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Abstract

We present a general framework and method for detec-

tion of an object in a video based on apparent motion. The

object moves relative to background motion at some un-

known time in the video, and the goal is to detect and seg-

ment the object as soon it moves in an online manner. Due

to unreliability of motion between frames, more than two

frames are needed to reliably detect the object. Our method

is designed to detect the object(s) with minimum delay, i.e.,

frames after the object moves, constraining the false alarms.

Experiments on a new extensive dataset for moving object

detection show that our method achieves less delay for all

false alarm constraints than existing state-of-the-art.

1. Introduction

Detection and segmentation of object(s) from video are

fundamental problems in computer vision. Motion cues

play a role in biological visual systems, and may be use-

ful for object segmentation in both biological and computer

vision systems [16]. Thus, there have been many works

that segment a video by apparent motion, i.e., motion in-

duced in the image, in an attempt to segment relevant ob-

jects (e.g., [34, 35, 27, 16]). With abuse of nomenclature,

we will refer to apparent motion as motion from now on. In

these methods, it is assumed that the video is obtained when

the objects of interest are already in motion relative to the

background. However, that may not be representative of the

problem solved by biological systems [5] or that is required

in certain computer vision applications such as robotics or

surveillance. In such cases, the object may be stationary or

out of view of the observer or otherwise have apparent mo-

tion indistinguishable from the background when the video

starts. Thus, detection of the object at the time it moves is

needed before segmentation 1.

This paper addresses the problem of detection and seg-

1We define detection as the problem of determining the existence of

an object and declaring the first frame when it is in motion. We define

segmentation as the problem of marking the pixels of the object. For us,

an object corresponds to a smooth surface in the scene.

mentation of an object by motion in a video. The object

moves, at some unknown time, differently than the “back-

ground”, induced from camera motion. Since we eventu-

ally aim for real-time closed loop operation (e.g., robotic

systems), an online algorithm is desired. We define an on-

line system as a system that receives frames sequentially,

one at a time, and must make a decision, that is, declare a

detection or wait for more data, at each time instant. Ob-

serving more frames before declaring a detection may lead

to a more accurate detection and segmentation, since more

motion may be observed leading to a stronger motion cue.

However, this leads to greater delay, which may not be tol-

erable in closed-loop systems. Thus, our goal is to derive

an algorithm with minimum delay, defined as the number of

frames acquired after the object moves. Of course zero de-

lay can be achieved by always declaring detection at frame

1, irrespective of the data. Thus, we require an algorithm

that operates under a constraint on false alarms, defined as

declarations of detection before the object moves or incor-

rect or inaccurate segmentation at the detection time.

Quickest Detection (QD) [21, 33, 23, 20] is a theory

for reliably detecting changes in an online fashion from a

stochastic process with minimum delay. The stochastic pro-

cess arises from a certain probability distribution before an

unknown change time, and a different distribution after the

change time. QD theory derives online algorithms to detect

the change time with minimal delay subject to false alarm

constraints. Since our problem of moving object detection

resembles the Quickest Detection problem, we build on the

techniques in that literature.

In this paper, 1. We introduce a general framework and

the first online algorithm that guarantees reliable detection

of an object based on motion while minimizing the detection

delay. To achieve this, we derive statistical models of image

sequences, the objects within images, their motions, and oc-

clusion phenomena. We achieve reliable detection by inte-

grating motion over frames, and minimal delay by using the

statistical models to formulate the problem as a QD prob-

lem. 2. We derive a new motion segmentation approach by

integrating motion from multiple frames, as a sub-problem

for our detection scheme. 3. We provide approximate algo-
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rithms for moving object detection to decrease the computa-

tional cost of algorithms from QD. 4. Finally, we quantita-

tively evaluate the algorithm on a new extensive benchmark

dataset for moving object detection and compare it to exist-

ing state-of-the-art in terms of minimizing delay under false

alarm constraints.

1.1. Related Work

Our detection method requires motion segmentation, and

thus we briefly review that literature. Motion segmenta-

tion relies on computing apparent motion, determined from

parametric models (e.g., affine) of flow [14] or dense optical

flow [3, 4, 39, 10, 25]. Early works (e.g., [34, 35, 17, 7, 32])

on motion segmentation use parametric models of flow and

solve a joint problem in segmentation and flow. To deal with

deforming objects, non-parametric motion models of flow

are used (e.g., [36, 26, 1, 9]), and solved as a joint problem

of segmentation and flow estimation. [27, 38] use a sim-

ilar approach to causally segment videos frame-by-frame.

