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Abstract

This work addresses fine-grained image classification.

Our work is based on the hypothesis that when dealing with

subtle differences among object classes it is critical to iden-

tify and only account for a few informative image parts, as

the remaining image context may not only be uninformative

but may also hurt recognition. This motivates us to for-

mulate our problem as a sequential search for informative

parts over a deep feature map produced by a deep Convo-

lutional Neural Network (CNN). A state of this search is a

set of proposal bounding boxes in the image, whose “in-

formativeness” is evaluated by the heuristic function (H),

and used for generating new candidate states by the succes-

sor function (S). The two functions are unified via a Long

Short-Term Memory network (LSTM) into a new deep re-

current architecture, called HSnet. Thus, HSnet (i) gener-

ates proposals of informative image parts and (ii) fuses all

proposals toward final fine-grained recognition. We specify

both supervised and weakly supervised training of HSnet

depending on the availability of object part annotations.

Evaluation on the benchmark Caltech-UCSD Birds 200-

2011 and Cars-196 datasets demonstrate our competitive

performance relative to the state of the art.

1. Introduction

This paper addresses the problem of fine-grained object

recognition. Recent work has made significant progress in

terms of improving accuracy on an increasing number of

object classes [26, 21, 16, 38]. In contrast to general ob-

ject recognition, where contextual cues are widely consid-

ered important, fine-grained recognition has been shown to

benefit from identifying critical object parts and learning

only off of these parts to discriminate among similar classes

[4, 5, 44, 45, 8]. In this paper, we continue this research

direction by introducing and evaluating a new deep search-

based framework.

It seems that our line of work stands somewhat iso-

lated, but still rather necessary, in the context of recent

Figure 1: Overview of our approach. Given an image,

we use HSnet to sequentially search for discriminative

bounding boxes in the image, and fuse all uncovered im-

age parts for fine-grained recognition. HSnet provides a

unified framework to jointly learn the heuristic function,

which evaluates the search states, and the successor func-

tion, which proposes new states in the search space.

advances in deep learning for various vision problems, in-

cluding object tracking [34], activity recognition [27], as

well as fine-grained object recognition [22, 38]. All these

approaches demonstrate significant performance improve-

ments when the initial training dataset is augmented with

additional noisy data – e.g., for learning a tracker, by ran-

dom sampling around ground truth trajectories, or for learn-

ing a fine-grained object detector, by downloading noisy re-

sults of Google searches on the Internet for images of fine-

grained classes. Thus, the recent findings support and mo-

tivate a flurry of new research on how to obtain more train-

ing data from various multimodal sources, as this typically

leads to better performance of deep methods. However, in

a wide range of applications requiring fine-grained recog-

nition, it is very difficult (if not impossible) to obtain addi-

tional ground truth or “noisy” annotations (e.g. military, bi-
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ological images of fossils). To address these applications, in

this paper, we focus on how to more optimally manipulate

existing data so as to extract most discriminative features

and remove background for reliable fine-grained recogni-

tion.

Our approach rests on the assumption that subtle differ-

ences among very similar but distinct object classes usually

take the form of object parts. Thus, these parts are bound

to produce the most discriminative features for fine-grained

recognition. Since the objects considered are similar, it fol-

lows that the remainder of the objects’ spatial extents are

shared among the classes, and thus are likely to produce

confusing features for fine-grained recognition. As the to-

tal number, locations, shapes, and often semantic meaning

of these parts are not known a priori, we develop a search-

based approach that

• sequentially uncovers discriminative image parts, and

• reasons over the entire search trace for recognition.

Fig. 1 shows an overview of our approach. An image in

our approach defines a search space of the image’s bounding

boxes, represented by deep features of a convolutional neu-

ral network (CNN). In this search space, we run a search al-

gorithm, which for a given search state proposes and moves

to a new state, until a time bound. A search state at a given

time is defined by bounding box proposals visited until that

time. The search is defined by two functions. The succes-

sor function for the current state proposes a new state in

the search space. The heuristic function scores the states,

i.e., all bounding box visited in the image, and in this way

guides the search toward the best image parts for recogni-

tion. When the search time expires, a classifier over the last

state is used for recognition.

