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Abstract

We investigate and improve self-supervision as a drop-

in replacement for ImageNet pretraining, focusing on auto-

matic colorization as the proxy task. Self-supervised train-

ing has been shown to be more promising for utilizing un-

labeled data than other, traditional unsupervised learning

methods. We build on this success and evaluate the abil-

ity of our self-supervised network in several contexts. On

VOC segmentation and classification tasks, we present re-

sults that are state-of-the-art among methods not using Im-

ageNet labels for pretraining representations.

Moreover, we present the first in-depth analysis of self-

supervision via colorization, concluding that formulation

of the loss, training details and network architecture play

important roles in its effectiveness. This investigation is

further expanded by revisiting the ImageNet pretraining

paradigm, asking questions such as: How much training

data is needed? How many labels are needed? How much

do features change when fine-tuned? We relate these ques-

tions back to self-supervision by showing that colorization

provides a similarly powerful supervisory signal as various

flavors of ImageNet pretraining.

1. Introduction

The success of deep feed-forward networks is rooted in

their ability to scale up with more training data. The avail-

ability of more data can generally afford an increase in

model complexity. However, this need for expensive, te-

dious and error-prone human annotation is severely limit-

ing, reducing our ability to build models for new domains,

and for domains in which annotations are particularly ex-

pensive (e.g., image segmentation). At the same time, we

have access to enormous amounts of unlabeled visual data,

which is essentially free. This work is an attempt to im-

prove means of leveraging this abundance. We manage to

bring it one step closer to the results of using labeled data,

but the eventual long term goal of self-supervision may be

to supplant supervised pretraining completely.

Alternatives to supervised training that do not need la-

Learning a representation via (x, y) pairs

Classification


 , “flamingo”



 ,



 , “hay”



 , . . .

Self-supervision

Ex. 1: Inpainting (remove patch and then predict it)


 ,



 ,



 ,



 , . . .

Ex. 2: Context (given two patches, predict their spatial relation)
({

,

}

, “south east”

)

,

({

,

}

, “west”

)

, . . .

Ex. 3: Colorization (predict color given intensity)


 ,



 ,



 ,



 , . . .

Figure 1. Using a representation that was originally trained for

classification on (x, y) pairs to initialize a network has become

standard practice in computer vision. Self-supervision is a family

of alternative pretraining methods that do not require any labeled

data, since labels are “manufactured” through unlabeled data. We

focus on colorization, where an image is split into its intensity and

color components, the former predicting the latter.

beled data have seen limited success. Unsupervised learn-

ing methods, such as compressed embeddings trained by

minimizing reconstruction error, have seen more success

in image synthesis [18], than for representation learn-

ing. Semi-supervised learning, jointly training a supervised

and an unsupervised loss, offers a middle ground [7, 35].

However, recent works tend to prefer a sequential combi-

nation instead (unsupervised pretraining, supervised fine-

tuning) [4, 5], possibly because it prevents the unsupervised

loss from being disruptive in the late stages of training.

A related endeavor to unsupervised learning is developing

models that work with weaker forms of supervision [2, 40].

This reduces the human burden only somewhat and pays a
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price in model performance.

Recently, self-supervision has emerged as a new flavor of

unsupervised learning [4, 38]. The key observation is that

perhaps part of the benefit of labeled data is that it leads

to using a discriminative loss. This type of loss may be

better suited for representation learning than, for instance,

a reconstruction or likelihood-based loss. Self-supervision

is a way to use a discriminative loss on unlabeled data by

partitioning each input sample in two, predicting the parts’

association. We focus on self-supervised colorization [20,

42], where each image is split into its intensity and its color,

using the former to predict the latter.

Our main contributions to self-supervision are:

• State-of-the-art results on VOC 2007 Classification

and VOC 2012 Segmentation, among methods that do

not use ImageNet labels.

• The first in-depth analysis of self-supervision via col-

orization. We study the impact of loss, network ar-

chitecture and training details, showing that there are

many important aspects that influence results.