Those approaches typically operate on 2-3 frames. To ob-

tain a stronger motion signal, whole videos are processed in

batch [16, 12, 18], rather than online. [16, 12] group trajec-

tories of points across frames in batch to perform segmenta-

tion. Dense motion has been computed across many frames

in [22], but not for segmentation. Instead of batch process-

ing to integrate motion cues over time, [31] integrates oc-

clusion cues [24, 30, 19] over frames causally. Batch seg-

mentation methods [16, 12] may achieve a stronger motion

signal at the expense of processing the whole batch. Our

algorithm chooses the fewest number of frames to achieve a

strong enough motion signal for reliable detection and seg-

mentation. Existing approaches for motion segmentation

typically assume motion from the start and do not address

detection of a moving object at an unknown time in the

video, our main motivation.

The problem of detecting changes (not necessarily mov-

ing objects) in a video has a large literature in computer

vision [11]. That literature addresses detection and segmen-

tation of objects by background subtraction (e.g., [15, 2]).

Those methods do not apply to our problem since we as-

sume moving cameras. While there are methods that deal

with dynamic cameras and detect and segment moving ob-

jects by motion (e.g., [6]), they do not address the issue of

the tradeoff between detection delay and false alarms.

2. Models for Object Detection

In this section, we present our statistical models to frame

minimum delay object detection as a Quickest Detection

problem. We assume that the scene is observed by a pos-

sibly moving observer, i.e., the “background” may be mov-

ing and at some time Γ, object(s) within the scene begin to

move or come into view of the camera. We refer to Γ as the

change time. Let Ω ⊂ R
2 be the domain of the images, and

w1
t−1,t+1

R0
t−1

R1
t−1
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It−1 It It+1
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t−1,t

R0
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Figure 1: Schematic of quantities in image / region models.

let It : Ω → R
k, t ≥ 1 be the image sequence, where t

will denote the frame number and k = 3 denotes the color

channels. We denote n regions Ri
t ⊂ Ω for i = 0, . . . , n−1

corresponding to moving objects (from smooth surfaces in

the scene) and R0
t will correspond to the background, which

form a segmentation of It. We denote Oi
t ⊂ Ri

t as the oc-

clusion of region Ri
t induced by a change of viewpoint of

the camera or a self-occlusion between time t and t + 1.

See Figure 1 for a schematic.

Region and displacement models: The displacement

between adjacent frames for region i is vit : R
i
t\O

i
t → R

2.

Although such displacements are not defined in the oc-

cluded parts of the domain, they will be smoothly extended

into the occlusion and the entire domain Ω. We denote the

warp between frames t and t + 1 as wi
t,t+1 : Ri

t\O
i
t →

Ri
t+1, defined by wi

t,t+1(x) = x+ vit(x), which are diffeo-

morphisms that arise from change of viewpoint or deform-

ing objects. The warp between time 1 and time t will be

denoted by wi
t. This is obtained by composing the warps

(see Figure 2), and is determined recursively from

wi
t+1(x) = wi

t(x)+vit(w
i
t(x)), t > 1 with wi

0(x) = x.
(1)

Our model for the evolution of the regions across time is

that the unoccluded part of the regions is propagated via the

warps and concatenated with the disocclusion (part coming

into view), Di
t+1 ⊂ Ω, at time t+ 1, as:

Ri
t+1 = wi

t,t+1(R
i
t\O

i
t) ∪Di

t+1 Ri
0 = Ri, (2)

where Ri are the initial regions. Therefore, the region of

the object is a smooth warping of an initial region (up to

disocclusions), and therefore smoothly varies in time.

Image sequence model: Assuming approximate Lam-

bertian reflectance of the scene, we may relate successive

images before the change as

It+1(w
0
t,t+1(x)) = It(x)+ηt(x), x ∈ Ω\O0

t , t < Γ. (3)

That is, the sequence is described by one smooth warp. Af-

ter the change, the image in each region Ri
t is related by

It+1(w
i
t,t+1(x)) = It(x)+ηt(x), x ∈ Ri

t\O
i
t, t ≥ Γ (4)

where ηt(x) is a Gaussian independent noise process in both

t and x, used to model deviations from the Lambertian as-

sumption. We assume ηt(x) ∼ N (0, ση,i) for x ∈ Ri
t\O

i
t.
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image, t = 10 w25,26 w35,36 w20,40

Figure 2: Composition of warps across frames produces a

strong motion signal. [Left]: Image. [Middle two]: Optical flows

between adjacent frames at two instances show that the object is

not clearly visible. [Right]: Composition of warps between frames

10 and 40 shows the object is clearly visible. How many frames

does it take to reliably detect the moving object? Our method ad-

dresses this question.

