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Abstract

Pooling second-order local feature statistics to form

a high-dimensional bilinear feature has been shown to

achieve state-of-the-art performance on a variety of fine-

grained classification tasks. To address the computational

demands of high feature dimensionality, we propose to rep-

resent the covariance features as a matrix and apply a low-

rank bilinear classifier. The resulting classifier can be eval-

uated without explicitly computing the bilinear feature map

which allows for a large reduction in the compute time as

well as decreasing the effective number of parameters to be

learned.

To further compress the model, we propose a classi-

fier co-decomposition that factorizes the collection of bi-

linear classifiers into a common factor and compact per-

class terms. The co-decomposition idea can be deployed

through two convolutional layers and trained in an end-

to-end architecture. We suggest a simple yet effective ini-

tialization that avoids explicitly first training and factoriz-

ing the larger bilinear classifiers. Through extensive ex-

periments, we show that our model achieves state-of-the-

art performance on several public datasets for fine-grained

classification trained with only category labels. Impor-

tantly, our final model is an order of magnitude smaller than

the recently proposed compact bilinear model [8], and three

orders smaller than the standard bilinear CNN model [19].

1. Introduction and Related Work

Fine-grained categorization aims to distinguish subor-

dinate categories within an entry-level category, such as

identifying the bird species or particular models of aircraft.

Compared to general purpose visual categorization prob-

lems, fine-grained recognition focuses on the characteris-

tic challenge of making subtle distinctions (low inter-class

variance) despite highly variable appearance due to factors

such as deformable object pose (high intra-class variance).

Fine-grained categorization is often made even more chal-

lenging by factors such as large number of categories and

the lack of training data.

One approach to dealing with such nuisance parameters

has been to exploit strong supervision, such as detailed part-

level, keypoint-level and attribute annotations [37, 9, 35].

These methods learn to localize semantic parts or keypoints

and extract corresponding features which are used as a

holistic representation for final classification. Strong super-

vision with part annotations has been shown to significantly

improve the fine-grained recognition accuracy. However,

such supervised annotations are costly to obtain.

To alleviate the costly collection of part annotations,

some have proposed to utilize interactive learning [6]. Par-

tially supervised discovery of discriminative parts from cat-

egory labels is also a compelling approach, especially given

the effectiveness of training with web-scale datasets [16].

One approach to unsupervised part discovery [27, 26] uses

saliency maps, leveraging the observation that sparse deep

CNN feature activations often correspond to semantically

meaningful regions [34, 20]. Another recent approach [32]

selects parts from a pool of patch candidates by searching

over patch triplets, but relies heavily on training images be-

ing aligned w.r.t the object pose. Spatial transformer net-

works [10] are a very general formulation that explicitly

model latent transformations that align feature maps prior

to classification. They can be trained end-to-end using only

classification loss and have achieved state-of-the-art per-

formance on the very challenging CUB bird dataset [31],

but the resulting models are large and stable optimization is

non-trivial.

Recently, a surprisingly simple method called bilinear

pooling [19] has achieved state-of-the-art performance on

a variety of fine-grained classification problems. Bilin-

ear pooling collects second-order statistics of local features

over a whole image to form a holistic representation for

classification. Second-order or higher-order statistics have

been explored in a number of vision tasks (see e.g. [2, 14]).

In the context of fine-grained recognition, spatial pooling

introduces invariance to deformations while second-order

statistics maintain selectivity.

However, the representational power of bilinear features

comes at the cost of very high-dimensional feature rep-

resentations (see Figure 1 (b)), which induce substantial
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Figure 1: We explore models that perform classification using second order statistics of a convolutional feature map (a)

as input (e.g., VGG16 layer conv5 3). Architecture of (b) full bilinear model [19], (c) recently proposed compact bilinear

model [8], and (d) our proposed low-rank bilinear pooling model (LRBP). Our model captures second order statistics without

explicitly computing the pooled bilinear feature, instead using a bilinear classifier that uses the Frobenius norm as the classi-

fication score. A variant of our architecture that exploits co-decomposition and computes low-dimensional bilinear features

is sketched in Figure 4.

computational burdens and require large quantities of train-

ing data to fit. To reduce the model size, Gao et al. [8]

proposed using compact models based on either random

Maclaurin [12] or tensor sketch [23]. These methods ap-

proximate the classifier applied to bilinear pooled feature

by the Hadamard product of projected local features with a

large random matrix (Figure 1 (c)). These compact mod-

els maintain similar performance to the full bilinear feature

with a 90% reduction in the number of learned parameters.

