial contextual information among differnt objects,

we present collaborative multi-agent deep RL. We instan-

tiate our idea with Caicedo and Lazebnik [2] as a single

active search model baseline, but our mechanism could be

applied to other baseline models with minor adaptation.

Deep reinforcement learning. Recently, the field of rein-

forcement learning revives with the power of deep learning

[20, 24]. Equipped with effective ideas such as experience

replay etc., conventional methods, e.g. Q-learning, work out

very effectively in learning good policies without interme-

diate supervision for challenging tasks. Our model benefits

from these effective ideas in a similar way as recent active

methods [2, 18] but with specific novel designs motivated

by the joint search problem of interest.

Multi-agent machine learning and reinforcement learn-

ing are not new topics. However, conventional collabo-

rative RL methods mostly explore hand-crafted communi-

cation protocols [27, 23]. During the preparation of this

work, we realize two interesting work that proposed to fa-

cilitate learnable communication protocols for multi-agent

deep RL [6, 26] and demonstrate superior performance to

non-communication counterparts on control management

and game related tasks. In [26], Sukhbaatar et al. pro-

posed “CommNet” where policy networks are facilitated

with learnable communication channels learnt via back-

propagation. In [6], Foerster et al. proposed “Differentiable

Inter-Agent Learning” to effectively learn communication

for deep Q-networks.

Our proposal share the idea of utilizing back-propagation

or designing differentiable communication channels but

have different cross network structure with gates and a novel

joint sampling Q-learning method. Specifically, our cross

network structure used explicit gating mechanism to allow

a specific agent to be responsible for certain actions. This is

motivated by the problem of object search where one agent

usually has primary contribution to the policy. Also dif-
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ferent from the training of the unfolded RNNs as in [6],

where long range back-propagation may be less effective,

our joint sampling design facilitates immediate updates of

the parameters and could be easily incorporated into the

deep Q-learning algorithm by introducing an auxiliary con-

cept of virtual agent implementation.

3. Collaborative RL for Joint Object Search

We start by recalling a state-of-the-art (single agent) RL

method for object localization [2].

3.1. Single Agent RL Object Localization

Reinforcement learning provides a formal framework

concerned with how agents take actions in an environment

so as to maximize some notion of cumulative reward. For-

mally, RL defines a set of actions A that an agent takes to

achieve its goal; a set of states S that represents the agent’s

understanding/information of the current environment; and

a reward function R that helps to learn an optimal policy to

guide the agent’s actions based on its states.

In [2], the entire image is viewed as the environment.

The agent transforms a bounding box according to a set of

actions. The goal of the agent is to land a bounding box

at the target object’s location. Specifically, the set of ac-

tions were defined as follows. A := {move right, move left,

move up, move down, scale bigger, scale smaller, aspect ra-

tio change fatter, aspect ratio change taller, trigger }. Each

action makes a discrete change to the box by a factor rel-

ative to its current size. The action trigger means that the

agent thinks it finds the object.

The state representation is defined as a tuple s := (o, h).
o is a feature vector of the observed region (plus some extra

margin for context) extracted from a CNN layer, and h is

a fixed-size vector of the action history. The concatenation

of o and h is fed into a typical Q-network of two fully con-

nected layers. The network outputs a 9-dimensional vector

corresponds to nine action choices. In Figure 2, the net-

works shown in the same color e.g. in blue/red provide il-

lustrations of this architecture.

The reward function R(a, s → s′) is defined for an agent

when it takes the action a to move from state s to s′.

R(a, s → s′) = sign(IoU(b′, g)− IoU(b, g)) (1)

where IoU(b, g) = area(b ∩ g)/area(b ∪ g) is the

Intersection-over-Union (IoU) between the target object

bounding box g and the predicted box b.
With the action set, state set and reward function defined,

the authors in [2] directly applied deep Q-learning [20] to

learn the optimal policy. More details on setting parameters

can be found in [2]. They also proposed an interesting de-

sign for setting masks in the image after taking the trigger

action. This design allows for effective detection of multi-

ple instances of the same class. Finally, the authors applied

a post SVM classifier to all windows in the trajectory to

boost performance.