Likelihoods: We specify the pre- and post-change likeli-

hoods based on the models above. These will be necessary

for our moving object detection algorithm. Let It1:t2 de-

note all the images It1 , It1+1, . . . , It2 , and similarly define

v
i
t1:t2

and R
i
t1:t2

as displacements and regions across time.

Conditional on vit and Rt, the pairs of images It, It+1 are

independent for all t. Using this, the pre-change probability

is p0(Ii:i+1|v
0
i ) ∝

exp

{

−

∫

Ω

ρ0[It+1(w
0
t,t+1(x))− It(x)] dx

}

, (5)

where ρi(y) = 1

2σ2

η,i

min{|y|2, β} (β > 0) is a truncated

quadratic, which is a robust norm that eliminates the ex-

plicit estimation of the occlusion [25]. Similarly, the post-

change conditional distribution is p1(It:t+1|{v
i
t, R

i
t : 0 ≤

i < n}) ∝

exp

{

−
n−1
∑

i=0

∫

Ri
t

ρi[It+1(w
i
t,t+1(x))− It(x)] dx

}

. (6)

3. Multiframe Motion Segmentation

In this section, we present an algorithm for motion seg-

mentation assuming the object(s) are in motion. This is a

sub-problem implied by our detection method as shown in

Section 4. Unlike other approaches, our segmentation algo-

rithm composes motion across multiple frames, which pro-

vides a stronger motion signal (Figure 2) than motion com-

puted from adjacent frames, leading to better segmentation.

Given frames It1 , It1+1 . . . , It2 , we segment each frame

based on the post-change models described in Section 2.

To do so, we maximize the post-change likelihood over the

regions Ri
t1:t2

. Since v
i
t1:t2

are also unknown, they are es-

timated jointly by maximizing the same likelihood. By as-

suming independence of vit for t1 ≤ t ≤ t2, maximizing the

post-change likelihood p1(Itc:t|R
i
tc:t

,vi
tc:t

) is equivalent to

minimizing

t2
∑

t=t1

n−1
∑

i=0

∫

Ri
t

ρi[It+1(w
i
t,t+1(x))− It(x)] dx. (7)

The independence assumption on the displacements is for

speed in the segmentation. Any noise in any one estimate

of the displacement from a pair of images is mitigated by the

integration in cumulative warps in (1). Below we describe

our joint region and warp estimation algorithm.

Warp estimation: Given the regions, we discuss the op-

timization in v
i
t1:t2

. Note there are no explicit smoothness

priors on the warps, and thus no regularization of the warps

appear in (7). Instead, we leverage on the Sobolev frame-

work [37, 29], to impose regularity in the optimization in a

coarse-to-fine fashion. This avoids the under/over smooth-

ing problem in global regularization used in optical flow and

parameter tuning. Optimizing for vit results in

vtt = argmin
v

∫

Ri
t

ρi[It+1(x+ v(x))− It(x)] dx, (8)

as other terms are independent of vit. This is extended to

form a smooth warp on all of Ω.

Energy for region estimation: Given the warps, we op-

timize (7) for Ri
t1:t2

. Note that Ri
t are coupled through (2)

across frames, imposing regularity over time. In the case of

no disocclusions, optimizing in Rt1:t2 can be replaced by

optimization in regions Ri
s at one time with t1 ≤ s ≤ t2

subject to the constraint that the other regions are warps of

Ri
s. Let wi

s,t denote the warp of Ri
s to Ri

t, determined by

composition (1) and the given estimates of v
j
t1:t2

. Define

f i(x) =

t2
∑

t=t1

ρi[It+1(w
i
s,t+1(x))−It(w

i
s,t(x))] det∇ws,t(x),

(9)

where ∇ws,t denotes the Jacobian of the warp. To deter-

mine the Ri
s, we optimize

Eseg({R
i
s}

n−1
i=0 ) = −

n−1
∑

i=0

log [p(Ri
s)]+

n−1
∑

i=0

∫

Ri
s

[1−m(x)]f i(x)−m(x) log pRi
s
(Is(x)) dx, (10)