The original bilinear pooling work of Lin et al. and the

compact models of Gao et al. ignore the algebraic structure

of the bilinear feature map; instead they simply vectorize

and apply a linear classifier. Inspired by work on the bi-

linear SVM [24, 33, 13], we instead propose to use a bilin-

ear classifier applied to the bilinear feature which is more

naturally represented as a (covariance) matrix. This repre-

sentation not only preserves the structural information, but

also enables us to impose low-rank constraint to reduce the

degrees of freedom in the parameter vector to be learned.

Our model uses a symmetric bilinear form, so comput-

ing the confidence score of our bilinear classifier amounts to

evaluating the squared Frobenius norm of the projected lo-

cal features. We thus term our mechanism maximum Frobe-

nius margin. This means that, at testing time, we do not

need to explicitly compute the bilinear features, and thus

computational time can be greatly reduced under some cir-

cumstances, e.g., when the channel number is larger than

spatial size. We show empirically this results in improved

classification performance, reduces the model size and ac-

celerates feed-forward computation at test time.

To further compress the model for multi-way classifica-

tion tasks, we propose a simple co-decomposition approach

to factorize the joint collection of classifier parameters to

obtain a even more compact representation. This multilin-

ear co-decomposition can be implemented using two sepa-

rate linear convolutional layers, as shown in Figure 1 (d).

Rather than first training a set of classifiers and then per-

forming co-decomposition of the parameters, we suggest a

simple yet effective initialization based on feature map acti-

vation statistics which allows for direct end-to-end training.

We show that our final model achieves the state-of-the-

art performance on several public datasets for fine-grained

classification by using only the category label. It is worth

noting that the set of parameters learned in our model is ten

times smaller than the recently proposed compact bilinear

model [8], and a hundred times smaller than the original

full bilinear CNN model [19].

2. Bilinear Features Meet Bilinear SVMs

To compute the bilinear pooled features for an image,

we first feed the image into a convolutional neural network

(CNN), as shown in Figure 1 (a), and extract feature maps at

a specific layer, say VGG16 conv5 3 after rectification. We

denote the feature map by X ∈ R
h×w×c, where h, w and

c indicate the height, width and number of feature channels

and denote the feature vector at a specific location by xi ∈
R

c where the spatial coordinate index i ∈ [1, hw]. For each

local feature we compute the outer product, xix
T
i and sum

(pool) the resulting matrices over all hw spatial locations to

produce a holistic representation of the image of dimension

c2. This computation can be written in matrix notation as

XX
T =

∑hw
i=1

xix
T
i , where X ∈ R

c×hw is a matrix by

reshaping X in terms of the third mode. XX
T captures

the second-order statistics of the feature activations and is

closely related to the sample covariance matrix.

In the bilinear CNN model [19] as depicted in Figure 1

(b), the bilinear pooled feature is reshaped into a vector z =

vec(XX
T ) ∈ R

c2 and then fed into a linear classifier1.

Given N training images, we can learn a linear classifier

for a specific class parameterized by w ∈ R
c2 and bias b.

Denote the bilinear feature for image-i by zi and its binary

class label as yi = ±1 for i = 1, . . . , N . The standard

1Various normalization can be applied here, e.g. sign square root power

normalization and ℓ2 normalization. We ignore for now the normaliza-

tion notations for presentational brevity, and discuss normalization in Sec-

tion 5.1.
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Figure 2: The mean and standard deviation of the eigen-

values the weight matrix W for 200 linear SVM classifiers

applied to bilinear features. As the plot suggests, a large

part of the spectrum is typically concentrated around 0 with

a few large positive and negative eigenvalues. The middle

of the spectrum is excluded here for clarity.

soft-margin SVM training objective is given by:

min
w,b

1

N

N
∑

i=1

max(0, 1− yiw
T
zi + b) +

λ

2
‖w‖22 (1)

2.1. Maximum Frobenius Margin Classifier

We can write an equivalent objective to Equation 1 using

the matrix representation of the bilinear feature as:

min
W,b

1

N

N
∑

i=1

max(0, 1− yitr(W
T
XiX

T
i ) + b) +

λ

2
‖W‖2F

(2)

It is straightforward to show that Equation 2 is a convex

optimization problem w.r.t. the parameter W ∈ R
c×c and

is equivalent to the linear SVM.