Our main contribution is a formulation of the new deep

architecture, called HSnet, for computing the above heuris-

tic and successor functions of our sequential search in the

image. HSnet is grounded via the CNN to an image, and

consists of the three components: H-layer for computing

the heuristic function, S-layer for realizing the successor

function, and Long Short-Term Memory (LSTM) [14] for

capturing long-range dependencies along the search trajec-

tory. Thus, the role of HSnet is twofold: to evaluate bound-

ing box candidates and propose new bounding box candi-

dates. Since LSTM has memory, our sequential search is

not greedy. That is, the LSTM’s memory enables our cu-

mulative definition of a search state as a set of all bound-

ing boxes visited before that state. Consequently, HSnet

has a built-in robustness mechanism for handling uncer-

tainty (e.g. occlusion, missing parts, shape deformations),

as recognition does not hinge entirely on the very last set of

bounding boxes uncovered when the search ends.

Evaluation on the benchmark Caltech-UCSD Birds 200-

2011 and Cars-196 datasets demonstrate our competitive

performance relative to the state of the art.

In the following, Sec. 2 places our approach in the con-

text of prior work, Sec. 3 specifies our approach, and Sec. 4

presents our results.

2. Related Work

Fine-Grained Recognition. There is a a wide range of

methods that have been developed for fine-grained object

recognition [9, 40, 41, 39, 4, 5, 44, 45, 8, 26, 21]. These

approaches seek to distinguish subtle differences among

similar classes typically by identifying and reasoning about

the layout structure of object parts present in fine-grained

classes [4, 5, 44, 45, 8].

Our approach is related to existing work aimed at find-

ing object parts using little or no supervision of parts

[9, 11, 7, 16]. For example, recent work [21] combines

alignment and co-segmentation to generate parts without

annotations. Also, in [16], informative object parts are

learned without needing part annotations by augmenting

an existing CNN architecture with a differentiable spatial

transformation module. In contrast to these methods, our

HSnet has built-in refinement mechanism to search for in-

creasingly more informative parts and thus improve recog-

nition, as well as robustness mechanism against wrongly

identified parts during inference.

Object Detection. Our work is most similar to recent

object detection methods [12, 31, 30]. Object detection

has been applied to fine-grained classification in prior work,

where R-CNN [12, 31, 44] is trained to detect object parts.

In contrast to these works, which predict object parts to clas-

sify an image in one shot, we employ sequential reasoning

leveraging LSTM to search for object parts in order to clas-

sify an image. Additionally, we cannot directly use these

approaches since their object proposals are based on ob-

jectness, whereas we need object parts, and parts are not

objects.

Search. There is a host of search-based methods in vi-

sion [13, 10, 19, 29, 32]. For example, minimizing en-

ergy of graphical models has been addressed using Monte-

Carlo Markov Chain (MCMC), which in turn can be viewed

as a search [3]. Our approach is closely related to those

methods that seek to learn the heuristic and successor func-

tions of the search on training data, instead of using heuris-

tics [2, 35, 18, 32, 25]. These methods typically define

the heuristic and successor functions as separate modules

that are trained disjointly. In contrast, we parameterize our

heuristic and successor functions such that they have the

same predictor for evaluating and proposing search candi-

dates. Moreover, we specify a unified end-to-end learning

of the heuristic and successor functions.

Attention Models. Our approach is also similar to meth-
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ods for estimating visual attention. Attention models are

aimed at identifying discriminative image parts that are

most responsible for recognition [37, 28, 6, 43]. While the

majority of attention models focus on one bounding box or

one part of an image at a time (e.g. [6]), our HSnet identi-

fies and reasons about multiple parts of the image at a time.

Our approach is closest to Jaderberg et al. [16], since their

method can be interpreted as a multi-attention estimation;

however, we also employ sequential reasoning and search.

3. Technical Approach

3.1. Search Overview

This section formulates our search framework. Search is

defined in a space of search states s ∈ S , where S may

be computationally intractable or non-enumerable, as is our

case. A search algorithm A is an iterative adaptive program

that yields a trajectory from a given initial state s0 to an

end state sτ : [s0, s1, . . . , sτ ]. A is typically guided by two

functions, called the heuristic and successor function.

