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Abstract

Convolutional neural networks have recently demon-

strated high-quality reconstruction for single-image super-

resolution. In this paper, we propose the Laplacian Pyramid

Super-Resolution Network (LapSRN) to progressively re-

construct the sub-band residuals of high-resolution images.

At each pyramid level, our model takes coarse-resolution

feature maps as input, predicts the high-frequency residu-

als, and uses transposed convolutions for upsampling to the

finer level. Our method does not require the bicubic interpo-

lation as the pre-processing step and thus dramatically re-

duces the computational complexity. We train the proposed

LapSRN with deep supervision using a robust Charbonnier

loss function and achieve high-quality reconstruction. Fur-

thermore, our network generates multi-scale predictions in

one feed-forward pass through the progressive reconstruc-

tion, thereby facilitates resource-aware applications. Ex-

tensive quantitative and qualitative evaluations on bench-

mark datasets show that the proposed algorithm performs

favorably against the state-of-the-art methods in terms of

speed and accuracy.

1. Introduction

Single-image super-resolution (SR) aims to reconstruct

a high-resolution (HR) image from a single low-resolution

(LR) input image. In recent years, example-based SR meth-

ods have demonstrated the state-of-the-art performance by

learning a mapping from LR to HR image patches using

large image databases. Numerous learning algorithms have

been applied to learn such a mapping, including dictionary

learning [37, 38], local linear regression [30, 36], and ran-

dom forest [26].

Recently, Dong et al. [7] propose a Super-Resolution

Convolutional Neural Network (SRCNN) to learn a nonlin-

ear LR-to-HR mapping. The network is extended to embed

a sparse coding-based network [33] or use a deeper struc-

ture [17]. While these models demonstrate promising re-

sults, there are three main issues. First, existing methods

use a pre-defined upsampling operator, e.g., bicubic inter-

polation, to upscale input images to the desired spatial reso-

lution before applying the network for prediction. This pre-

processing step increases unnecessary computational cost

and often results in visible reconstruction artifacts. Several

algorithms accelerate SRCNN by performing convolution

on LR images and replacing the pre-defined upsampling op-

erator with sub-pixel convolution [28] or transposed con-

volution [8] (also named as deconvolution in some of the

literature). These methods, however, use relatively small

networks and cannot learn complicated mappings well due

to the limited network capacity. Second, existing methods

optimize the networks with an ℓ2 loss and thus inevitably

generate blurry predictions. Since the ℓ2 loss fails to cap-

ture the underlying multi-modal distributions of HR patches

(i.e., the same LR patch may have many corresponding HR

patches), the reconstructed HR images are often overly-

smooth and not close to human visual perception on nat-

ural images. Third, most methods reconstruct HR images

in one upsampling step, which increases the difficulties of

training for large scaling factors (e.g., 8×). In addition, ex-

isting methods cannot generate intermediate SR predictions

at multiple resolutions. As a result, one needs to train a

large variety of models for various applications with differ-

ent desired upsampling scales and computational loads.

To address these drawbacks, we propose the Laplacian

Pyramid Super-Resolution Network (LapSRN) based on a

cascade of convolutional neural networks (CNNs). Our net-

work takes an LR image as input and progressively predicts

the sub-band residuals in a coarse-to-fine fashion. At each

level, we first apply a cascade of convolutional layers to

extract feature maps. We then use a transposed convolu-

tional layer for upsampling the feature maps to a finer level.

Finally, we use a convolutional layer to predict the sub-

band residuals (the differences between the upsampled im-

age and the ground truth HR image at the respective level).

The predicted residuals at each level are used to efficiently

reconstruct the HR image through upsampling and addi-

tion operations. While the proposed LapSRN consists of

a set of cascaded sub-networks, we train the network with

a robust Charbonnier loss function in an end-to-end fashion

(i.e., without stage-wise optimization). As depicted in Fig-
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Figure 1: Network architectures of SRCNN [7], FSRCNN [8], VDSR [17], DRCN [18] and the proposed LapSRN. Red

arrows indicate convolutional layers. Blue arrows indicate transposed convolutions (upsampling). Green arrows denote

element-wise addition operators, and the orange arrow indicates recurrent layers.

ure 1(e), our network architecture naturally accommodates

deep supervision (i.e., supervisory signals can be applied

simultaneously at each level of the pyramid).

Our algorithm differs from existing CNN-based methods

in the following three aspects:

(1) Accuracy. The proposed LapSRN extracts feature maps

directly from LR images and jointly optimizes the upsam-

pling filters with deep convolutional layers to predict sub-

band residuals. The deep supervision with the Charbonnier

loss improves the performance thanks to the ability to better

handle outliers. As a result, our model has a large capacity

to learn complicated mappings and effectively reduces the

undesired visual artifacts.

(2) Speed. Our LapSRN embraces both fast processing

speed and high capacity of deep networks. Experimen-

tal results demonstrate that our method is faster than sev-

eral CNN based super-resolution models, e.g., SRCNN [7],

SCN [33], VDSR [17], and DRCN [18]. Similar to FSR-

CNN [8], our LapSRN achieves real-time speed on most

of the evaluated datasets. In addition, our method provides

significantly better reconstruction accuracy.