Proposition 1 Let w∗ ∈ R
c2 be the optimal solution of

the linear SVM in Equation 1 over bilinear features, then

W
∗ = mat(w∗) ∈ R

c×c is the optimal solution in Equa-

tion 2. Moreover, W∗ = W
∗T .

To give some intuition about this claim, we write the op-

timal solution to the two SVM problems in terms of the

Lagrangian dual variables α associated with each training

example:

w
∗ =

∑

yi=1

αizi −
∑

yi=−1

αizi

W
∗ =

∑

yi=1

αiXiX
T
i −

∑

yi=−1

αiXiX
T
i

where αi ≥ 0, ∀i = 1, . . . , N,

(3)

As z = vec(XX
T ), we have w

∗ = vec(W∗) 2; since W
∗

is a sum of symmetric matrices, it must also be symmetric.

This expansion motivates us to treat W∗ as the difference

of two positive semidefinite matrices corresponding to the

2We use mat(·) to denote the inverse of vec(·) so that

vec(mat(w)) = w.
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Figure 3: Average accuracy of low-rank linear SVMs. In

this experiment we simply use singular value decomposi-

tion applied to the set of full rank SVM’s for all classes

to generate low-rank classifiers satisfying a hard rank con-

straint (no fine-tuning). Very low rank classifiers still

achieve good performance.

positive and negative training examples. It is informative to

compare Equation 3 with eigen-decomposition of W∗

W
∗ =ΨΣΨ

T = Ψ+Σ+Ψ
T
+ +Ψ−Σ−Ψ

T
−

=Ψ+Σ+Ψ
T
+ −Ψ−|Σ−|Ψ

T
−

=U+U
T
+ −U−U

T
−

(4)

where Σ+ and Σ− are diagonal matrices containing only

positive and negative eigenvalues, respectively, and Ψ+ and

Ψ− are the eigenvectors corresponding to those eigenval-

ues. Setting U+ = Ψ+Σ
1
2

+ and U− = Ψ−|Σ−|
1
2 , we have

W = U+U
T
+ −U−U

T
−

.

In general it will not be the case that the positive

and negative components of the eigendecomposition cor-

respond to the dual decomposition (e.g., that U+U
T
+ =∑

yi=1
αiXiX

T
i ) since there are many possible decompo-

sitions into a difference of psd matrices. However, this de-

composition motivates the idea that W∗ may well have a

good low-rank decomposition. In particular we know that

rank(W∗) < min(N, c) so if the amount of training data

is small relative to c, W∗ will necessarily be low rank. Even

with large amounts of training data, SVMs often produce

dual variables α which are sparse so we might expect that

the number of non-zero entries in α are less than c.

Low rank parameterization: To demonstrate this low-

rank hypothesis empirically, we plot in Figure 2 the sorted

average eigenvalues with standard deviation of the 200 clas-

sifiers trained on bilinear pooled features from the CUB

Bird dataset [31]. From the figure, we can easily observe

that a majority of eigenvalues are close to zero and an order

smaller in magnitude than the largest ones.

This motivates us to impose low-rank constraint to re-

duce the degrees of freedom in the parameters of the classi-

fier. We use singular value decomposition to generate a low

rank approximation of each of the 200 classifiers, discard-

ing those eigenvectors whose corresponding eigenvalue has

3367



small magnitude. As shown in Figure 3, a rank 10 approx-

imation of the learned classifier achieves nearly the same

classification accuracy as the full rank model. This suggests

the set of classifiers can be represented by 512 × 10 × 200
parameters rather than the full set of 5122×200 parameters.