Each state s can be assigned a score using the heuristic

function H : s 7→ R. There are many ways to define H.

For example, when the goal state is known, A* search uses

the heuristic function specified in terms of a distance to the

goal state. Recent work seeks to learn H on training data [2,

35, 18, 32, 25]. The end state sτ may be reached when the

search time expires, or alternatively when the score H(sτ )
is greater than a threshold. The literature also presents other

more sophisticated specifications of when to stop the search.

In the case of intractable S , search requires the suc-

cessor function S for partially constructing the search

space. S “expands” a given state s to its “neighbors”

{s1, s2, ..., sk} ⊆ S , i.e., constructs a finite set of new states

that can be reached by search from s. The specifics of de-

ciding what and when to expand are defined by a particular

search algorithm. For instance, in greedy search, the neigh-

bor with the highest H score is the next one to expand for a

given state.

In the next section, we formulate fine-grained recogni-

tion as search.

3.2. Search in the Space of Image Bounding Boxes

We perform search over a deep feature map, produced by

a CNN, to find the most informative bounding boxes in the

image for recognition. Our search space S is thus defined

over bounding box configurations in the deep feature map.

Fig. 2 illustrates a sample search trajectory, and provides an

overview of how our search-based inference works.

The CNN maps an image to a deep feature map, x ∈
R

H×W×C

≥0 , where H is the height, W is the width, and C
is the number of channels. The convolutional layers late in

deep architectures have been shown to produce informative

object-characteristic features [42] and thus we will use this.

Figure 2: Our search framework. A search state at a given

time is defined by bounding box proposals visited until that

time in the image. The search is guided by the heuris-

tic H and successor S functions, which are unified and

jointly learned using HSnet. S proposes new states, and H
scores the states, until the time bound τ . One component of

HSnet is LSTM whose memory fuses all candidate bound-

ing boxes visited along the search trajectory. The soft-max

layer of HSnet outputs final recognition.

The location of a bounding box i is parameterized by a

tuple l(i) = (x(i), y(i), w(i), h(i)) where (x(i), y(i)) is the

center and (w(i), h(i)) is the width and height. The ranges

of l(i) are normalized between 0 and 1. The deep features

of bounding box i, denoted by x(i), can be deterministically

identified in x of the entire image. A search state st ∈ S

at time t consists of K(t) bounding boxes visited before

t, st = (lt, xt) where lt = {l(i) : i = 1, . . . ,K(t)} and

similarly xt = {x(i) : i = 1, . . . ,K(t)}.

Given an initial state s0, our search algorithm uncovers a

trajectory [s0, s1, . . . , sτ ] until time bound τ . Our search is

guided by the heuristic H and successor S functions, which

are unified and estimated by a single deep architecture, as

shown in Fig. 2. Specifically, we parameterize H and S as

HSnet such that they have the same predictor for evaluating

and proposing new search states. Moreover, this allows us

to specify a unified end-to-end learning of H and S .

Given the current state st, H computes a vector of heuris-

tic scores, H(st) = φt. The heuristic scores are passed

to S to propose a set of k ≥ 1 bounding boxes, S(φt) =
[(l(1), x(1)) . . . , (l(k), x(k))]. This “expands” st to the next
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Figure 3: HSnet consists of H-layer, S-layer and LSTM.

The CNN extracts a deep feature map x from the image.

The H-layer implements H. It computes heuristic scores

φ from k current bounding boxes [x(1) . . . x(k)] (marked

red). The S-layer implements S . It takes φ, LSTM mem-

ory and locations of the bounding boxes [l(1) . . . l(k)] as in-

put, and proposes k spatial offsets [o(1) . . . o(k)] relative to

[l(1) . . . l(k)]. This is fed back via the recurrent link to de-

fine new bounding boxes in the image. After τ search steps,

the soft-max layer C is used for fine-grained recognition ŷ.