(3) Progressive reconstruction. Our model generates

multiple intermediate SR predictions in one feed-forward

pass through progressive reconstruction using the Laplacian

pyramid. This characteristic renders our technique applica-

ble to a wide range of applications that require resource-

aware adaptability. For example, the same network can be

used to enhance the spatial resolution of videos depend-

ing on the available computational resources. For scenar-

ios with limited computing resources, our 8× model can

still perform 2× or 4× SR by simply bypassing the com-

putation of residuals at finer levels. Existing CNN-based

methods, however, do not offer such flexibility.

2. Related Work and Problem Context

Numerous single-image super-resolution methods have

been proposed in the literature. Here we focus our discus-

sion on recent example-based approaches.

SR based on internal databases. Several methods [9, 12]

exploit the self-similarity property in natural images and

construct LR-HR patch pairs based on the scale-space pyra-

mid of the low-resolution input image. While internal

databases contain more relevant training patches than ex-

ternal image databases, the number of LR-HR patch pairs

may not be sufficient to cover large textural variations in an

image. Singh et al. [29] decompose patches into directional

frequency sub-bands and determine better matches in each

sub-band pyramid independently. Huang et al. [15] extend

the patch search space to accommodate the affine transform

and perspective deformation. The main drawback of SR

methods based on internal databases is that they are typ-

ically slow due to the heavy computational cost of patch

search in the scale-space pyramid.

SR based on external databases. Numerous SR meth-

ods learn the LR-HR mapping with image pairs collected

from external databases using supervised learning algo-

rithms, such as nearest neighbor [10], manifold embed-

ding [2, 5], kernel ridge regression [19], and sparse rep-

resentation [37, 38, 39]. Instead of directly modeling the

complex patch space over the entire database, several meth-

ods partition the image database by K-means [36], sparse

dictionary [30] or random forest [26], and learn locally lin-

ear regressors for each cluster.

Convolutional neural networks based SR. In contrast to

modeling the LR-HR mapping in the patch space, SR-

CNN [7] jointly optimize all the steps and learn the non-

linear mapping in the image space. The VDSR network [17]

demonstrates significant improvement over SRCNN [7] by

increasing the network depth from 3 to 20 convolutional

layers. To facilitate training a deeper model with a fast
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Table 1: Comparisons of CNN based SR algorithms: SRCNN [7], FSRCNN [8], SCN [33], ESPCN [28], VDSR [17], and

the proposed LapSRN. The number of layers includes both convolution and transposed convolution. Methods with direct

reconstruction performs one-step upsampling (with bicubic interpolation or transposed convolution) from LR to HR images,

while progressive reconstruction predicts HR images in multiple steps.

Method Network input #Layers Residual learning Reconstruction Loss function

SRCNN [7] LR + bicubic 3 No Direct L2

FSRCNN [8] LR 8 No Direct L2

SCN [33] LR + bicubic 5 No Progressive L2

ESPCN [28] LR 3 No Direct L2

VDSR [17] LR + bicubic 20 Yes Direct L2

DRCN [18] LR + bicubic 5 (recursive) No Direct L2

LapSRN (ours) LR 27 Yes Progressive Charbonnier

convergence speed, VDSR trains the network to predict the

residuals rather the actual pixel values. Wang et al. [33]

combine the domain knowledge of sparse coding with a

deep CNN and train a cascade network (SCN) to up-

sample images to the desired scale factor progressively.

Kim et al. [18] propose a shallow network with deeply re-

cursive layers (DRCN) to reduce the number of parameters.

To achieve real-time performance, the ESPCN net-

work [28] extracts feature maps in the LR space and re-

places the bicubic upsampling operation with an efficient

sub-pixel convolution. The FSRCNN network [8] adopts a

similar idea and uses a hourglass-shaped CNN with more

layers but fewer parameters than that in ESPCN. All the

above CNN-based SR methods optimize networks with an

ℓ2 loss function, which often leads to overly-smooth results

that do not correlate well with human perception. In the

context of SR, we demonstrate that the ℓ2 loss is less effec-

tive for learning and predicting sparse residuals.

We compare the network structures of SRCNN, FSR-

CNN, VDSR, DRCN and our LapSRN in Figure 1 and

list the main differences among existing CNN-based meth-

ods and the proposed framework in Table 1. Our approach

builds upon existing CNN-based SR algorithms with three

main differences. First, we jointly learn residuals and up-

sampling filters with convolutional and transposed convo-

lutional layers. Using the learned upsampling filters not

only effectively suppresses reconstruction artifacts caused

by the bicubic interpolation, but also dramatically reduces

the computational complexity. Second, we optimize the

deep network using a robust Charbonnier loss function in-

stead of the ℓ2 loss to handle outliers and improve the re-

construction accuracy. Third, as the proposed LapSRN pro-

gressively reconstructs HR images, the same model can be

used for applications that require different scale factors by

truncating the network up to a certain level.

Laplacian pyramid. The Laplacian pyramid has been used

in a wide range of applications, such as image blending [4],

texture synthesis [14], edge-aware filtering [24] and seman-

tic segmentation [11, 25]. Denton et al. propose a genera-

tive model based on a Laplacian pyramid framework (LAP-

GAN) to generate realistic images in [6], which is the most

related to our work. However, the proposed LapSRN differs

from LAPGAN in three aspects.