Low-rank Hinge Loss: In this paper, we directly impose

a hard low-rank constraint rank(W) = r ≪ c by using

the parameterization in terms of U+ and U−, where U+ ∈
R

c×r/2 and U− ∈ R
c×r/2. This yields the following (non-

convex) learning objective:

min
U+,U

−
,b

1

N

N
∑

i=1

H(Xi,U+,U−, b) +
λ

2
R(U+,U−) (5)

where H(·) is the hinge loss and R(·) is the regularizer. The

hinge loss can be written as:

H(Xi,U+,U−, b) ≡max(0, 1− yi{tr(W̃
T
X̃)}+ b) (6)

where

W̃ =

[

U+U
T
+ 0

0 U−U
T
−

]

, X̃ =

[

XiX
T
i 0

0 −XiX
T
i

]

. (7)

While the hinge loss is convex in W̃, it is no longer convex

in the parameters U+,U− we are optimizing.3

Alternately, we can write the score of the low-rank bilin-

ear classifier as a difference of matrix norms which yields

the following expression of the hinge-loss:

H(Xi,U+,U−, b)

=max(0, 1− yi{tr(U+U
T
+XiX

T
i )− tr(U−U

T
−
XiX

T
i )}+ b)

=max(0, 1− yi{‖U
T
+Xi‖

2
F − ‖UT

−
Xi‖

2
F }+ b)

(8)

This expression highlights a key advantage of the bilinear

classifier, namely that we never need to explicitly compute

the pooled bilinear feature XiX
T
i !

Regularization: In the hinge-loss, the parameters U+

and U− are independent of each other. However, as noted

previously, there exists a decomposition of the optimal full

rank SVM in which the positive and negative subspaces are

orthogonal. We thus modify the standard ℓ2 regularization

to include a positive cross-term ‖UT
+U−‖

2
F that favors an

orthogonal decomposition 4. This yields the final objective:

3Instead of a hard rank constraint, one could utilize the nuclear norm

as a convex regularizer on W̃. However, this wouldn’t yield the computa-

tional benefits during training that we highlight here.
4The original ℓ2 regularization is given by ‖W‖2

F
= ‖U+U

T
+

−

U−U
T
−
‖2
F

= ‖U+U
T
+
‖2
F

+ ‖U−U
T
−
‖2
F

− 2‖UT
+
U−‖2

F
where the

cross-term actually discourages orthogonality.

min
U+,b

U
−

1

N

N
∑

i=1

H(Xi,U+,U−, b)

+
λ

2
(‖U+U

T
+‖

2
F + ‖U−U

T
−
‖2F + ‖UT

+U−‖
2
F )

(9)

2.2. Optimization by Gradient Descent

We call our approach the maximum Frobenius norm

SVM. It is closely related to the bilinear SVM of Wolf et

al. [33], which uses a bilinear decomposition W ≈ UV
T .

Such non-convex bilinear models with hard rank constraints

are often optimized via alternating descent [18, 29, 33, 24]

or fit using convex relaxations based on the nuclear norm

[13]. However, our parameterization is actually quadratic

in U+,U− and hence can’t exploit the alternating or cyclic

descent approach.

Instead, we optimize the objective function 9 using

stochastic gradient descent to allow end-to-end training of

both the classifier and CNN feature extractor via standard

backpropagation. As discussed in the literature, model per-

formance does not appear to suffer from non-convexity dur-

ing training and we have no problems finding local minima

with good test accuracy [7, 3]. The partial derivatives of our

model are straightforward to compute efficiently

∇U+
=2λ(U+U

T
+U+ +U−U

T
−
U+)

+

{

0, if H(Xi,U+,U−, b) ≤ 0

−yiXiX
T
i U+, if H(Xi,U+,U−, b) > 0

∇U
−

=2λ(U−U
T
−
U− +U+U

T
+U−)

+

{

0, if H(Xi,U+,U−, b) ≤ 0

yiXiX
T
i U−, if H(Xi,U+,U−, b) > 0

∇b =

{

0, if H(Xi,U+,U−, b) ≤ 0

−yi, if H(Xi,U+,U−, b) > 0

(10)

3. Classifier Co-Decomposition for Model

Compression

In many applications such as fine-grained classification,

we are interested in training a large collection of classifiers

and performing k-way classification. It is reasonable to ex-

pect that these classifiers should share some common struc-

ture (e.g., some feature map channels may be more or less

informative for a given k-way classification task). We thus

propose to further reduce the number of model parameters

by performing a co-decomposition over the set of classi-

fiers in order to isolate shared structure, similar to multi-task

learning frameworks (e.g., [1]).