MLP is multi-layer perceptron, ROIP is region of interest

pooling, SM is softmax layer and R is regression.

state st+1 = (lt+1, xt+1) = [st,S(φt)], where the num-

ber of bounding boxes considered increases to K(t+ 1) =
K(t)+k. In every search step, S(φt) predicts k spatial dis-

placements, also called offsets, of bounding boxes relative

to the previous k predictions at time t − 1. In our exper-

iments, predicting offsets rather than absolute locations of

bounding boxes have produced better performance.

Note that as k becomes larger, H and S increase the

number of parameters, which in turn become harder to ro-

bustly learn.

Our approach is summarized in Alg. 1. In the following

section, we specify HSnet.

3.3. HSnet

We parameterize H and S as HSnet. As illustrated in

Fig. 3, HSnet takes the current state as input, and produces

the next state. HSnet consists of three components: H-layer,

S-layer and LSTM.

LSTM [14] is a recurrent neural network with a mem-

Algorithm 1 Search-based Fine-Grained Recognition

1: Input: Initial State s0, Time Bound τ
2: Output: Prediction ŷ
3: Timer t := 0
4: while t < τ do

5: Heuristic Features φt := H(st)
6: Next State st+1 := st + S(φt)
7: t := t+ 1
8: end while

9: Predict ŷ := C(sτ )

ory cell. LSTMs have been successfully used for solving

a wide range of vision problems cast as sequential deci-

sion making. In this paper, we use a basic 1-layer LSTM

architecture [14]. Note that our definition of a cumulative

search state over all bounding boxes visited is enabled by

the LSTM memory.

The H-layer implements H. The H-layer takes deep

features of k bounding boxes [x(1) . . . x(k)] proposed in

the previous search step, and outputs a vector of heuristic

scores, φ. In the R-CNN literature [12, 31], these bound-

ing boxes are also called regions of interest (ROIs). Each

ROI is passed to a region of interest pooling layer (ROIP) to

obtain a fixed-size vector representation. All the ROIs are

then concatenated and passed through a multi-layer percep-

tron (MLP) to produce φ as output.

The S-layer implements S . As shown in Fig. 3, as input,

the S-layer takes φ, along with the contents of LSTM mem-

ory and locations of the k bounding boxes [l(1) . . . l(k)].
This input is passed to a multi-layer perceptron for predict-

ing k spatial offsets [o(1) . . . o(k)] of new bounding boxes

relative to [l(1) . . . l(k)].
The prediction of offsets from the output of the S-layer

is fed back via the recurrent link to define new bounding

boxes in the image. After τ search steps, the soft-max layer

C is used to predict the fine-grained class ŷ.

Note that our complexity is lower than that of beam

search (employed in much of prior work) since our H and

S jointly processes all k bounding boxes. Our complexity

is also on the order of standard LSTM processing of video

sequences since our H and S are relatively “shallow”.

3.4. Learning HSnet

In this paper, we consider learning HSnet in two settings:

(1) access to annotations of part locations is available, and

(2) part annotations are not provided in training data. In

both settings, end-to-end learning of all three components

in HSnet is performed using the gradient-based backprop-

agation through time (BPTT), commonly used for training

LSTMs.

The BPTT backpropagates the standard cross entropy

loss incurred on training data when the search reaches time
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bound τ , and the soft-max output of HSnet is used for pre-

dicting class label ŷ. This classification loss is regularized

by additional loss functions, defined differently for each of

the above two settings.

With Part Annotations. When part annotations are

available, we are able to regularize learning of HSnet to pre-

dict locations of bounding boxes such that they align better

with ground truth part annotations. Specifically, we regu-

larize learning with the Euclidean distance between a pre-

dicted bounding box and closest ground truth part. For k
parts, the regularization is a sum of k Euclidean distances.