where p(Ri
s) is the prior probability of the region encoding

a smoothness prior (standard boundary length regulariza-

tion), pRi
s

are local color histograms of Is within regions,

and m : Ω→ [0, 1] is the motion ambiguity function. If m is

0 everywhere and the region prior is excluded, then the en-

ergy is (7) (after re-ordering the summations and perform-

ing a change of variables to the domain of Ri
s). As motion

estimated in textureless parts of regions or in occlusions is

unreliable for segmentation, the motion ambiguity function

is used to switch between using motion cues and color his-

tograms for grouping. The motion ambiguity function is 1 if

pixel x ∈ Rs is occluded in all frames t = t1, . . . , t2, t 6= s,
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that is, all summands in (9) exceed β, or if x is in a texture-

less sub-region of Is defined by small standard deviations

within Ri
s local to x.

Joint Region and Warp Estimation: The energy (10)

now fits into a form considered in [28]. Thus, we use the

optimization specified there, which uses gradient descent

due to non-convexity. Even though we assumed no disoc-

clusions, optimization of (10) implicitly computes disocclu-

sion as part of the grouping procedure. Disocclusions at

time s are assumed to be parts of the image moving sim-

ilar to Rs (or similar color intensity in the case of motion

ambiguity). Although the optimization problem is in Ri
s,

each of Ri
r for t ∈ {t1, . . . , t2}\{s} can be determined by

propagating Rs through the sequence determined by warps

wj
i,i+1, which when done through [38], includes disocclu-

sion. This yields Algorithm 1.

Initialization: Optimization of Eseg requires initializa-

tion for Ri
s. We initialize it with a segmentation of the cu-

mulative displacement from frame s to t2 (and frame s to

t1). Both forward and backward warps are used to address

incorrect grouping due to occlusion. Because accurate warp

estimation requires a segmentation, which is unknown at

initialization, we use Classic-NL [25], robust to motion dis-

continuities, to approximate the warps frame-to-frame with-

out a segmentation. The cumulative displacement is then

computed using (1). The segmentation of the cumulative

warps is done by detecting edges [8], then generating the

segmentation, which sets the number of regions, n.

Example intermediate results of the algorithm are shown

in Figure 3.

Algorithm 1 Multiframe motion segmentation

1: Input: It1:t2 and s ∈ [t1, . . . , t2]
2: // initialize Ri

s for gradient descent of Eseg

3: Compute Classic-NL warp wNL
t,t+1 : Ω→ Ω, ∀t

4: Compute wNL
s,t1

, wNL
s,t2

by composing warps (1)

5: Use wNL
s,t1

, wNL
s,t2

as channels to segment using [8]

6: repeat // gradient descent of Eseg in (10) for Ri
s

7: Propagate Ri
s frame-wise to form Ri

t, ∀t via [38]

8: Solve for Sobolev warp wi
t,t+1 via (8)

9: Compute wi
s,t for t ∈ {t1, . . . , t2}\{s} using (1)

10: Compute f i and update Ri
s by gradient step of Eseg

11: until Ri
s does not change between iterations

12: Propagate Ri
s to form Ri

t2
via [38]

13: return {Ri
t2
}n−1
i=0 as the segmentation in frame t2

4. Quickest Moving Object Detection

In this section, we formulate the problem of sequentially

detecting and segmenting moving objects from a video with

minimum delay as a Quickest Detection problem. We

briefly summarize the key ideas from that literature first.

image w21,22 w21,42

initialization segmentation difference

Figure 3: Demonstration of multiframe motion segmentation.

[Top row]: an image in the sequence, optical flows between adja-

cent frames, and composed optical flow. [Bottom]: Initialization

to motion segmentation, final segmentation, and the difference be-

tween the two.

4.1. Overview of Quickest Detection

Quickest Detection (QD) [21, 33] considers the prob-

lem of detecting changes in distribution of a discrete-time

stochastic process {Xt}
∞
t=1 online. Xt is sampled from a

distribution p0 before an unknown change time Γ, and Xt is

sampled from p1 at and after Γ. Although the theory is gen-

eral, the literature focuses on one-dimensional signals, i.e.,

the range of Xt is R. QD derives algorithms for determin-

ing the change with fewest observations Xt after the change

subject to constraints on false alarms. A false alarm is a de-

clared change by the algorithm before the change time Γ.