First, LAPGAN is a generative model which is designed

to synthesize diverse natural images from random noise and

sample inputs. On the contrary, our LapSRN is a super-

resolution model that predicts a particular HR image based

on the given LR image. LAPGAN uses a cross-entropy loss

function to encourage the output images to respect the data

distribution of training datasets. In contrast, we use the

Charbonnier penalty function to penalize the deviation of

the prediction from the ground truth sub-band residuals.

Second, the sub-networks of LAPGAN are independent

(i.e., no weight sharing). As a result, the network capacity

is limited by the depth of each sub-network. Unlike LAP-

GAN, the convolutional layers at each level in LapSRN are

connected through multi-channel transposed convolutional

layers. The residual images at a higher level are therefore

predicted by a deeper network with shared feature represen-

tations at lower levels. The feature sharing at lower levels

increases the non-linearity at finer convolutional layers to

learn complex mappings. Also, the sub-networks in LAP-

GAN are independently trained. On the other hand, all the

convolutional filters for feature extraction, upsampling, and

residual prediction layers in the LapSRN are jointly trained

in an end-to-end, deeply supervised fashion.

Third, LAPGAN applies convolutions on the upsampled

images, so the speed depends on the size of HR images. On

the contrary, our design of LapSRN effectively increases

the size of the receptive field and accelerates the speed by

extracting features from the LR space. We provide compar-

isons with LAPGAN in the supplementary material.

Adversarial training. The SRGAN method [20] optimizes

the network using the perceptual loss [16] and the adversar-

ial loss for photo-realistic SR. We note that our LapSRN can

be easily extended to the adversarial training framework. As

it is not our contribution, we provide experiments on the ad-

versarial loss in the supplementary material.
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3. Deep Laplacian Pyramid Network for SR

In this section, we describe the design methodology of

the proposed Laplacian pyramid network, the optimization

using robust loss functions with deep supervision, and the

details for network training.

3.1. Network architecture

We propose to construct our network based on the Lapla-

cian pyramid framework, as shown in Figure 1(e). Our

model takes an LR image as input (rather than an upscaled

version of the LR image) and progressively predicts resid-

ual images at log2 S levels where S is the scale factor. For

example, the network consists of 3 sub-networks for super-

resolving an LR image at a scale factor of 8. Our model has

two branches: (1) feature extraction and (2) image recon-

struction.

Feature extraction. At level s, the feature extraction

branch consists of d convolutional layers and one trans-

posed convolutional layer to upsample the extracted fea-

tures by a scale of 2. The output of each transposed con-

volutional layer is connected to two different layers: (1) a

convolutional layer for reconstructing a residual image at

level s, and (2) a convolutional layer for extracting features

at the finer level s+1. Note that we perform the feature ex-

traction at the coarse resolution and generate feature maps

at the finer resolution with only one transposed convolu-

tional layer. In contrast to existing networks that perform all

feature extraction and reconstruction at the fine resolution,

our network design significantly reduces the computational

complexity. Note that the feature representations at lower

levels are shared with higher levels, and thus can increase

the non-linearity of the network to learn complex mappings

at the finer levels.

Image reconstruction. At level s, the input image is up-

sampled by a scale of 2 with a transposed convolutional

(upsampling) layer. We initialize this layer with the bi-

linear kernel and allow it to be jointly optimized with all

the other layers. The upsampled image is then combined

(using element-wise summation) with the predicted resid-

ual image from the feature extraction branch to produce a

high-resolution output image. The output HR image at level

s is then fed into the image reconstruction branch of level

s+1. The entire network is a cascade of CNNs with a sim-

ilar structure at each level.

3.2. Loss function

Let x be the input LR image and θ be the set of net-

work parameters to be optimized. Our goal is to learn a

mapping function f for generating a high-resolution im-

age ŷ = f (x;θ) that is close to the ground truth HR image

y. We denote the residual image at level s by rs, the up-

scaled LR image by xs and the corresponding HR images

by ys. The desired output HR images at level s is modeled

by ys = xs + rs. We use the bicubic downsampling to resize

the ground truth HR image y to ys at each level. Instead of

minimizing the mean square errors between ys and ŷs, we

propose to use a robust loss function to handle outliers. The

overall loss function is defined as:

L (ŷ,y;θ) =
1

N

N

∑
i=1

L

∑
s=1

ρ
(

ŷ
(i)
s − y

(i)
s

)

=
1

N

N

∑
i=1

L

∑
s=1

ρ
(

(ŷ
(i)
s − x

(i)
s )− r

(i)
s

)

, (1)

where ρ(x) =
√

x2 + ε2 is the Charbonnier penalty function

(a differentiable variant of ℓ1 norm) [3], N is the number of

training samples in each batch, and L is the number of level

in our pyramid. We empirically set ε to 1e−3.