3.2. Collaborative RL for Joint Object Localization

We generalize the single agent RL model for joint ob-

ject search. The key concepts include gated cross connec-

tions between different Q-networks; joint exploitation sam-

pling for generating corresponding training data, and a vir-

tual agent implementation that facilitates easy adaptation to

existing deep Q-learning algorithm.

3.2.1 Q-Networks with Gated Cross Connections

Specifically, Q-learning is an RL algorithm used to find an

optimal action-selection policy. The Q-function (action-

value function) of a policy π is defined as Qπ(s, a) =
E[Rt|st = s, at = a] where the subscribes of t de-

note the time step. The optimal action-value function

obeys the Bellman optimality equation Q∗(s, a) = Es′ [r +
γmaxa′ Q∗(s′, a′)|s, a] where r = R(a, s → s′) is the spe-

cific reward by taking action a to move state s to s′ and

γ ∈ [0, 1] is a discount factor for future returns.

Deep Q-learning [20] uses deep neural networks to rep-

resent the Q-function, i.e. Q(s, a; θ) where θ is the net-

work parameters. (A common choice of the Q-network

consists of two fully connected layers as illustrated in

Figure 2.) Note that, suppose for each agent i we in-

stantiate one Q-network Q(i)(a(i), s(i); θ(i)), in the set-

ting of multi-agent RL, one would naturally desire a Q-

function (with a slight abuse of notation, we keep using

Q-function here) that facilitates inter-agent communication

Q(i)(a(i),m(i), s(i),m(−i); θ(i)) where m(i) denotes some

form of messages sent out from agent i and m(−i) denotes

messages received from other agents.

Conventionally, m is often hand crafted based on prior

knowledge about the actions and the states. This can be for-

malized as a function of m(a, s; θm) where θm is manually

designed. Therefore, a natural idea would be to construct

differential messages where θm could be learned via gradi-

ent back-propagation. This idea is intuitive and reasonable

in the same sense of many deep learning successes where

learnable features outperform hand crafted ones.

Specifically, we define an agent-wise Q-function as

Q := Q(i)(a(i),m(i), s(i),m(−i); θ(i)a , θ(i)m ), (2)

where θa and θm represents parameters related to actions

and messages respectively.

We would now argue that when Q-function were parame-

terized with deep networks, there are intuitively to the order

of L2 (L is the number of layers of the Q-network) possible

configurations for us to construct message channels. This

is because the messages could be emitted and received at

any layers. Moveover, there should be no global optimal
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Figure 2. Joint Q-network with gated cross connections and the collaborative reinforcement learning pipeline.

configuration, instead suitable configuration of the message

channel should be selected in a problem-dependent manner.

We notice two recent work also propose to facilitate

learnable communication protocols for multi-agent deep RL

[6, 26] applied to control management and game related

tasks respectively. However, we notice that one important

insight is missing from the current trend. Messages are

often taken-in in a non-discriminative manner and merged

with the information flows in the network directly. Actually,

allowing the messages to go through an explicit learnable

gate (as did in LSTM cells [12]) helps better merging the

information and facilitates agent-responsible actions.

The idea is motivated from the search problem of our

interest. In general, when searching for a specific object, we

would like the agent in charge of detecting the target class

to be a primary source of making decisions. Meanwhile we

also want to allow other agents to contribute their advices

especially when the primary source feels confused in certain

situations. Learnable gating mechanism is a natural fit.

Specifically, we design our cross Q-network message

channels as illustrated in Figure 2. We add cross connec-

tion from the penultimate layer between Q-networks of dif-

ferent agents. We denote the output from this layer of the

Q-network of agent i as x
(i)
L−1. We then have

x̄
(i) = σ(W (ii)

x
(i)
L−1 + b

(ii))

g(i) = σ(W (ig)
x̄
(i) + b

(ig))

m
(i) = σ(W (im)

x
(i)
L−1 + b

(im))

(3)

where σ represent the sigmoid function such that σ(z) =
1/(1 + exp(−z)).