The motivation is that reliable detection can be achieved by

integrating many samples of Xi, reducing stochastic vari-

ability. However, this causes delay, i.e., the number of sam-

ples considered after the change. Thus, the goal of QD is

minimizing the delay with guarantees on reliability of the

detections.

Optimization Problem: QD is formulated as an opti-

mization problem. A stopping time τ with respect to a

stochastic process {Xt}
∞
t=1 is a random variable such that

the event {τ = t} is in the sigma-algebra generated by

X1, . . . , Xt. Intuitively, τ is a function that may return t if

it uses only information determined from X1, . . . , Xt. An

example is τ = inf{t :
∑t

s=1
Xs ≥ b}, i.e., τ is the first

time t that the sum of Xs up to time t exceeds a threshold b.
Let Pt and Et denote the probability measure and expecta-

tion, associated with a change time of t. If the true change

time is Γ = t then the delay is the number of samples after

the change time, i.e., τ − t when τ ≥ t. The average detec-

tion delay of a stopping time τ (averaging over randomness

arising from random Xs’s) is defined as

ADD(τ) = sup
t≥1

Et[τ − t|τ ≥ t]. (11)

ADD defines the worst case average delay over all change

times. The false alarm rate of a stopping time is defined as

FAR(τ) = 1/E∞[τ ], that is, one over the average stopping
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time given that there is no change. There are different ways

of defining the average detection delay and false alarm rate,

but all lead to similar optimal stopping times. The QD opti-

mization problem is to minimize the average delay subject

to a constraint on the false alarm rate:

min
τ

ADD(τ) subject to FAR(τ) ≤ α, (12)

where α ∈ [0, 1] is the maximum tolerable false alarm rate.

The constraint on the false alarm rate is needed to avoid a

trivial solution, i.e., if the stopping time is always one, the

delay is zero, but this leads to many false alarms.

Optimal Stopping Rule: It can be shown that the opti-

mal stopping time is given by the first time the likelihood

ratio Λt exceeds a threshold b, i.e., τ∗ = inf{t : Λt ≥ b}.
The threshold b is determined explicitly by the false alarm

rate α and the distributions p0 and p1. The likelihood ratio

arises from a test of the null hypothesis that the change oc-

curs before t (Γ < t) against the alternative hypothesis that

the change occurs after time t (Γ ≥ t). That is,

Λt =
P[Γ < t|X1, . . . , Xt]

P[Γ ≥ t|X1, . . . , Xt]
= max

1≤tc<t

t
∏

s=tc

p1(Xs)

p0(Xs)
, (13)

where the last equality is made under the assumption that

Xs are iid before and after the change. In the moving ob-

ject detection problem, the post-change distribution is only

known conditional on a parameter θ, i.e., the regions and

the warps. In this case, under the iid assumption, the opti-

mal stopping time maximizes the likelihood over θ is:

Λt = max
1≤tc<t

max
θ

t
∏

s=tc

pθ(Xs)

p0(Xs)
. (14)

The sequential algorithm to detect the change is to ac-

quire data Xs = xs and, at each new acquisition at time t,
one computes Λt, by solving a maximization problem over

possible change times from tc = 1, . . . , t − 1. At the first

t when Λt exceeds the threshold b, a detection is declared.

Solving the maximization problem directly may be expen-

sive, and in the case that the post-change distribution has

an unknown parameter, no general simplifications can be

made to avoid direct maximization. We propose a solution

for moving object detection in Section 4.3.

4.2. Algorithm for Detection and Segmentation

We now consider the image sequence a random process,

and apply QD to the models in Section 2 to detect and seg-

ment moving objects at the time the objects move. We com-

pute the likelihood ratio, Λt, which requires the computa-

tion of the pre- and post-change distributions. Since our

distributions depend on hidden variables (the regions and

displacements), we maximize over such variables as in (14).

Frame number

0 10 20 30 40 50 60 70

O
p
ti
c
a
l 
fl
o
w

 r
e
s
id

u
a
l

×10
5

4

5

6

7

8

9

10

Frame number

0 10 20 30 40 50 60 70

L
ik

e
li
h

o
o

d
 r

a
ti
o

0

1

2

3

4

5

Figure 4: Robust Likelihood Statistic in Quickest Detection.

[Left]: The data Xt (in this case the average residual over the

image) plotted versus time shows a signal where it is difficult to

detect the change time (e.g., when the object moves). [Right]:

The statistic Λt in QD plotted versus time shows clearly where the

change is occurring. The true change time is Γ = 42.