In the proposed LapSRN, each level s has its loss func-

tion and the corresponding ground truth HR image ys. This

multi-loss structure resembles the deeply-supervised nets

for classification [21] and edge detection [34]. However,

the labels used to supervise intermediate layers in [21, 34]

are the same across the networks. In our model, we use

different scales of HR images at the corresponding level as

supervision. The deep supervision guides the network train-

ing to predict sub-band residual images at different levels

and produce multi-scale output images. For example, our

8× model can produce 2×, 4× and 8× super-resolution re-

sults in one feed-forward pass. This property is particularly

useful for resource-aware applications, e.g., mobile devices

or network applications.

3.3. Implementation and training details

In the proposed LapSRN, each convolutional layer con-

sists of 64 filters with the size of 3× 3. We initialize the

convolutional filters using the method of He et al. [13]. The

size of the transposed convolutional filters is 4× 4 and the

weights are initialized from a bilinear filter. All the con-

volutional and transposed convolutional layers (except the

reconstruction layers) are followed by leaky rectified linear

units (LReLUs) with a negative slope of 0.2. We pad zeros

around the boundaries before applying convolution to keep

the size of all feature maps the same as the input of each

level. The convolutional filters have small spatial supports

(3× 3). However, we can achieve high non-linearity and

increase the size of receptive fields with a deep structure.

We use 91 images from Yang et al. [38] and 200 images

from the training set of Berkeley Segmentation Dataset [1]

as our training data. The same training dataset is used

in [17, 26] as well. In each training batch, we randomly

sample 64 patches with the size of 128× 128. An epoch

has 1,000 iterations of back-propagation. We augment the

training data in three ways: (1) Scaling: randomly down-

scale between [0.5,1.0]. (2) Rotation: randomly rotate im-

age by 90◦, 180◦, or 270◦. (3) Flipping: flip images hor-

izontally or vertically with a probability of 0.5. Following
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Figure 2: Convergence analysis on the pyramid structure,

loss functions and residual learning. Our LapSRN con-

verges faster and achieves improved performance.

Table 2: Ablation study of pyramid structures, loss func-

tions, and residual learning. We replace each component

with the one used in existing methods, and observe perfor-

mance (PSNR) drop on both SET5 and SET14.

Residual Pyramid Loss SET5 SET14

X Robust 30.58 27.61

X Robust 31.10 27.94

X X ℓ2 30.93 27.86

X X Robust 31.28 28.04

the protocol of existing methods [7, 17], we generate the LR

training patches using the bicubic downsampling. We train

our model with the MatConvNet toolbox [31]. We set mo-

mentum parameter to 0.9 and the weight decay to 1e− 4.

The learning rate is initialized to 1e− 5 for all layers and

decreased by a factor of 2 for every 50 epochs.

4. Experiment Results

We first analyze the contributions of different compo-

nents of the proposed network. We then compare our Lap-

SRN with state-of-the-art algorithms on five benchmark

datasets and demonstrate the applications of our method on

super-resolving real-world photos and videos.

4.1. Model analysis

Residual learning. To demonstrate the effect of residual

learning, we remove the image reconstruction branch and

directly predict the HR images at each level. Figure 2 shows

the convergence curves in terms of PSNR on the SET14

for 4× SR. The performance of the “non-residual” network

(blue curve) converges slowly and fluctuates significantly.

The proposed LapSRN (red curve), on the other hand, out-

performs SRCNN within 10 epochs.

Loss function. To validate the effect of the Charbonnier

loss function, we train the proposed network with the ℓ2

loss function. We use a larger learning rate (1e− 4) since

the gradient magnitude of the ℓ2 loss is smaller. As illus-

trated in Figure 2, the network optimized with ℓ2 loss (green

(a) (b) (c) (d) (e) (f)

Figure 3: Contribution of different components in the pro-

posed network. (a) HR image. (b) w/o pyramid structure

(c) w/o residual learning (d) w/o robust loss (e) full model

(f) ground truth.

Table 3: Trade-off between performance and speed on the

depth at each level of the proposed network.

Depth
SET5 SET14

PSNR Second PSNR Second

3 31.15 0.036 27.98 0.036

5 31.28 0.044 28.04 0.042

10 31.37 0.050 28.11 0.051

15 31.45 0.077 28.16 0.071

curve) requires more iterations to achieve comparable per-

formance with SRCNN. In Figure 3(d), we show that the

network trained with the ℓ2 loss generates SR results with

more ringing artifacts. In contrast, the SR images recon-

struct by the proposed algorithm (Figure 3(e)) contain rela-

tively clean and sharp details.

Pyramid structure. By removing the pyramid structure,

our model falls back to a network similar to FSRCNN but

with the residual learning. To use the same number of

convolutional layers as LapSRN, we train a network with

10 convolutional layers and one transposed convolutional

layer. The quantitative results in Table 2 shows that the

pyramid structure leads to moderate performance improve-

ment (e.g. 0.7 dB on SET5 and 0.4 dB on SET14).

Network depth. We train the proposed model with differ-

ent depth, d = 3,5,10,15, at each level and show the trade-

offs between performance and speed in Table 3. In general,

deep networks perform better shallow ones at the expense

of increased computational cost. We choose d = 10 for our

2× and 4× SR models to strike a balance between perfor-

mance and speed. We show that the speed of our LapSRN

with d = 10 is faster than most of the existing CNN-based

SR algorithms (see Figure 6). For 8× model, we choose

d = 5 because we do not observe significant performance

gain by using more convolutional layers.