Now instead of directly inputting x
(i)
L−1 to the next layer

as in the single agent case, we also take in the messages

from other sources weighted by gates and define

x
(i)
L = g(i) · x̄(i) + (1− g(i)) ·m(−i) (4)

Note that, the sigmoid function tends to push the output to

approximately 0 or 1. Therefore, with this simple gating in-

duced, we are able to learn effective agent-responsible deci-

sions. This helps us to better understand the searching pro-

cess. Moreover, now that many actions were effectively de-

termined by one primary agent (and so will the correspond-

ing gradient updates discussed later), one can directly apply

learnt networks even when other agents do not co-exist.

3.2.2 Joint Exploitation Sampling

We now turn to the problem of jointly training all Q-

networks. Since we do not have any immediate supervi-

sion in an RL setting, we cannot directly back propagate

gradients in a multi-task manner. The key idea is to jointly

sample the next steps during the exploitation phase.

Specifically, in the case of a single agent, in order to

reach the Bellman optimality, the Q-learning algorithm

proceeds in an iterative fashion. At each iteration, one

would sample/choose an action at according to the cur-

rent estimate of the Q-function. One then executes this ac-

tion at in the emulator and observes reward rt and state

st+1. After this, one updates the parameters of the Q-

function by minimizing the distance of (Q(at, st; θ)−(rt+
γmaxa′ Q(a′, st+1; θ

−)))2. Here θ− are the parameters of

a target network. θ− can be a copy of the online network

but often is another network frozen for a number of itera-

tions while one updates the online network Q(a, s; θ) [20].

In the multi-agent setting, we propose to sample the ac-

tion a
(i)
t of agent i according to both the activations of itself

and the messages from other agents. We jointly perform

such sampling to all the agents. For instance, in Figure 2,

this corresponds to a joint feed-forward pass from both net-

works. These samples are later used to update all parame-

ters by jointly minimizing the following distance for all i.

L(i) := (Q(i)(a
(i)
t ,m

(i)
t , s

(i)
t ,m

(−i)
t ; θ(i)a , θ(i)m )−

(r
(i)
t + γmax

a′(i)
Q(a′(i), s

(i)
t+1; θ

(i)−
a , θ(i)−m )))2

(5)

Since the messages are also differential, joint minimiza-

tion of the above functions will update parameters related

to each of the agents as well as all the message channels
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in-between. Specifically, the gradient updates of θ
(i)
a comes

from the loss of itself i.e. L(i), while the gradient updates

of θ
(i)
m comes from the loss of other agents i.e. L(−i).

Note that, in principle we could view all agents un-

der one global Markov decision process (MDP) assump-

tion and search for an optimality in the joint action space

using the regular Q-learning algorithm. The flip side of

this choice, however, is a much larger searching space (81
v.s. 18 in the two agent case) that may require combina-

torially much more training data and time. In this regard,

the proposed joint sampling strategy can be viewed as an

upper-bounding approximation to global optimal. However,

we observe that this proposal effectively facilitates gradient

back-propagation to all the parameters and can jointly learn

good policies for all the Q-networks as desired.

3.2.3 Virtual-Agent Implementation of Joint Training

Intuitively the joint sampling idea can be implemented via

simultaneously forward and backward passes through all Q-

networks. However in practice, we adopted an alternative

implementation with a concept of virtual agents. For each

Q-network of an object class, we assign an actual agent de-

tector. Meantime, for each cross network connection we

assign a what we call virtual agent. The virtual agents share

weights of the corresponding layers with the actual agents.

Figure 3 illustrates this idea for the example of Figure 2.

There are two major advantages of this implementation.

1) By considering agents in such a separate manner (and

share weights afterwards), we can easily incorporate our de-

sign to almost all existing RL algorithms. One can simply

implement an extra outer for-loop for all agents followed by

necessary weight copying steps. 2) More importantly, this

also allows each agent, including virtual ones, to maintain

its own pool (replay memory [20]) of samples. These sam-

ples are used for updating the corresponding parameters.

Note that in modern RL algorithms with deep networks, the

concept of replay memory pool are extremely important for

stabilizing the learning process.

For example, suppose we would like to jointly train per-

son and bicycle detectors. During training, we have images

that contain both classes Dboth and also images that only

contain either person Dperson or bicycles Dbicycle. Benefit

from an agent-wise replay memory as proposed, the actual

person and bicycle agents could be effectively trained with

data from Dboth ∪ Dperson and Dboth ∪ Dbicycle respec-

tively, while the cross connections (represented by virtual

agents) are only trained with data from Dboth as desired.