We compute this sum at each search step t, and weight it

with a regularization parameter λt. Thus, our regularized

loss in this setting is defined as

L = − log p(y) +

τ∑

t=1

λt

k∑

i=1

‖l(i) − l̂
(l)
t ‖2, (1)

where the first term is the cross entropy loss and the sec-

ond term is regularization. In (1), y denotes ground truth

class label, p(y) denotes the soft-max score of HSnet for

the ground truth class, l(i) is the ground truth location of

part i, l̂
(l)
t is the location prediction of the bounding box

nearest to l(i) (done greedily) at search step t, and λt is a

regularization hyperparameter at search step t.
Without Part Annotations. When ground truth part an-

notations are not provided in training data, we seek to reg-

ularize learning of HSnet to predict locations of bounding

boxes such that they are visually diverse. To this end, we

regularize the cross entropy loss with a term characterized

by the determinantal point processes (DPP). The DPP has

been widely used for regularization in learning [24]. Our

regularized loss in this setting is defined as

L(ŷ, y) = − log p(y)−
τ∑

t=1

λt logPt (2)

where the first term is the cross entropy loss and the second

term is DPP regularization. The hyperparameters λt con-

trol the magnitude of DPP regularization. Pt is the prob-

ability of having diverse bounding boxes at search step t,
defined as Pt = det |Ωk|/ det |Ω + I|. Ω is a positive

semi-definite kernel matrix of affinities between all possi-

ble bounding boxes, and Ωk denotes the restriction of Ω to

the k selected bounding boxes. The affinities are specified

as inverse Euclidean distances between locations. The de-

terminant det |Ωk| quantifies the diversity of k locations.

Hence, the higher the diversity, the higher Pt.

Even though we have no access to part locations in this

setting, we are still able to regularize the positions of bound-

ing boxes. DPP discourages trivial solutions of learning

only a single object part. Without DPP or some other train-

ing signal on the predicted part locations, it would be much

more difficult to train with just a classification objective.

Figure 4: Positions and sizes of bounding boxes for the ini-

tial state of search with 10 boxes (as used in Cars-196). We

use a regular grid of 9 boxes except each box is slightly

larger to overlap with its neighbors. Yellow denotes the top-

left-most box out of the mentioned 9 boxes for clarity. The

10th box is in the center with larger size, denoted by orange.

4. Experiments

4.1. Setup

Datasets. We evaluate on CUB-2011 [36] and Cars-196

[23] datasets. CUB-2011 contains 11,788 images of 200

species of birds and is generally considered one of the most

competitive datasets for fine-grained recognition. Cars-196

has 16,185 images of 196 car types. Both datasets have a

single bounding box annotation in each image (for the en-

tire object, not each part), and CUB-2011 moreover con-

tains rough segmentations and 15 keypoints annotated per

image. We do not use the bounding box or segmentation

annotations in our experiments.

Evaluation Setup. For CUB-2011 and Cars-196, we

follow the train and test splits as provided by [36, 23].

Metrics. Our evaluation metric is top-1 accuracy, where

a correct classification is defined as when the ground truth

label is present in the top 1 most confident predictions.

Initial Search State. Our initial search state contains k
bounding boxes centered at prior locations in the image. We

set k = 15 for CUB-2011 because there are 15 bird parts

available for supervision. We set k = 10 for Cars-196 since

we empirically observed that k = 10 had the best tradeoff

of accuracy and speed. We designed the initial state in such

a way that the initial boxes are in an overlapping grid. Fig.

4 shows an example for k = 10 bounding boxes, where

nine boxes are arranged in a grid and the tenth box is at

the center of the image. We find that this performs better

than random initialization, which is harder to train. We also

find that it is better to cover the entire image at first with

multiple bounding boxes to obtain an “overall impression”

before refining the proposals to focus on parts.

Number of Iterations. We empirically determined

that τ = 15 worked best for CUB-2011 and τ = 10
worked best for Cars-196. We experimented with τ =
1, 2, 5, 10, 15, 20, 25, 50 and determined the best trade-off

of accuracy and computation time for each dataset. It turns

out that roughly setting τ = k yields the best performance.

2524



One possible explanation is that each time step can focus on

one part even if multiple bounding boxes are being refined

simultaneously. We also set regularization hyperparameter

λt to a linear schedule, with the most weight when t = τ .

Implementation Details. For our CNN, we employed a

GoogLeNet architecture with batch normalization [15] pre-

trained on ImageNet [33]. Since ImageNet contains several

images from our other datasets for evaluation, we removed

them from training. We use Caffe [17] for extracting fea-

ture maps from images and TensorFlow [1] for implement-

ing HSnet. The MLP (multi-layer perceptron) layer after

ROIP (region of interest pooling) contains two fully con-

nected layers of size 4096. The MLP layer after the LSTM

contains one layer of size 2048. The LSTM contains 2048

hidden units. We train our framework with Adam optimizer

using the default parameters.