• An empirical study of various formulations of Im-

ageNet pretraining and how they compare to self-

supervision.

2. Related work

In our work on replacing classification-based pretrain-

ing for downstream supervised tasks, the first thing to con-

sider is clever network initializations. Networks that are

initialized to promote uniform scale of activations across

layers, converge more easily and faster [6, 9]. The uniform

scale however is only statistically predicted given broad

data assumptions, so this idea can be taken one step fur-

ther by looking at the activations of actual data and normal-

izing [23]. Using some training data to initialize weights

blurs the line between initialization and unsupervised pre-

training. For instance, using layer-wise k-means cluster-

ing [3, 19] should be considered unsupervised pretraining,

even though it may be a particularly fast one.

Unsupervised pretraining can be used to facilitate op-

timization or to expose the network to orders of magni-

tude larger unlabeled data. The former was once a popu-

lar motivation, but fell out of favor as it was made unnec-

essary by improved training techniques (e.g. introduction

of non-saturating activations [27], better initialization [6]

and training algorithms [32, 17]). The second motivation of

leveraging more data, which can also be realized as semi-

supervised training, is an open problem with current best

methods rarely used in competitive vision systems.

Recent methods on self-supervised feature learning have

seen several incarnations, broadly divided into methods that

exploit temporal or spatial structure in natural visual data:

Temporal. There have been a wide variety of meth-

ods that use the correlation between adjacent video frames

as a learning signal. One way is to try to predict future

frames, which is an analogous task to language model-

ing and often uses similar techniques based on RNNs and

LSTMs [36, 33]. It is also possible to train an embed-

ding where temporally close frames are considered similar

(using either pairs [25, 14, 15] or triplets [38]). Another

method that uses a triplet loss presents three frames and

tries to predict if they are correctly ordered [24]. Pathak et

al. [30] learn general-purpose representation by predicting

saliency based on optical flow. Owens et al. [29], some-

what breaking from the temporal category, operate on a sin-

gle video frame to predict a statistical summary of the audio

from the entire clip. The first video-based self-supervision

methods were based on Independent Component Analysis

(ICA) [37, 10]. Recent follow-up work generalizes this to a

nonlinear setting [11].

Spatial. Methods that operate on single-frame input typ-

ically use the spatial dimensions to divide samples for self-

supervision. Given a pair of patches from an image, Do-

erch et al. [4] train representations by predicting which of

eight possible spatial compositions the two patches have.

Noroozi & Favaro [28] take this further and learns a repre-

sentation by solving a 3-by-3 jigsaw puzzle. The task of in-

painting (remove some pixels, then predict them) is utilized

for representation learning by Pathak et al. [31]. There has

also been work on using bi-directional Generative Adver-

sarial Networks (BiGAN) to learn representations [5]. This

is not what we typically regard as self-supervision, but it

does similarly pose a supervised learning task (real vs. syn-

thetic) on unlabeled data to drive representation learning.

Colorization. Lastly there is colorization [20, 42, 43].

Broadly speaking, the two previous categories split input

samples along a spatio-temporal line, either predicting one

given the other or predicting the line itself. Automatic col-

orization departs from this as it asks to predict color over the

same pixel as its center of input, without discarding any spa-

tial information. We speculate that this may make it more

suitable to tasks of similar nature, such as semantic segmen-

tation; we demonstrate strong results on this benchmark.

Representation learning via colorization was first pre-

sented as part of two automatic colorization papers [20, 42].

Zhang et al. [42] present results across all PASCAL tasks

and show colorization as a front-runner of self-supervision.

However, like most self-supervision papers, it is restricted

to AlexNet and thus shows modest results compared to re-

cent supervised methods. Larsson et al. [20] present state-

of-the-art results on PASCAL VOC semantic segmenta-

tion, which we improve by almost 10 points from 50.2%

to 60.0% mIU. Both papers present the results with little

analysis or investigation.
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Figure 2. Feature reuse/repurpose. The left column visualizes

top activations from the colorization network (same as in Fig. 5).