Finally, we update the denotation of the Q-functions in

the context of the virtual agent implementation as follows.

Q(i)
a (a(i), s(i); θ

(i)
share, θ

(i)
self );

Q(i→j)
v (a(i), s(i); θ

(i)
share, θ

(i→j)
self ).

(6)

The main changes from the definition in Equation (2)

Figure 3. An illustration of the actual and virtual agents of the

example in Figure 2. Each row represents one agent and the dashed

ones in the middle are virtual agents.

are to use θ
(i→j)
self to replace the conceptual out-message

m
(−i) and to use post addition to replace the conceptual in-

message m
(i). (Note that, as illustrated in Figure 3, we put

the gating part inside the Q-function by definition.) Specif-

ically, we summarize the final multi-agent Q-learning algo-

rithm with joint sampling and virtual agent in Algorithm 1.

Although the algorithm applies in general cases, we usually

consider only two object classes at the same time, therefore

the number of virtual agents is very controllable.

4. Experiments

4.1. Data Construction and Implementation Details

Although different classes of objects co-exist in many

situations in real life, there are few datasets explicitly col-

lect data for joint detection tasks. However, we notice that

many images from popular detection datasets such as the

PASCAL VOC datasets and the COCO dataset have labeled

objects of different classes and these images were catego-

rized under all related classes. These images naturally pro-

vide a source for us to construct some useful datasets to

validate our hypothesis and methods. Specifically, we se-

lected: {person+bicycle (VOC), ball+racket (COCO), per-

son+handbag (COCO), keyboard+laptop (COCO)}. With

these pairs, we construct two datasets for evaluation pur-

pose. D1 consists of images that only contain one object

for each class. This dataset is used to prove certain con-

cepts since learning and testing tend to be more effective on

this relatively cleaned dataset. D2 consists of all images of

the person and bicycle categories from the PASCAL VOC

datasets. This one is used to evaluated our proposed method

against results of existing single agent models.

For comparison purpose, we implemented the single

agent model precisely according to [2]. We manage to have

achieved very close performance as reported in [2] though
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Figure 4. Joint agent detection (mid) compared with single agent detection (bottom). The bounding box trajectories are indicated by gradual

color change with blue and red each for one detector. Successful detections are highlighted in bold green.

not exactly the same. The differences may be due to the

randomness involved in sampling.

In the case of multiple agents, cross connections be-

tween Q-networks are implemented as a fully connected

layer from one agent’s penultimate layer to another agent’s

last layer with a post multiplication by a scalar gate as de-

fined in Equation (3). The dimensions are consistent with

the corresponding layers in the single agents. For joint train-

ing, we initialize each actual single agent network using

pre-trained models and initialize cross connection with ran-

dom weights. We applied the ǫ-greedy strategy of [2] where

we have tuned the learning rates to achieve better conver-

gence in our case. We report detection results from the joint

model on dataset D1 since it contains both classes by con-

struction; and report detection results using fine-tuned sin-

gle agent model by joint training, which demonstrates the

ability of the gating mechanism to facilitate agent specific

inference and learning.

4.2. Improvement over Single Agent Methods

In Table 3 and Table 2, we demonstrate the performance

of our proposal when compared with single agent models.

Our joint model consistently outperforms the single agent

model on dataset D1. We notice that on the combinations of

person+bicycle (VOC) and laptop+keyboard (COCO), the

improvement is much more obvious. This is because the

configuration of these combinations are relatively more sta-

ble across images, e.g. person riding a bike and laptop con-

tains the keyboard etc. Meanwhile, the configurations of

person+handbag (COCO) and ball+racket (COCO) have

multiple modes in all the images and more “noisy” images

that contain little information for co-localization.