Suppose we have trained K Frobenius norm SVM clas-

sifiers for each of K classes. Denoting the kth classifier
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Figure 4: Another configuration of our proposed architec-

ture that explicitly computes the bilinear pooling over co-

decomposed features of lower dimension.

parameters as Uk = [U+k,U−k] ∈ R
c×r, we consider the

following co-decomposition:

min
Vk,P

K
∑

k=1

‖Uk −PVk‖
2
F , (11)

where P ∈ R
c×m is a projection matrix that reduces the

feature dimensionality from c to m < c, and Vk ∈ R
m×r

is the new lower-dimensional classifier for the kth class.

Although there is no unique solution to problem Equa-

tion 11, we can make the following statement

Proposition 2 The optimal solution of P to Equation 11

spans the subspace of the singular vectors corresponding of

the largest m singular values of [U1, . . . ,UK ].

Therefore, without loss of generality, we can add a con-

straint that P is a orthogonal matrix without changing the

value of the minimum and use SVD on the full parameters

of the K classifiers to obtain P and Vk’s.

In practice, we would like to avoid first learning full

classifiers Uk and then solving for P and {Vk}. Instead,

we implement P ∈ R
c×m in our architecture by adding a

1 × 1 × c × m convolution layer, followed by the new bi-

linear classifier layer parameterized by Vk’s. In order to

provide a good initialization for P, we can run the CNN

base architecture on training images and perform PCA on

the resulting feature map activations in order to estimate a

good subspace for P. We find this simple initialization of P

with randomly initialized Vk’s followed by fine-tuning the

whole model achieves state-of-the-art performance.

4. Analysis of Computational Efficiency

In this section, we study the computational complexity

and model size in detail, and compare our model to several

closely related bilinear methods, including the full bilinear

model [19] and two compact bilinear models [8] by Random

Maclaurin and Tensor Sketch.

We consider two variants of our proposed low-rank bi-

linear pooling (LRBP) architecture. In the first, dubbed

LRBP-I and depicted in Figure 1 (d), we use the Frobenius

norm to compute the classification score (see Equation 8).

This approach is preferred when hw < m. In the second,

dubbed LRBP-II and depicted in Figure 4, we apply the fea-

ture dimensionality reduction using P and then compute the

pooled bilinear feature explicitly and compute the classifi-

cation score according to second line of Equation 8. This

has a computational advantage when hw > m.

Table 1 provides a detailed comparison in terms of fea-

ture dimension, the memory needed to store projection

and classifier parameters, and computational complexity

of producing features and classifier scores. In particular,

we consider this comparison for the CUB200-2011 bird

dataset [31] which has K = 200 classes. A conventional

setup for achieving good performance of the compact bilin-

ear model is that d = 8, 192 as reported in [8]. Our model

achieves similar or better performance using a projection

P ∈ R
512×100, so that m = 100, and using rank r = 8 for

all the classifiers.

From Table 1, we can see that Tensor Sketch and our

model are most appealing in terms of model size and com-

putational complexity. It is worth noting that the size of

our model is a hundred times smaller than the full bilin-

ear model, and ten times smaller than Tensor Sketch. In

practice, the complexity of computing features in our model

O(hwmc + hwm2) is not much worse than Tensor Sketch

O(hw(c + d log(d)), as m2 ≈ d, mc < d log(d) and

m ≪ c. Perhaps the only trade-off is computation in the

classification step, which is a bit higher than the compact

models.

5. Experiment Evaluation

In this section, we provide details of our model imple-

mentation along with a description of baseline. We then

investigate design-choices of our model, i.e., the classifier

rank and low-dimensional subspace determined by projec-

tion P. Finally we report the results on four commonly

used fine-grained benchmark datasets and describe several

methods for generating qualitative visualizations that pro-

vide understanding of the image features driving model per-

formance.

5.1. Implementation Details

We implemented our classifier layers within matconvnet

toolbox [30] and train using SGD on a single Titan X GPU.

We use the VGG16 model [28] which is pretrained on Im-

ageNet, removing the fully connected layers, and inserting

a co-decomposition layer, normalization layer and our bi-

linear classifiers. We use PCA to initialize P as described

in Section 3, and randomly initialize the classifiers. We ini-

tially train only the classifiers, and then fine-tune the whole

network using a batch size of 12 and a small learning rate

of 10−3, periodically annealed by 0.25, weight decay of

5 × 10−4 and momentum 0.9. The code and trained model
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Table 1: A comparison of different compact bilinear models in terms of dimension, memory, and computational complexity.