The right column visualizes the corresponding feature after the

network has been fine-tuned for semantic segmentation. Features

are either re-used as is (top), specialized (middle), or scrapped and

replaced (bottom). See Fig. 3 for a quantitative study.
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Figure 3. Feature shift. The correlation between feature activa-

tions for layers of VGG-16 before and after fine-tuning for seman-

tic segmentation. The bar heights indicate median correlation and

error bars indicate interquartile range. See Fig. 2 for qualitative

examples.

3. Colorization as the target task

Training an automatic colorizer for the purpose of being

able to convert grayscale photos to color is an active area of

research [20, 42, 12]. Recent methods train deep convolu-

tional neural networks to predict color [12] or distributions

over color [20, 42]. The latter approach is followed by in-

stantiating a color from the histogram prediction in order to

produce a final result. For optimal colorization results, these

networks are initialized with a classification-based network,

in order to leverage its high-level features and thus better

predict color. In this section we describe how to train col-

orization, revisiting some of the design decisions that were

made with the goal of producing aesthetic color images and

instead consider their impact on learning representations.

3.1. Training

Our experimental setup borrows heavily from Larsson et

al. [20], using Caffe [16] and their public source code re-

lease for training the colorization network. For downstream

tasks, we use TensorFlow [1] and provide testing code as

well as trained models.1

Loss. We consider both a regression loss for L*a*b color

values [20, 42, 12], as well as a KL divergence loss for

hue/chroma histograms [20]. For the latter, the histograms

are computed from a 7-by-7 window around each target

pixel and placed into 32 bins for hue and 32 bins for chroma.

We evaluate their ability to learn representations, disregard-

ing their ability to do colorization. In our comparison, we

make sure that the losses are scaled similarly, so that their

effective learning rates are as close as possible.

Hypercolumn. The networks use hypercolumns [22, 26,

8] with sparse training [20]. This means that for each im-

age, only a small sample of hypercolumns are computed.

This reduces memory requirements and allows us to train

on larger images. Note that hypercolumns can be used for

colorization pretraining, as well as for segmentation as a

downstream task. Since we have reasons to believe that hy-

percolumn training may disrupt residual training, we do not

train our ResNet colorizer with hypercolumns.

Dataset. We train on 3.7M unlabeled images by

combining 1.3M from ImageNet [34] and 2.4M from

Places205 [45]. The dataset contains some grayscale im-

ages, but we do not make an effort to sort them out, since

there is no way to tell a legitimately achromatic image from

a desaturated one.

Training. All training is done with standard Stochastic

Gradient Descent with momentum set to 0.9. The coloriza-

tion network is initialized with Xavier initialization [6] and

trained with batch normalization without re-biasing or re-

scaling parameters [13]. Each time an image is processed,

it is randomly mirrored and the image is randomly scaled

such that the shortest side is between 352 and 600. Fi-

nally, a 352-by-352 patch is extracted and desaturated and

then fed through the network. In our comparative studies,

we train using a colorization loss for 3 epochs (spending 2

epochs on the initial learning rate). In our longer running

experiments, we trained for about 10 epochs. For our best

ResNet model, we trained significantly longer (35 epochs),

although on smaller inputs (224-by-224); we found large in-

put sizes to be more important during downstream training.

4. Colorization as a proxy task

Shifting our focus to using a colorization network purely

for its visual representations, we describe how it can help

improve results on classification and segmentation.

1https://github.com/gustavla/self-supervision
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4.1. Training

The downstream task is trained by initializing weights

from the colorization-from-scratch network. Some key con-

siderations follow:

Early stopping. Training on a small sample size is prone

to overfitting. We have found that the most effective method

of preventing this is carefully cross validating the learning

rate schedule. Models that initialize differently (random,

colorization, classification), need very different early stop-

ping schedules. Finding a method that works well in all

these settings was key to our study. We split the training

data 90/10 and only train on the 90%; the rest is used to

monitor overfitting. Each time the 10% validation score

(not surrogate loss) stops improving, the learning rate is

dropped. After this is done twice, the training is concluded.