When tested on dataset D2, our joint model also

achieved better performance than single active search mod-

els. The performance gain is moderate in this case. This

is because the number of images containing both object

classes is small when compared with that for each category,

therefore the extra information gain is diluted. This is es-

pecially the case for the person category whose number of

images is much larger. Note that, state-of-the-art detection

models such as R-CNN [8] and its extensions can achieve

better results when using tens of times more windows. But

it is not our focus here.
In Figure 4, we illustrate the search process with some

examples. In these cases, while our joint detection model

successfully locates objects from both categories, the single

agent model often only detects one or neither of them cor-

rectly. The locations of the final bounding boxes found by

the joint model also seem better overlapped with the ground

truth objects. Moreover, the number of steps taken by the

joint model is much smaller. For example, from top to bot-

tom, the illustrated number of steps for our model are: 10,
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Initialize replay memory of all agents D(i);

Initialize all Q-networks with random weights (or

potentially with pre-trained networks);

for episode = 1,M do

Initialize sequence s
(i)
1 = φ(x1) for all i;

for t=1,T do

With probability ǫ select a random action a
(i)
t ,

otherwise select

a
(i)
t = argmaxa{Qa(a, s

(i)
t ; θ

(i)
share, θ

(i)
self )

+
∑

j 6=i Qv(a, s
(j)
t ; θ

(j)
share, θ

(j→i)
share)}

;

Execute action a
(i)
t in emulator and observe

reward r
(i)
t ;

Set s
(i)
t+1 with s

(i)
t , a

(i)
t ;

Store transition
(

s
(i)
t , a

(i)
t , r

(i)
t , s

(i)
t+1

)

in D(i)

and D(j→i) for all j;

Sample random mini-batch of transitions
(

s
(i)
t′ , a

(i)
t′ , r

(i)
t′ , s

(i)
t′+1

)

from D(i);

Set y
(i)
t′ =

{

r
(i)
t′ if terminates at t′ + 1

r
(i)
t′ + γmaxa′ Q̂a(a

i
t′ , s

(i)
t′+1; θ

(i)−) else
;

Perform a gradient descent step on

(y
(i)
t′ −Qa(a

(i)
t′ , s

(i)
t′+1; θ

(i)
share, θ

(i)
self ))

2 with

respect to θ
(i)
share, θ

(i)
self ;

Copy θishare to all virtual agents (i → j);
for j 6= i do

Sample mini-batch from D(j→i);

Update θ
(j)
share, θ

(j→i)
self of the virtual agents

Q
(j→i)
v as above;

Copy θjshare to actual agent j;

end

end

end

Algorithm 1: Multi-agent Q-Learning Algorithm

Table 1. Localization accuracy on D1. Top: single, bottom: joint.

(VOC) (COCO) (COCO) (COCO)

person bike ball racket person hbag laptop kboard

76.9 61.5 52.0 59.3 80.4 45.1 60.6 56.9

86.0 77.8 53.9 60.2 82.5 46.4 64.6 64.7

24, 7 and 11 respectively. We show the first 30 steps of the

single model for visualization purpose. Actually, in all these

three cases, the single agent model failed to locate both ob-

jects within 200 steps. In practice, our model only uses

several tens of steps to locate both objects and the number

of steps are often less than when using two single agents,

which was shown to be consistently superior to region pro-

Table 2. Localization accuracy on D2.

D2 person (VOC) bicycle (VOC)

Mathe et al. [18] 18.7 31.4

Caicedo et al. [2] 45.7 61.9

Ours (Single) 44.6 62.2

Ours (Joint) 45.6 63.9

R-CNN [8] 54.2 69.7

Figure 5. Examples of actions dominated by specific agents. The

solid bounding boxes illustrate the current positions of each detec-

tor. The dashed bounding boxes illustrate the next positions and

indicate the corresponding actions. Blue is for person and red is

for bicycle. The agent which dominates the choice of action (by

checking the gate value) are highlighted in bold black.

posal methods when using limited number of proposals [2].

The agents in a joint model help each other in a rational

fashion. For example, in the first column of Figure 4, the

bicycle looks relatively less distinguishable from the back-

ground of bushes. While the single bicycle agent fails to

locate its target, in the joint model, the detection of the per-

son seems to help locate the bicycle since it often presents

the pattern of a person riding a bicycle. In the second col-

umn, the tennis ball looks very small and a single tennis ball

agent has trouble finding it; meanwhile benefit from the co-

existing pattern with the racket learnt by the joint model,

we can successfully detect the ball. The third and fourth

column also demonstrate cases where a relatively easy-to-

detect object (person and keyboard in these cases) helps to

locate the more challenging ones (bag and laptop) due to

learnt co-existing patterns.