4.2. Comparisons with the state­of­the­arts

We compare the proposed LapSRN with 8 state-of-the-

art SR algorithms: A+ [30], SRCNN [7], FSRCNN [8],

SelfExSR [15], RFL [26], SCN [33], VDSR [17] and

DRCN [18]. We carry out extensive experiments using

5 datasets: SET5 [2], SET14 [39], BSDS100 [1], UR-

BAN100 [15] and MANGA109 [23]. Among these datasets,
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Ground-truth HR

HR (PSNR, SSIM) Bicubic (24.76, 0.6633) A+ [30] (25.59, 0.7139) SelfExSR [15] (25.45, 0.7087)

FSRCNN [8] (25.81, 0.7248) VDSR [17] (25.94, 0.7353) DRCN [18] (25.98, 0.7357) Ours (26.09, 0.7403)

Ground-truth HR

HR (PSNR, SSIM) Bicubic (22.43, 0.5926) A+ [30] (23.19, 0.6545) SelfExSR [15] (23.88, 0.6961)

FSRCNN [8] (23.61, 0.6708) VDSR [17] (24.25, 0.7030) DRCN [18] (23.95, 0.6947) Ours (24.36, 0.7200)

Ground-truth HR

HR (PSNR, SSIM) Bicubic (23.53, 0.8073) A+ [30] (26.10, 0.8793) SelfExSR [15] (26.75, 0.8960)

FSRCNN [8] (27.19, 0.8896) VDSR [17] (27.99, 0.9202) DRCN [18] (28.18, 0.9218) Ours (28.25, 0.9224)

Figure 4: Visual comparison for 4× SR on BSDS100, URBAN100 and MANGA109.

Ground-truth HR

HR FSRCNN [8]

(PSNR, SSIM) (19.57, 0.5133)

VDSR [17] LapSRN (ours)

(19.58, 0.5147) (19.75, 0.5246)
Ground-truth HR

HR FSRCNN [8]

(PSNR, SSIM) (15.61, 0.3494)

VDSR [17] LapSRN (ours)

(15.66, 0.3644) (15.72, 0.3865)

Figure 5: Visual comparison for 8× SR on BSDS100 and URBAN100.

SET5, SET14 and BSDS100 consist of natural scenes; UR-

BAN100 contains challenging urban scenes images with

details in different frequency bands; and MANGA109 is a

dataset of Japanese manga. We train the LapSRN until the

learning rate decreases to 1e − 6 and the training time is

around three days on a Titan X GPU.

We evaluate the SR images with three commonly used

image quality metrics: PSNR, SSIM [32], and IFC [27].

Table 4 shows quantitative comparisons for 2×, 4× and 8×
SR. Our LapSRN performs favorably against existing meth-

ods on most datasets. In particular, our algorithm achieves

higher IFC values, which has been shown to be correlated

well with human perception of image super-resolution [35].

We note that the best results can be achieved by training

with specific scale factors (Ours 2× and Ours 4×). As the

intermediate convolutional layers are trained to minimize

the prediction errors for both the corresponding level and

higher levels, the intermediate predictions of our 8× model

are slightly inferior to our 2× and 4× models. Neverthe-

less, our 8× model provides a competitive performance to

the state-of-the-art methods in 2× and 4× SR.

In Figure 4, we show visual comparisons on URBAN100,

BSDS100 and MANGA109 with the a scale factor of

4×. Our method accurately reconstructs parallel straight

lines and grid patterns such as windows and the stripes on

tigers. We observe that methods using the bicubic upsam-

pling for pre-processing generate results with noticeable ar-

tifacts [7, 17, 26, 30, 33]. In contrast, our approach effec-

tively suppresses such artifacts through progressive recon-

struction and the robust loss function.
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Table 4: Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM/IFC for scale factors 2×, 4× and

8×. Red text indicates the best and blue text indicates the second best performance.

Algorithm Scale
SET5 SET14 BSDS100 URBAN100 MANGA109

PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC

Bicubic 2 33.65 / 0.930 / 6.166 30.34 / 0.870 / 6.126 29.56 / 0.844 / 5.695 26.88 / 0.841 / 6.319 30.84 / 0.935 / 6.214

A+ [30] 2 36.54 / 0.954 / 8.715 32.40 / 0.906 / 8.201 31.22 / 0.887 / 7.464 29.23 / 0.894 / 8.440 35.33 / 0.967 / 8.906

SRCNN [7] 2 36.65 / 0.954 / 8.165 32.29 / 0.903 / 7.829 31.36 / 0.888 / 7.242 29.52 / 0.895 / 8.092 35.72 / 0.968 / 8.471

FSRCNN [8] 2 36.99 / 0.955 / 8.200 32.73 / 0.909 / 7.843 31.51 / 0.891 / 7.180 29.87 / 0.901 / 8.131 36.62 / 0.971 / 8.587

SelfExSR [15] 2 36.49 / 0.954 / 8.391 32.44 / 0.906 / 8.014 31.18 / 0.886 / 7.239 29.54 / 0.897 / 8.414 35.78 / 0.968 / 8.721