The bilinear pooled features are computed over feature maps of dimension h × w × c for a K-way classification problem.

For the VGG16 model on an input image of size 448× 448 we have h = w = 28 and c = 512. The Random Maclaurin and

Tensor Sketch models, which are proposed in [8] based on polynomial kernel approximation, compute a feature of dimension

d. It is shown that these methods can achieve near-maximum performance with d = 8, 192. For our model, we set m = 100
and r = 8, corresponding to the reduced feature dimension and the rank of our low-rank classifier, respectively. Numbers in

brackets indicate typical values when bilinear pooling is applied after the last convolutional layer of VGG16 model over the

CUB200-2011 bird dataset [31] where K = 200. Model size only counts the parameters above the last convolutional layer.

Full Bilinear Random Maclaurin Tensor Sketch LRBP-I LRBP-II

Feature Dim c2 [262K] d [10K] d [10K] mhw [78K] m2 [10K]

Feature computation O(hwc2) O(hwcd) O(hw(c+ d log d)) O(hwmc) O(hwmc+ hwm2)
Classification comp. O(Kc2) O(Kd) O(Kd) O(Krmhw) O(Krm2)

Feature Param 0 2cd [40MB] 2c [4KB] cm [200KB] cm [200KB]

Classifier Param Kc2 [KMB] Kd [K·32KB] Kd [K·32KB] Krm [K·3KB] Krm [K·3KB]

Total (K = 200) Kc2 [200MB] 2cd+Kd [48MB] 2c+Kd [8MB] cm+Krm [0.8MB] cm+Krm [0.8MB]

have been released to the public5.

We find that proper feature normalization provides a

non-trivial improvement in performance. Our observation

is consistent with the literature on applying normalization to

deal with visual burstiness [11, 19]. The full bilinear CNN

and compact bilinear CNN consistently apply sign square

root and ℓ2 normalization on the bilinear features. We can

apply these normalization methods for our second configu-

ration (described in Section 4). For our first configuration,

we don’t explicitly compute the bilinear feature maps. In-

stead we find that sign square root normalization on feature

maps at conv5 3 layer results in performance on par with

other bilinear pooling methods while additional ℓ2 normal-

ization harms the performance.

5.2. Configuration of Hyperparameters

Two hyperparameters are involved in specifying our ar-

chitecture, the dimension m in the subspace determined by

P ∈ R
c×m and the rank r of the classifiers Vk ∈ R

m×r

for k = 1, . . . ,K. To investigate these two parameters in

our model, we conduct an experiment on CUB-200-2011

bird dataset [31], which contains 11,788 images of 200 bird

species, with a standard training and testing set split. We do

not use any part annotation or masks provided in the dataset.

We first train a full-rank model on the bilinear pooled

features and then decompose each classifier using eigen-

value decomposition and keep the largest magnitude eigen-

values and the corresponding vectors to produce a rank-r

classifier. After obtaining low-rank classifiers, we apply co-

decomposition as described in Section 3 to obtain projector

P and compact classifiers Vk’s. We did not perform fine-

tuning of these models but this quick experiment provides

a good proxy for final model performance over a range of

architectures.

We plot the classification accuracy vs. rank r and re-

5https://github.com/aimerykong/

Low-Rank-Bilinear-Pooling

duced dimension m (rDim) in Figure 5, the average recon-

struction fidelity measured by peak signal-to-noise ratio to

the original classifier parameters Uk versus rank r and di-

mension m in Figure 6, and model size versus rank r and

dimension m in Figure 7.

As can be seen, the reconstruction fidelity (measured in

the peak signal-to-noise ratio) is a good guide to model per-

formance prior to fine tuning. Perhaps surprisingly, even

with r = 8 and m = 100, our model achieves near-

maximum classification accuracy on this dataset (Figure 5)

with model parameters compressed by a factor of 100 over

the full model (Figure 7). Based on this analysis, we set

r = 8 and m = 100 for our quantitative benchmark experi-

ments.

5.3. Baseline Methods

We use VGG16 [28] as the base model in all comparison

to be consistent with previous work [19, 8].