Let Λtc,t denote the likelihood ratio using data between

tc and t maximizing over the conditioned variables, i.e.,

Λtc,t=
maxRi

tc:t
,vi

tc:t
p1[Itc:t|R

i
tc:t

,vi
tc:t

,i =0, . . . ,n− 1]

maxv0

tc:t
p0[Itc:t|v

0
tc:t

]
.

(15)

By using the pairwise independence given the conditioned

variables, one can show that

− log Λtc,t = min
v0

tc:t

t
∑

s=tc

∫

Ω

Res0i (x) dx

− min
Ri

tc:t
,vi

tc:t

n−1
∑

i=0

t
∑

s=tc

∫

Ri
s

Resis(x) dx (16)

− log Λt = min
1≤tc<t

− log Λtc,t (17)

where Resit(x) = 1

2σ2

η,i

ρ[It+1(w
i
t,t+1(x)) − It(x)]. Note

that the minimization problem in (16) is the problem of

segmentation and warp estimation considered in Section 3,

which is solved by Algorithm 1.

We now specify our initial algorithm for moving object

detection: Algorithm 2. The algorithm re-estimates Λt on-

line at each new arrival of It. At each new acquisition of

It, the algorithm finds a change time tc ∈ {2, . . . , t− 1} by

solving a motion segmentation problem using Algorithm 1.

By QD theory, the algorithm optimizes the delay.

4.3. Simplifications for Efficiency

Algorithm 2 requires that for each image acquisition, the

optimization problem for segmentation be solved by Algo-

rithm 1 for each possible change time. This is computa-

tionally expensive. Fortunately, it is possible to reduce the

computational cost by estimating the change time from a

less expensive problem. Although there may be a loss of

optimality, we show in experiments that the loss is minor,

while increasing computational efficiency drastically.

4254



Algorithm 2 Moving Object Detection

1: Set t = 1
2: repeat // compute likelihood ratio Λt

3: Increment t← t+ 1, acquire image It
4: Compute Classic-NL warp wNL

t,t+1

5: for tc = 2, . . . , t− 1 do // find change time tc
6: Determine R

i
tc,t

calling Algorithm 1 with Itc,t

7: Compute Λtc,t using (16)

8: end for

9: Compute t∗c = argmax2≤tc<t Λtc,t

10: Set Λt = Λt∗c
and Ri

t = Ri
t∗c ,t

11: until Λt ≥ b or end of video

12: return Ri
t as the detection at time t if Λt ≥ b

Fast Change Time Estimation: We propose a simpli-

fication to find a probable change time t∗c without having

to explicitly evaluate Λtc,t for each tc. This is done by ap-

plying QD to simpler distributions than those considered

in Section 2. Let the spatial average of the residuals be

rt =
1

|Ω|

∫

Ω
ResNL

t (x) dx determined from Classic-NL op-

tical flow. If they are assumed iid and distributed according

to N (µ0, σ) pre-change and N (µ1, σ) post-change, then

the following statistic from the likelihood ratio, which can

be computed efficiently, arises

Ftc,t = (t− tc + 1)(µ̂1:tc−1 − µ̂tc:t)
2 (18)

where µ̂1:tc−1 is the average residual before tc and µ̂tc,t is

the average residual after tc up to the current time t. The

intuition for this statistic is that if a object starts to move

or comes into view, the residual changes due to occlusions.

Thus, the maximizer t∗c of Ftc,t over tc is proposed as a

maximizer of Λtc,t. The first factor mitigates changes close

to the current time t, which likely arise from noise.

Avoiding Likelihood Before Change: Once the maxi-

mizer t∗c of Ftc,t is proposed as the change time, the likeli-

hood ratio Λt∗c ,t
must be computed and is used to approxi-

mate Λt. This avoids the full for loop in Algorithm 2. One

cannot threshold Ft∗c ,t
to decide a change has occurred, as

that decreases performance as shown in experiments. How-

ever, we can avoid the computation of Λt∗c ,t
, which requires

the optimization in Algorithm 1, before the change actually

occurs in the video by a simple test. We compute the com-

posed Classic-NL displacement wNL
t∗c ,t

and then threshold the

standard deviation, σ(wNL
t∗c ,t

), over all pixels. If the motion is

multi-modal, the standard deviation is large, indicating the

presence of a moving object. These lead to Algorithm 3.