RFL [26] 2 36.55 / 0.954 / 8.006 32.36 / 0.905 / 7.684 31.16 / 0.885 / 6.930 29.13 / 0.891 / 7.840 35.08 / 0.966 / 8.921

SCN [33] 2 36.52 / 0.953 / 7.358 32.42 / 0.904 / 7.085 31.24 / 0.884 / 6.500 29.50 / 0.896 / 7.324 35.47 / 0.966 / 7.601

VDSR [17] 2 37.53 / 0.958 / 8.190 32.97 / 0.913 / 7.878 31.90 / 0.896 / 7.169 30.77 / 0.914 / 8.270 37.16 / 0.974 / 9.120

DRCN [18] 2 37.63 / 0.959 / 8.326 32.98 / 0.913 / 8.025 31.85 / 0.894 / 7.220 30.76 / 0.913 / 8.527 37.57 / 0.973 / 9.541

LapSRN (ours 2×) 2 37.52 / 0.959 / 9.010 33.08 / 0.913 / 8.505 31.80 / 0.895 / 7.715 30.41 / 0.910 / 8.907 37.27 / 0.974 / 9.481

LapSRN (ours 8×) 2 37.25 / 0.957 / 8.527 32.96 / 0.910 / 8.140 31.68 / 0.892 / 7.430 30.25 / 0.907 / 8.564 36.73 / 0.972 / 8.933

Bicubic 4 28.42 / 0.810 / 2.337 26.10 / 0.704 / 2.246 25.96 / 0.669 / 1.993 23.15 / 0.659 / 2.386 24.92 / 0.789 / 2.289

A+ [30] 4 30.30 / 0.859 / 3.260 27.43 / 0.752 / 2.961 26.82 / 0.710 / 2.564 24.34 / 0.720 / 3.218 27.02 / 0.850 / 3.177

SRCNN [7] 4 30.49 / 0.862 / 2.997 27.61 / 0.754 / 2.767 26.91 / 0.712 / 2.412 24.53 / 0.724 / 2.992 27.66 / 0.858 / 3.045

FSRCNN [8] 4 30.71 / 0.865 / 2.994 27.70 / 0.756 / 2.723 26.97 / 0.714 / 2.370 24.61 / 0.727 / 2.916 27.89 / 0.859 / 2.950

SelfExSR [15] 4 30.33 / 0.861 / 3.249 27.54 / 0.756 / 2.952 26.84 / 0.712 / 2.512 24.82 / 0.740 / 3.381 27.82 / 0.865 / 3.358

RFL [26] 4 30.15 / 0.853 / 3.135 27.33 / 0.748 / 2.853 26.75 / 0.707 / 2.455 24.20 / 0.711 / 3.000 26.80 / 0.840 / 3.055

SCN [33] 4 30.39 / 0.862 / 2.911 27.48 / 0.751 / 2.651 26.87 / 0.710 / 2.309 24.52 / 0.725 / 2.861 27.39 / 0.856 / 2.889

VDSR [17] 4 31.35 / 0.882 / 3.496 28.03 / 0.770 / 3.071 27.29 / 0.726 / 2.627 25.18 / 0.753 / 3.405 28.82 / 0.886 / 3.664

DRCN [18] 4 31.53 / 0.884 / 3.502 28.04 / 0.770 / 3.066 27.24 / 0.724 / 2.587 25.14 / 0.752 / 3.412 28.97 / 0.886 / 3.674

LapSRN (ours 4×) 4 31.54 / 0.885 / 3.559 28.19 / 0.772 / 3.147 27.32 / 0.728 / 2.677 25.21 / 0.756 / 3.530 29.09 / 0.890 / 3.729

LapSRN (ours 8×) 4 31.33 / 0.881 / 3.491 28.06 / 0.768 / 3.100 27.22 / 0.724 / 2.660 25.02 / 0.747 / 3.426 28.68 / 0.882 / 3.595

Bicubic 8 24.39 / 0.657 / 0.836 23.19 / 0.568 / 0.784 23.67 / 0.547 / 0.646 20.74 / 0.515 / 0.858 21.47 / 0.649 / 0.810

A+ [30] 8 25.52 / 0.692 / 1.077 23.98 / 0.597 / 0.983 24.20 / 0.568 / 0.797 21.37 / 0.545 / 1.092 22.39 / 0.680 / 1.056

SRCNN [7] 8 25.33 / 0.689 / 0.938 23.85 / 0.593 / 0.865 24.13 / 0.565 / 0.705 21.29 / 0.543 / 0.947 22.37 / 0.682 / 0.940

FSRCNN [8] 8 25.41 / 0.682 / 0.989 23.93 / 0.592 / 0.928 24.21 / 0.567 / 0.772 21.32 / 0.537 / 0.986 22.39 / 0.672 / 0.977

SelfExSR [15] 8 25.52 / 0.704 / 1.131 24.02 / 0.603 / 1.001 24.18 / 0.568 / 0.774 21.81 / 0.576 / 1.283 22.99 / 0.718 / 1.244