Fully Connected layers (FC-VGG16): We replace the

last fully connected layer of VGG16 base model with a ran-

domly initialized K-way classification layer and fine-tune.

We refer this as “FC-VGG16” which is commonly a strong

baseline for a variety of computer vision tasks. As VGG16

only takes input image of size 224×224, we resize all inputs

for this method.

Improved Fisher Encoding (Fisher): Fisher encod-

ing [22] has recently been used as an encoding and pool-

ing alternative to the fully connected layers [5]. Consistent

with [8, 19], we use the activations at layer conv5 3 (prior

to ReLU) as local features and set the encoding to use 64

GMM components for the Fisher vector representation.

Full Bilinear Pooling (Full Bilinear): We use full bilin-

ear pooling over the conv5 3 feature maps (termed “sym-

metric structure” in [19]) and apply element-wise sign

6370

https://github.com/aimerykong/Low-Rank-Bilinear-Pooling
https://github.com/aimerykong/Low-Rank-Bilinear-Pooling


Figure 5: Classification accuracy on

CUB-200 dataset [31] vs. reduced di-

mension (m) and rank (r).

Figure 6: Reconstruction fidelity of

classifier parameters measured by

peak signal-to-noise ratio.

Figure 7: The learned parameter size

versus reduced dimension (m) and

rank (r).

square root normalization and ℓ2 normalization prior to

classification.

Compact Bilinear Pooling: We report two methods pro-

posed in [8] using Random Maclaurin and Tensor Sketch.

Like Full Bilinear model, element-wise sign square root

normalization and ℓ2 normalization are used. We set the

projection dimension d = 8, 192, which is shown to be suf-

ficient for reaching close-to maximum accuracy [8]. For

some datasets, we use the code released by the authors to

train the model; otherwise we display the performance re-

ported in [8].

5.4. Quantitative Benchmarking Experiment

We compare state-the-art methods on four widely used

fine-grained classification benchmark datasets, CUB-200-

2011 Bird dataset [31], Aircrafts [21], Cars [17], and de-

scribing texture dataset (DTD) [4]. All these datasets pro-

vide fixed train and test split. We summarize the statistics of

datasets in Table 3. In training all models, we only use the

category label without any part or bounding box annotation

provided by the datasets. We list the performance of these

methods in Table 2 and highlight the parameter size of the

models trained on CUB-200 dataset in the last row.

From the comparison, we can clearly see that Fisher

vector pooling not only provides a smaller model than

FC-VGG16, but also consistently outperforms it by a no-

table margin. All the bilinear pooling methods, including

ours, achieve similar classification accuracy, outperform-

ing Fisher vector pooling by a significant margin on these

datasets except DTD. However, our model is substantially

more compact than the other methods based on bilinear fea-

tures. To the best of our knowledge, our model achieves the

state-of-the-art performance on these datasets without part

annotation [10, 15], and even outperforms several recently

proposed methods trained that use supervised part annota-

tion [37]. Although there are more sophisticated methods in

literature using detailed annotations such as parts or bound-

ing box [36, 35], our model relies only on the category la-

bel. These advantages make our model appealing not only

for memory-constrained devices, but also in weakly super-

vised fine-grained classification in which detailed part an-

notations are costly to obtain while images with category

label are nearly free and computation during model training

becomes the limiting resource.

Note that the simple PCA reduced feature with full bi-

linear pooling gives a large model reduction without no-

ticeable accuracy loss [19]. We provide a comparison on

CUB-2011-200 dataset in Table 4 w.r.t the feature size (Fea.

Dim.), projection matrix (Feat. Param.), classifier size (Cls.

Param.) and accuracy. Feature computation and classifica-

tion for the listed methods are linear in feature size, so our

method and PCA with 16× reduction require similar com-

putation. However, our method enjoys a further ten times

reduction in model size and performs better than straight

PCA on the feature map. Moreover, our co-decomposition

addresses scaling to large numbers of categories.