4.2. Baselines

We define the following baseline methods.

B1. CNN: Given an image, a CNN directly predicts the

class. We fine-tune a pre-trained model as done in [16].

B2. CNN with ground truth bounding boxes: Given

an image, a CNN produces a feature map, then a neural

network predicts the class based only on the contents of k
bounding boxes, initialized to the ground truth part loca-

tions. This can be thought of as one time step of search with

an initial state set to the ground truth parts. We want this

“cheating” baseline to demonstrate that k boxes are enough

to classify an image with the absence of context. Note that

this baseline is only available for CUB-2011, which con-

tain annotated part locations. Since only the part locations

are given and not the bounding box sizes, we empirically

determined that 64 was the best size out of 16, 32, 64, 128.

B3. HSnet with one ground truth bounding box: In

this baseline, HSNet accepts as input one bounding box

instead of k bounding boxes. HSnet is run for a fixed

sequence (predetermined before search begins) of k time

steps, where at each time step a ground truth bounding box

is provided based on the k part annotations. HSnet’s pro-

posals are not used. Additionally, our loss function only

contains the classification objective since the “proposed”

bounding boxes from search are already ground truth. In

this “cheating” baseline, we want to show that sequential

reasoning of object parts works reasonably. Note that this

baseline is also only available for CUB-2011. Again, we

empirically determined that 64 was the best box size.

B4. HSnet with one bounding box: This baseline

is similar to B3 except that instead of using ground truth

bounding boxes, the next bounding box predicted by HSnet

is used. This baseline still only uses one bounding box

rather than k boxes. The initial box is the center box in

Fig. 4. For each sequence, we only focus on one part. We

train on all object parts for each image. Note that using k

Table 1: Quantitative results on CUB-2011 Birds Dataset.

Annotations used during training time are also specified:

“GT” denotes ground truth category labels, “BB” denotes

bounding box annotations, “parts” denotes part annotations

and “web” denotes augmenting dataset with web data.

Method Annotations Used Accuracy

Krause et al. [21] GT+BB 82.8

Jaderberg et al. [16] GT 84.1

Xu et al. [38] GT+BB+parts+web 84.6

Lin et al. [26] GT+BB 85.1

B1 GT 82.3

B2 GT+parts 83.1

B3 GT+parts 86.2

B4 GT+parts 85.7

HSnet GT+parts 87.5

Table 2: Quantitative results on Cars-196 Dataset. Anno-

tations used during training time are also specified: “GT”

denotes ground truth category labels, “BB” denotes bound-

ing box annotations and “parts” denotes part annotations.

Method Annotations Used Accuracy

Deng et al. [8] GT+BB 63.6

Krause et al. [23] GT+BB 67.6

Krause et al. [20] GT+BB 73.9

Lin et al. [26] GT 91.3

Krause et al. [21] GT+BB 92.6

B1 GT 88.5

B4 GT+parts 92.2

HSnet GT+parts 93.9

boxes results in our proposed approach.

4.3. Quantitative Results

Table 1 compares our main result and baselines with

prior work on CUB-2011. Our results on CUB-2011 are

competitive with the state of the art with about a 3% boost.

Baselines B1 and B2 are comparable, which suggests that

removing some context does not hurt recognition. B3 and

B4 yield higher accuracies than B1 and B2, suggesting that

sequential reasoning does help. B4 is slightly worse than

B3 since ground truth is not present in B4. Finally, our

complete framework performs better than all the baselines,

which suggests that multiple proposals are better than one

proposal at a time. We also believe that our approach per-

forms better than B3 because our model observes multiple

observations of different-sized bounding boxes whereas B3
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(a) Left Leg, Right Leg, Belly, Throat, Left Wing, Breast, Tail, Nape (b) Left Eye, Right Eye, Forehead, Right Wing, Back, Crown, Bill

Figure 5: Plot of average offsets as a function of time steps on the CUB-2011 dataset, where offset is the distance between the

ground truth part location and predicted location. Different colors indicate different parts, for a total of 15 parts split across

two plots. The offsets decrease over time, indicating that the bounding boxes are converging close to the ground truth parts.