5. Experiments

Dataset: There are no datasets that are explicitly de-

signed for detection of moving objects. Therefore, we col-

lected a dataset of 78 videos, varying from 100 to 800

Algorithm 3 Faster Moving Object Detection

1: Set t = 1
2: repeat // compute likelihood ratio Λt

3: Set t← t+ 1, acquire image It, compute wNL
t,t+1

4: for tc = 2, . . . , t− 1 do // find probable change

5: Compute Ftc,t as in (18)

6: end for

7: Compute t∗c = argmax2≤tc<t Ftc,t

8: if σ(wNL
t∗c ,t

) ≥ d then

9: Determine R
i
t∗c ,t

calling Algorithm 1 with It∗c :t

10: Compute Λt = Λt∗c ,t
using (16)

11: else // change not probable

12: Set Λt = 0
13: end if

14: until Λt ≥ b or end of video

15: return Ri
t as the object detection at time t if Λt ≥ b

frames, called the Motion Detection Dataset 2. The cam-

era moves, and the object moves (differently than the back-

ground) at some unknown frame. The videos may consist

of a single or multiple objects.

Methods Compared: We compare approaches based on

motion segmentation for detection of moving objects. We

compare both frame-by-frame approaches [31], which inte-

grates occlusion cues causally across time, and batch ap-

proaches [16, 12] integrating motion cues across frames

against our method. To apply [16, 12] in an online ap-

proach, at each frame t, we segment frames 1 to t in batch,

and then choose regions at time t that pass a relative area

threshold as the detected regions. If no regions pass the test,

there is no detection, and frames 1 to t + 1 are considered,

etc. Similarly, we threshold the result of [31] at each frame t
to obtain a detection. We refer to the detection using [31] as

CVOS+det, [16] as LVA+det, and [12] as Multicuts+det.

Evaluation: We define the empirical detection delay as

the difference in the frame that the object was declared de-

tected and the actual time the object moves, zero if this is

negative. The empirical average detection delay (EADD) is

the average of delays over all sequences. A false alarm is

a declared detection before the actual time Γ or a declared

detection after the change time, but with segmentation accu-

racy less than Flim (we use 0.5 and 0.7) of F-measure com-

pared to ground truth. The empirical false alarm rate EFAR

is the number of false alarms over the number of videos.

This measures both detection and segmentation accuracy.

We evaluate methods in minimizing EADD for various false

alarm constraints. Thus, we vary the threshold b in our al-

gorithm, and the area threshold in other approaches.

Parameters: We fix all parameters in our algorithm over

the entire dataset. We choose d = 5 in all experiments, and

2Dataset is available here: https://sites.google.com/

kaust.edu.sa/mindelaydetection/home
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Figure 5: Delay versus false alarm curves. All moving ob-

ject detectors are compared. [Left]: Threshold for measuring false

alarms is Flim = 0.5 and [Right]: Flim = 0.7. Results show ours

method has the least delay.
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Figure 7: Segmentation accuracy at detection time. All mov-

ing object detectors are compared in terms of their average F -

measure to ground truth at detection time. Results show our

method has highest accuracy at all levels of delay.

test sensitivity later.

Minimizing Delay Result: The delay versus FAR

curves for all algorithms are shown in Figure 5. To addition-

ally test the optimality of the Λt statistic, we also compare

to thresholding Ft∗c ,t
, which we refer to as “ours-Fstat.” Un-

der all false alarm rates, our method has less delay. We also

see that using the Λt leads to smaller delay than our-Fstat,

showing the necessity of computing Λt. Further, the results

remain consistent under different Flim.

Visual Results: Figure 6 shows representative results

operating at a FAR of 0.3. They verify that our method has

on average less delay than competing methods.

Accuracy of Segmentation Result: We also display the

average F -measure of the segmentation versus delay for de-

tections as we vary thesholds of the detectors (giving var-

ious delays). Results are in Figure 7. We see that our

method also has greater segmentation accuracy of the de-

tections uniformly over all delays.

Ideal Detectors Result: We now analyze the detectors

under the ideal case of perfect detection mechanisms. By

detection mechanisms, we mean the test that decides the

detection, e.g., the ratio test for ours and the area test for

others. We show that under the case of perfect detection

mechanisms for all methods, the segmentation procedure

from our method leads to the best overall detection schemes

compared to other approaches. This shows our segmenta-
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Figure 8: Correct detections and delay of ideal detection

mechanisms. [Left]: Correct detections versus Flim the thresh-

old for measuring false alarms. Under any measure of false alarms

and ideal detection mechanisms, our method achieves more detec-

tions. [Right]: We also achieve less delay.

tion method is better than others for the purpose of detec-

tion. To this end, we use ground truth to find the first frame

(if it exists) when a method achieves a segmentation accu-

racy over Flim, which we vary. We then plot the number of

correct detections versus Flim, and the average delay versus

Flim. Results are in Figure 8. They show that our method

out-performs, in the number of correction detections and

average delay, competing methods.