4.3. Step by Step Examination

In Figure 5, we demonstrate some examples of actions,

the choice of which were dominated by specific agents. As

the left two images show, when the clue of the primary agent
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Figure 6. Recall as a function of the number of proposed regions.

Compared with region proposal methods, active search methods

are better at early recall: only several tens of proposals per image

reach 50% recall. Our joint model is even better than the single

agent model.

is clear, the actions are often taken according to themselves.

For example, given their current input bounding boxes, the

bicycle agent knows to scale smaller in the top left image

and the person agent knows to move right in the bottom left

image.

However, in cases where the primary agent is less con-

fident of itself, our proposal effectively queries information

from other agents. For instance, in the bottom right image,

the bicycle detector were pushed down, but this action is

primarily decided by the person agent. This is probably be-

cause the person detector has triggered a target and it feels

more certain about the situation. Due to the learnt pattern,

it fires relatively strong signals indicating a bicycle under-

neath and helps to push the red box downwards. Of course

this does not necessarily mean the primary bicycle agent has

to make the wrong choice of actions, but simply it may be

less confident given its relatively noisy current input.

4.4. Evaluation of Recall

Note that, for active search methods, all the regions at-

tended by the agents can be viewed as object proposal can-

didates. [2] claimed that the single agent localization al-

gorithm can achieve higher recall values when compared

with state-of-the-art object proposal methods with limited

number of box proposals. We followed their setup and

performed the same test to our joint model. In Figure 6,

our experiments demonstrate that the proposed multi-agent

method has a high recall value when using less proposals.

Following the evaluation methods of Hosang et al. [13], we

compare the recall of ours with those of the single agent

baseline [2] as well as one state-of-the-art object proposal

method, Edgebox [33]. The results are from the combina-

tion of person+bicycle (VOC) which provides stable con-

figurations.

4.5. Failure Case Analysis

In Figure 7, we show one interesting failure case of our

method. In this case, our joint model correctly detects the

Figure 7. One failure case of joint detection. The true location of

the tennis ball is highlighted with dashed yellow circle in the left

image. Left: joint agent detection; right: single agent detection.

racket but falsely locates a tennis ball on top of the racket.

Meanwhile the true location of the ball is far away to the

right. This phenomenon of over-fitting raises one important

question. Does joint detection always help? The answer is

clearly NO in general cases. Many combinations are not

meaningful in the regard of joint detection. Actually, one

can barely find shared images for totally unrelated object

pairs such as, e.g. “bird+car” etc. However, we did explore

several more combinations that often coexist but have less

spatial correlations. The results are shown as follows.

Table 3. Localization accuracy. Top: single, bottom: joint.

(COCO) (COCO) (COCO) (ImageNet)

fork knife oven sink chair tv guitar mike

31.9 45.2 38.2 34.3 35.1 57.1 80.9 45.4

34.7 46.9 42.4 37.7 35.9 56.2 87.7 50.2

We noticed that even though such pairs do not display

a fixed spatial correlation, they often have several major

configurations of coexisting patterns. Therefore we can

still consistently achieve better performance than single

agent models, showcasing that meaningful messages were

learned. The pair of “chair+tv” is the least of this case and

the positions of chairs and televisions in the images seem

rather random even though they often coexist. In this set-

ting, our joint model achieved similar performance with sin-

gle models. This phenomenon shows that when no clear

collaborative information exists, our proposal can perform

as well as single agent models without messing up. We at-

tribute this property to the gating mechanism by design.

5. Conclusion

Joint search of multiple objects under interaction often

provides contextual cues to each other. By treating each de-

tector as an agent, we present the first collaborative multi-

agent deep reinforcement learning method that effectively

learns the optimal policy for joint active object localiza-

tion. Our technical contributions lie in the learnable cross

Q-network communications and the joint exploitation sam-

pling strategy. More importantly, we make a first stab to

validate the concept of collaborative object localization by

devising a computational model, which reveals interesting

and intuitive co-detection patterns.
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