5.5. Qualitative Visualization

To better understand our model, we adopt three differ-

ent approaches to visualizing the model response for spe-

cific input images. In the first method, we feed an in-

put image to the trained model, and compute responses

Y = [U+1
,U−1

, . . . ,U+k,U−k, . . . ,U+K ,U−K ]TX
from the bilinear classifier layer. Based on the ground-

truth class label, we create a modified response Ȳ by zero-

ing out the part corresponding to negative Frobenius score

(−‖UT
−
X‖2F ) for the ground-truth class, and the part to the

positive Frobenius scores (‖UT
+X‖2F ) in the remaining clas-

sifiers, respectively. This is similar to approaches used for

visualizing HOG templates by separating the positive and

negative components of the weight vector. To visualize the

result, we treat Ȳ as the target and backpropagate the dif-

ference to the input image space, similar to [27]. For the

second visualization, we compute the magnitude of feature

activations averaged across feature channels used by the bi-

linear classifier. Finally, we produce a third visualization

by repeatedly remove superpixels from the input image, se-
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Table 2: Classification accuracy and parameter size of: a fully connected network over VGG16 [28], Fisher vector [5], Full

bilinear CNN [19], Random Maclaurin [8], Tensor Sketch [8], and our method. We run Random Maclaurin and Tensor Sketch

with the code provided in [8] with their conventional configuration (e.g. projection dimension d = 8192).

FC-VGG16 Fisher Full Bilinear Random Maclaurin Tensor Sketch LRBP (Ours)

CUB [31] 70.40 74.7 84.01 83.86 84.00 84.21

DTD [4] 59.89 65.53 64.96 65.57 64.51 65.80

Car [17] 76.80 85.70 91.18 89.54 90.19 90.92

Airplane [21] 74.10 77.60 87.09 87.10 87.18 87.31

param. size (CUB) 67MB 50MB 200MB 48MB 8MB 0.8MB

Table 3: Summary statistics of datasets.

# train img. # test img. # class

CUB [31] 5994 5794 200

DTD [4] 1880 3760 47

Car [17] 8144 8041 196

Airplane [21] 6667 3333 100

Figure 8: (Best seen in color.) Each of the four panels

show different bird species; the four columns display the

input images and the visualization maps using three differ-

ent methods as described in Section 5.5. We can see our

model tends to ignore features in the cluttered background

and focus on the most distinct parts of the birds.

lecting the one that introduces minimum drop in classifica-

tion score This is similar to [25, 38]. In Figure 8, we show

some randomly selected images from four different classes

in CUB-200-2011 dataset and their corresponding visual-

izations.

The visualizations all suggest that the model is capable

of ignoring cluttered backgrounds and focuses primarily on

the bird and even on specific discriminative parts of each

bird. Moreover, the highlighted activation region changes

w.r.t the bird size and context, as shown in the first panel

of Figure 8. For the species “010.red winged blackbird”,

“012.yellow headed blackbird” and “013.bobolink”, the

most distinctive parts, intuitively, are the red wings, yel-

Table 4: Comparison to PCA reduced versions of full bilin-

ear pooling on CUB-2011-200 dataset.

64× 32× 16× ours

Feat. Dim. (K) 32 16 8 10

Feat. Param. (MB) 0.13 0.06 0.03 0.20

Cls. Param. (MB) 25.00 12.50 6.25 0.61

Accuracy (%) 84.18 83.85 83.81 84.21

low head and neck, and yellow nape, respectively. Our

model naturally appears to respond to and localize these

parts. This provides a partial explanation as to why sim-

ple global pooling achieves such good results without an

explicit spatial transformer or cross-channel pooling archi-

tecture (e.g. [20])

6. Conclusion

We have presented an approach for training a very com-

pact low-rank classification model that is able to leverage

bilinear feature pooling for fine-grained classification while

avoiding the explicit computation of high-dimensional bi-

linear pooled features. Our Frobenius norm based classifier

allows for fast evaluation at test time and makes it easy to

impose hard, low-rank constraints during training, reducing

the degrees of freedom in the parameters to be learned and

yielding an extremely compact feature set. The addition

of a co-decomposition step projects features into a shared

subspace and yields a further reduction in computation and

parameter storage. Our final model can be initialized with a

simple PCA step followed by end-to-end fine tuning.

Our final classifier model is one to two orders of mag-

nitude smaller than existing approaches and achieves state-

of-the-art performance on several public datasets for fine-

grained classification by using only the category label

(without any keypoint or part annotations). We expect

these results will form a basis for future experiments such

as training on weakly supervised web-scale datasets [16],

pooling multiple feature modalities and further compression

of models for use on mobile devices.
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