RFL [26] 8 25.36 / 0.677 / 0.985 23.88 / 0.588 / 0.910 24.13 / 0.562 / 0.741 21.27 / 0.535 / 0.978 22.27 / 0.668 / 0.968

SCN [33] 8 25.59 / 0.705 / 1.063 24.11 / 0.605 / 0.967 24.30 / 0.573 / 0.777 21.52 / 0.559 / 1.074 22.68 / 0.700 / 1.073

VDSR [17] 8 25.72 / 0.711 / 1.123 24.21 / 0.609 / 1.016 24.37 / 0.576 / 0.816 21.54 / 0.560 / 1.119 22.83 / 0.707 / 1.138

LapSRN (ours 8×) 8 26.14 / 0.738 / 1.302 24.44 / 0.623 / 1.134 24.54 / 0.586 / 0.893 21.81 / 0.581 / 1.288 23.39 / 0.735 / 1.352

For 8× SR, we re-train the model of A+, SRCNN, FS-

RCNN, RFL and VDSR using the publicly available code1.

Both SelfExSR and SCN methods can handle different scale

factors using progressive reconstruction. We show 8× SR

results on BSDS100 and URBAN100 in Figure 5. For 8×
SR, it is challenging to predict HR images from bicubic-

upsampled images [7, 17, 30] or using one-step upsam-

pling [8]. The state-of-the-art methods do not super-resolve

the fine structures well. In contrast, the LapSRN recon-

structs high-quality HR images at a relatively fast speed.

We present SR images generated by all the evaluated meth-

ods in the supplementary material.

4.3. Execution time

We use the original codes of state-of-the-art methods

to evaluate the runtime on the same machine with 3.4

GHz Intel i7 CPU (64G RAM) and NVIDIA Titan X GPU

(12G Memory). Since the codes of SRCNN and FSRCNN

for testing are based on CPU implementations, we recon-

struct these models in MatConvNet with the same network

1We do not re-train DRCN because the training code is not available.
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Figure 6: Speed and accuracy trade-off. The results are

evaluated on SET14 with the scale factor 4×. The LapSRN

generates SR images efficiently and accurately.

weights to measure the run time on GPU. Figure 6 shows the

trade-offs between the run time and performance (in terms

of PSNR) on SET14 for 4× SR. The speed of the proposed

LapSRN is faster than all the existing methods except FS-

RCNN. We present detailed evaluations on run time of all

evaluated datasets in the supplementary material.
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Ground-truth HR

Bicubic FSRCNN [8]

VDSR [17] LapSRN (ours) Ground-truth HR

Bicubic FSRCNN [8]

VDSR [17] LapSRN (ours)

Figure 7: Comparison of real-world photos for 4× SR. We note that the ground truth HR images and the blur kernels are

not available in these cases. On the left image, our method super-resolves the letter “W” accurately while VDSR incorrectly

connects the stroke with the letter “O”. On the right image, our method reconstructs the rails without the ringing artifacts.

Ground-truth HR

HR SRCNN [7]

VDSR [17] LapSRN (ours)

Figure 8: Visual comparison on a video frame with a spatial

resolution of 1200× 800 for 8× SR. Our method provides

more clean and sharper results than existing methods.

4.4. Super­resolving real­world photos

We demonstrate an application of super-resolving his-

torical photographs with JPEG compression artifacts. In

these cases, neither the ground-truth images nor the down-

sampling kernels are available. As shown in Figure 7, our

method can reconstruct sharper and more accurate images

than the state-of-the-art approaches.

4.5. Super­resolving video sequences

We conduct frame-based SR experiments on two video

sequences from [22] with a spatial resolution of 1200×800

pixels.2 We downsample each frame by 8×, and then ap-

ply super-resolution frame by frame for 2×, 4× and 8×,

respectively. The computational cost depends on the size of

input images since we extract features from the LR space.

On the contrary, the speed of SRCNN and VDSR is limited

by the size of output images. Both FSRCNN and our ap-

proach achieve real-time performance (i.e., over 30 frames

per second) on all upsampling scales. In contrast, the FPS

is 8.43 for SRCNN and 1.98 for VDSR on 8× SR. Figure 8

visualizes results of 8× SR on one representative frame.

4.6. Limitations

While our model is capable of generating clean and sharp

HR images on a large scale factor, e.g., 8×, it does not “hal-

lucinate” fine details. As shown in Figure 9, the top of the

building is significantly blurred in the 8× downscaled LR

2Our method is not a video super-resolution algorithm as temporal co-

herence or motion blur are not considered.

Ground-truth HR

HR SelfExSR [15]

VDSR [17] LapSRN (ours)

Figure 9: A failure case for 8× SR. Our method is not able

to hallucinate details if the LR input image does not consist

of sufficient amount of structure.

image. All SR algorithms fail to recover the fine structure

except SelfExSR [15], which explicitly detects the 3D scene

geometry and uses self-similarity to hallucinate the regular

structure. This is a common limitation shared by paramet-

ric SR methods [7, 8, 17, 18]. Another limitation of the

proposed network is the relative large model size. To re-

duce the number of parameters, one can replace the deep

convolutional layers at each level with recursive layers.