For our most competitive experiments (Tab. 1), we then re-

train using 100% of the data with the cross-validated learn-

ing rate schedule fixed.

Receptive field. Previous work on semantic segmenta-

tion has shown the importance of large receptive fields [26,

41]. One way of accomplishing this is by using dilated

convolutions [41, 39], however this redefines the interpre-

tation of filters and thus requires re-training. Instead, we

add two additional blocks (2-by-2 max pooling of stride 2,

3-by-3 convolution with 1,024 features) at the top of the

network, each expanding the receptive field with 160 pixels

per block. We train on large input images (448-by-448) in

order to fully appreciate the enlarged receptive field.

Hypercolumn. Note that using a hypercolumn when the

downstream task is semantic segmentation is a separate de-

sign choice that does not need to be coupled with the use

of hypercolumns during colorization pretraining. In either

case, the post-hypercolumn parameter weights are never re-

used. For ResNet, we use a subset of the full hypercolumn.2

Batch normalization. The models trained from scratch

use parameter-free batch normalization. However, for

downstream training, we absorb the mean and variance into

the weights and biases and train without batch normaliza-

tion (with the exception of ResNet, where in our experience

it helps). For networks that were not trained with batch nor-

malization and are not well-balanced in scale across layers

(e.g. ImageNet pretrained VGG-16), we re-balance the net-

work so that each layer’s activation has unit variance [20].

Padding. For our ImageNet pretraining experiments,

we observe that going from a classification network to a

fully convolutional network can introduce edge effects due

to each layer’s zero padding. A problem not exhibited by

the original VGG-16, leading us to suspect that it may be

due to the introduction of batch normalization. For the

newly trained networks, activations increase close to the

2ResNet-152 hypercolumn: conv1, res2{a,b,c},

res3b{1,4,7}, res4b{5,10,15,20,25,30,35}, res5c

Initialization Architecture Class. Seg.

%mAP %mIU

ImageNet (+FoV) VGG-16 86.9 69.5

Random (ours) AlexNet 46.2 23.5

Random [31] AlexNet 53.3 19.8

k-means [19, 5] AlexNet 56.6 32.6

k-means [19] VGG-16 56.5 -

k-means [19] GoogLeNet 55.0 -

Pathak et al. [31] AlexNet 56.5 29.7

Wang & Gupta [38] AlexNet 58.7 -

Donahue et al. [5] AlexNet 60.1 35.2

Doersch et al. [4, 5] AlexNet 65.3 -

Zhang et al. (col) [42] AlexNet 65.6 35.6

Zhang et al. (s-b) [43] AlexNet 67.1 36.0

Noroozi & Favaro [28] Mod. AlexNet 68.6 -

Larsson et al. [20] VGG-16 - 50.2

Our method AlexNet 65.9 38.4

(+FoV) VGG-16 77.2 56.0

(+FoV) ResNet-152 77.3 60.0

Table 1. VOC Comparison. Comparison with other initializa-

tion and self-supervision methods on VOC 2007 Classification

(test) and VOC 2012 Segmentation (val). Note that our base-

line AlexNet results (38.4%) are also the most competitive among

AlexNet models. The use of a hypercolumn instead of FCN

is partly responsible: running Zhang et al.’s colorization model

with a hypercolumn yields 36.4%, only a slight improvement over

35.6%. Switching to ResNet, adding a larger FoV, and training

even longer yields a significantly higher result at 60.0% mIU.

Note, the “+FoV” only affects the segmentation results. The mod-

ified AlexNet used by Noroozi & Favaro has the same number of

parameters as AlexNet, with a spatial reduction of 2 moved from

conv1 to pool5, increasing the size of the intermediate activations.

edge, even though the receptive fields increasingly hang

over the edge of the image, reducing the amount of seman-

tic information. Correcting for this3 makes activations well-

behaved, which was important in order to appropriately vi-

sualize top activations. However, it does not offer a measur-

able improvement on downstream tasks, which means the

network can correct for this during the fine-tuning stage.