Analysis of Algorithm 2 & 3: We now analyze the sim-

plifications made for efficiency in Algorithm 3 and compare

to Algorithm 2. Results are shown in Figure 9. First, we

vary the threshold d of the standard deviation in Alg. 3 and

record the number of times the test in Line 8 failed, saving

us from an expensive segmentation operation. This results

in an monotone increasing number of segmentations saved

(red curve). Now, we plot the increase in average delay

(over Algorithm 2) versus the standard deviation threshold

d for various different thresholds b of the likelihood test.

Results show that the delay does not increase much with in-

creasing standard deviation. Thus, a rather large d decreases

computational speed significantly, while leading only to a

small increase in delay. We also plot the delay-FAR curve

for various standard deviations and compare it to Algorithm

2 (no simplifications). Results show nearly the same curves,

indicating little or no performance degradation.

Analysis of Refinement in Segmentation: We have dis-

played the results (in Figure 10) of our method using only

the initialization in Algorithm 1 (called without refinement)

without running the gradient descent for motion segmenta-

tion and compare against running the gradient descent. The

results indicate that delay is reduced at moderate FAR with

the gradient descent, but not by much. This indicates large

time savings can be achieved by skipping the gradient de-

scent and just using the initialization, without much detec-

tion degradation.

Computational Cost: In our unoptimized code, with-

out running the gradient descent in Algorithm 1, using

[13] rather than Classic-NL, assuming Line 8 passes and

|tc− t| = 50 frames, the cost of Ln 3-8 is 10 secs on a Intel
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Figure 6: Representative detections for methods tested. We show visualizations of the detections (or non-detections) for each of the

competing methods, each operating at a false alarm rate of 0.3. The segmentation result at the detected frame is shown. Green masks

indicate a correct detection, while purple masks indicate a false alarm. The delay at the detection is indicated, if the detection is correct.

No segmentation result indicates the method did not detect (maximum delay). Results illustrate our method achieves less delay on average.
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Figure 9: Analysis of costings savings and degradation of

Alg. 2. [Left]: Average delay increase versus standard deviation

threshold d (in Alg. 2) as thresholds b on likelihood is varied.

Curves near zero indicate little delay degradation with high de-

grees of cost savings. Red curve shows segmentation savings as

d varies. [Right]: The delay-FAR curves for various thresholds d

show similar performance against Alg. 3.
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Figure 10: Refinement analysis in motion segmentation.

Delay-FAR curves with and without using the gradient descent in

motion segmentation to refine the initialization. Modest gains in

the detector performance are seen for the refinement.

I7 processor. Running the gradient descent, for increased

segmentation accuracy, increases the cost to 2 minutes.

6. Discussion

We have introduced a framework and derived a method

for moving object detection and segmentation in a video

sequence where the object’s apparent motion is distinguish-

able from the background at some unknown time. The algo-

rithm is designed for closed loop systems and was derived

using principles from Quickest Detection. This leads to an

online algorithm that minimizes the delay in detection sub-

ject to false alarm constraints. Extensive experiments on a

new dataset for the moving object detection demonstrated

that our method achieves less delay for any false alarm

constraint than competing motion-based detection methods,

verifying the theory. Analysis of various simplifications of

original QD algorithms derived were shown to yield com-

putational savings, while maintaining performance.

Each acquisition of an image in our algorithm, either

costs the amount of non-local optical flow computation if

the standard deviation test fails or the non-local optical

flow computation plus the motion segmentation, if the test

passes. By setting an upper limit on the frames used in seg-

mentation, which we do, the cost of motion segmentation is

limited. So our method scales at most linearly with frames

acquired. Although processing is currently not real-time for

real-time closed loop systems, it has the potential. This is

because we derived an online algorithm, and the main bot-

tleneck in our method, optical flow computation is a rapidly

evolving area and computational gains are expected. More-

over, our optimization methods are based on methods that

are also rapidly progressing. Further, speed-ups to our algo-

rithms are possible, in particular, recursive updates of mo-

tion segmentation over time may be possible, and we plan

to address this in future work.
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