(a) Average Image (b) Parts Clusters

Figure 6: (a) Average image computed from cars images.

This shows that most images of a car are taken from the

front. (b) Map showing clusters of parts. The centers rep-

resent the mean locations of parts and the circles represent

the range of those centers. The part locations align mostly

align with the front of the car and the center of the image,

where most of the car is present on average.

only uses one bounding box with a fixed size.

Table 2 compares our main result and baselines with

prior work on Cars-196. Since part annotations are not

available for Cars-196, we can only perform baselines B1

and B4. Notably, B4 performs significantly better than B1,

which again supports that sequential reasoning performs

better than recognition with a CNN in one shot. Overall,

our complete framework performs better than the baselines

and it is also competitive with the previous state of the art.

Fig. 5 plots the average offsets of predicted part locations

to ground truth part locations as a function of search time

step for CUB-2011. The plots show that as the time step

increases, the average offsets are decreasing, indicating that

our framework is learning to localize parts.

4.4. Qualitative Results

Fig. 7 shows the sequence of bounding boxes predicted

for a few images of birds. We show two success cases and

one failure case, where a success case is when the final

predicted class is correct and otherwise a failure. We can

see that as the time step increases, the boxes start to con-

verge to the parts of the birds. These success cases make

sense because the training objective takes into account the

ground truth part locations. For the failure case, some of the

bounding boxes do not converge to the ground truth parts.

Nonetheless, some of the boxes still converge to the anno-

tated parts. Although some bounding boxes do not fall on

the object, LSTM has a robust mechanism of memory to

memorize important parts. Thus classification does not crit-

ically depend on wrong detections at the final time step.

This is also clear in the success case where some boxes

could have been refined into better positions and sizes.

Since no part annotations are provided for Cars-196,

we cannot quantitatively compare the part predictions to

ground truth. Instead, we visualize the average part loca-

tions that are predicted by our algorithm. Fig. 6 shows the

average image of the Cars-196 dataset and shows clusters

of part locations predicted for the cars dataset. The aver-

age image shows that most images of a car are taken from

the front, which means we can expect some average part

locations to align with the front of the car. Indeed, on aver-

age most parts align with the front of the car. All parts are

near the center of the image, where most cars are present
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(a) t = 5 (b) t = 10 (c) t = 15 (d) GT

(e) t = 5 (f) t = 10 (g) t = 15 (h) GT

(i) t = 5 (j) t = 10 (k) t = 15 (l) GT

Figure 7: Sequence of bounding boxes predicted for a few images. The top two rows are success cases and the bottom row

is a failure case, where a success case is a correct classification and a failure is an incorrect classification. We show for time

steps t = 5, 10, 15, where t = 15 is the final time step used for classification. We also compare these bounding box locations

with the ground truth locations (denoted GT), where the size of these boxes are fixed at 64 × 64. In the success cases, the

sequences of bounding boxes are converging to the GT, demonstrating that our framework is learning to detect parts.

on average. Furthermore, the average part locations are rel-

atively diverse, covering a majority of the average image

rather than just a few locations. Finally, Fig. 6 shows that

our approach discovers visually diverse parts that are also

discriminative, as desired for fine-grained categorization.

5. Conclusion

We presented a search-based framework with deep ar-

chitectures for fine-grained recognition that achieves com-

petitive results. We proposed a search-based architecture

where the search space is defined on a convolutional fea-

ture map of CNN, and the heuristic and successor func-

tions are parameterized by a new deep network architec-

ture called HSnet. HSnet is formulated with a built-in re-

finement mechanism to search for increasingly more infor-

mative parts and thus improve recognition, in addition to a

robustness mechanism against wrongly identified parts dur-

ing inference. We specified two training settings, one where

part location annotations are available and one where they

are not available, where the latter is addressed with a deter-

minantal point process loss for obtaining diverse proposals.

Finally, our experimental results on Caltech-UCSD Birds

200-2011 and Cars-196 datasets demonstrated that sequen-

tial reasoning about object parts and removing background

context are effective for fine-grained recognition.
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