5. Conclusions

In this work, we propose a deep convolutional network

within a Laplacian pyramid framework for fast and ac-

curate single-image super-resolution. Our model progres-

sively predicts high-frequency residuals in a coarse-to-fine

manner. By replacing the pre-defined bicubic interpolation

with the learned transposed convolutional layers and opti-

mizing the network with a robust loss function, the pro-

posed LapSRN alleviates issues with undesired artifacts and

reduces the computational complexity. Extensive evalua-

tions on benchmark datasets demonstrate that the proposed

model performs favorably against the state-of-the-art SR al-

gorithms in terms of visual quality and run time.
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Horn/Schunck: Combining local and global optic flow meth-

ods. IJCV, 61(3):211–231, 2005. 4

[4] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a

compact image code. IEEE Transactions on Communica-

tions, 31(4):532–540, 1983. 3

[5] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution

through neighbor embedding. In CVPR, 2004. 2

[6] E. L. Denton, S. Chintala, and R. Fergus. Deep generative

image models using a laplacian pyramid of adversarial net-

works. In NIPS, 2015. 3

[7] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks. TPAMI,

38(2):295–307, 2015. 1, 2, 3, 5, 6, 7, 8

[8] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-

resolution convolutional neural network. In ECCV, 2016. 1,

2, 3, 5, 6, 7, 8

[9] G. Freedman and R. Fattal. Image and video upscaling

from local self-examples. ACM TOG (Proc. of SIGGRAPH),

30(2):12, 2011. 2

[10] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-

based super-resolution. IEEE, Computer Graphics and Ap-

plications, 22(2):56–65, 2002. 2

[11] G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruc-

tion and refinement for semantic segmentation. In ECCV,

2016. 3

[12] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a

single image. In ICCV, 2009. 2

[13] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 4

[14] D. J. Heeger and J. R. Bergen. Pyramid-based texture analy-

sis/synthesis. In SIGGRAPH, 1995. 3

[15] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In CVPR, 2015.

2, 5, 6, 7, 8

[16] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

3

[17] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR,

2016. 1, 2, 3, 4, 5, 6, 7, 8

[18] J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolu-

tional network for image super-resolution. In CVPR, 2016.

2, 3, 5, 6, 7, 8

[19] K. I. Kim and Y. Kwon. Single-image super-resolution

using sparse regression and natural image prior. TPAMI,

32(6):1127–1133, 2010. 2

[20] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunning-

ham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and

W. Shi. Photo-realistic single image super-resolution using a

generative adversarial network. In CVPR, 2017. 3

[21] C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets, 2015. In International Conference on Arti-

ficial Intelligence and Statistics, 2015. 4

[22] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. Video super-

resolution via deep draft-ensemble learning. In ICCV, 2015.

8

[23] Y. Matsui, K. Ito, Y. Aramaki, T. Yamasaki, and K. Aizawa.

Sketch-based manga retrieval using manga109 dataset. Mul-

timedia Tools and Applications, pages 1–28, 2016. 5

[24] S. Paris, S. W. Hasinoff, and J. Kautz. Local laplacian fil-

ters: Edge-aware image processing with a laplacian pyramid.

ACM TOG (Proc. of SIGGRAPH), 30(4):68, 2011. 3

[25] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learn-

ing to refine object segments. In ECCV, 2016. 3

[26] S. Schulter, C. Leistner, and H. Bischof. Fast and accu-

rate image upscaling with super-resolution forests. In CVPR,

2015. 1, 2, 4, 5, 6, 7

[27] H. R. Sheikh, A. C. Bovik, and G. De Veciana. An infor-

mation fidelity criterion for image quality assessment using

natural scene statistics. TIP, 14(12):2117–2128, 2005. 6

[28] W. Shi, J. Caballero, F. Huszar, J. Totz, A. Aitken, R. Bishop,

D. Rueckert, and Z. Wang. Real-time single image and video

super-resolution using an efficient sub-pixel convolutional

neural network. In CVPR, 2016. 1, 3

[29] A. Singh and N. Ahuja. Super-resolution using sub-band

self-similarity. In ACCV, 2014. 2

[30] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted

anchored neighborhood regression for fast super-resolution.

In ACCV, 2014. 1, 2, 5, 6, 7

[31] A. Vedaldi and K. Lenc. MatConvNet: Convolutional neural

networks for matlab. In ACM MM, 2015. 5

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: From error visibility to structural

similarity. TIP, 13(4):600–612, 2004. 6

[33] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep

networks for image super-resolution with sparse prior. In

ICCV, 2015. 1, 2, 3, 5, 6, 7

[34] S. Xie and Z. Tu. Holistically-nested edge detection. In

CVPR, 2015. 4

[35] C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image super-

resolution: a benchmark. In ECCV. 2014. 6

[36] C.-Y. Yang and M.-H. Yang. Fast direct super-resolution by

simple functions. In ICCV, 2013. 1, 2

[37] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-

resolution as sparse representation of raw image patches. In

CVPR, 2008. 1, 2

[38] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-

resolution via sparse representation. TIP, 19(11):2861–2873,

2010. 1, 2, 4

[39] R. Zeyde, M. Elad, and M. Protter. On single image scale-up

using sparse-representations. In Curves and Surfaces. 2010.

2, 5

632