Color. Since the domain of a colorization network

is grayscale, our downstream experiments operate on

grayscale input unless otherwise stated. When coloriza-

tion is re-introduced, we convert the grayscale filters in

conv1 1 to RGB (replicate to all three channels, divide

by three) and let them fine-tune on the downstream task.

3We pad with the bias from the previous layer, instead of with zeros.

This is an estimate of the expectation value, since we use a parameter-free

batch normalization with zero mean, leaving only the bias.
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Pretraining Loss Seg. (%mIU)

Regression 48.0

Histograms (no hypercolumn) 52.7

Histograms 52.9

Table 2. Self-supervision loss. (VGG-16) The choice of loss has

a significant impact on downstream performance. However, pre-

training with a hypercolumn does not seem to benefit learning. We

evaluate this on VOC 2012 Segmentation (val) with a model that

uses hypercolumns, regardless of whether or not it was used during

pretraining.

5. Results

We first present results on two established PASCAL

VOC benchmarks, followed in Section 6 by an investigation

into different design choices and pretraining paradigms.

5.1. PASCAL

VOC 2012 Semantic Segmentation. We train on the

standard extended segmentation data (10,582 samples) and

test on the validation set (1,449 samples). We sample ran-

dom crops at the original scale. Using our ResNet-152

model with extended field-of-view we achieve 60.0% mIU

(see Tab. 1), the highest reported results on this bench-

mark that do not use supervised pretraining. It is notice-

able that this value is considerably higher than the AlexNet-

based FCN [21] (48.0%) and even slightly higher than the

VGG-16-based FCN (59.4%4), both methods trained on Im-

ageNet.

VOC 2007 Classification. We train on the trainval

(5,011 samples) and test on the test set (4,952 samples).

We use the same training procedure with 10-crop testing

as in [5]. Our results at 77.3% mAP (see Tab. 1) are state-

of-the-art when no ImageNet labels are used.

6. Experiments

We present a wide range of experiments, highlighting

important aspects of our competitive results. For these stud-

ies, in addition to VOC 2012 Semantic Segmentation, we

also use two classification datasets that we constructed:

ImNt-100k/ImNt-10k. Similar to ImageNet classifica-

tion with 1000 classes, except we have limited the train-

ing data to exactly 100 and 10 samples/class, respectively.

In addition, all images are converted to grayscale. We test

on ImageNet val with single center crops of size 224-by-

224, making the results easy to compare with full ImageNet

training. For our pretraining experiments in Tab. 4, we also

use these datasets to see how well they are able to substitute

the entire ImageNet dataset for representation learning.

4Both of these values refer to VOC 2011 and evaluated on only 736

samples, which means the comparison is imprecise.

Architecture Init. Seg. +FoV ImNt-100k 10k

%mIU %top-5

AlexNet Rnd 23.5 24.6 39.1 6.7

AlexNet Col 36.2 40.8 48.2 17.4

VGG-16 Rnd 32.8 35.1 43.2 8.6

VGG-16 Col 50.7 52.9 59.0 23.3

ResNet-152 Rnd *9.9 *10.5 42.5 8.1

ResNet-152 Col 52.3 53.9 63.1 29.6

Table 3. Architectures. We compare how various networks per-

form on downstream tasks on random initialization (Rnd) and col-

orization pretrained (Col). For our segmentation results, we also

consider the effects of increasing the receptive field size (+FoV).

Training residuals from scratch (marked with a *) is possibly com-

promised by the hypercolumn, causing the low values.

6.1. Loss

As seen in Tab. 2, regressing on color in the L*a*b space

yields a 5-point lower result (48.0%) than predicting his-

tograms in hue/chroma (52.9%). This demonstrates that

the choice of loss is of crucial importance to representa-

tion learning. This is a much larger difference than Lars-

son et al. [20] report in colorization performance between

the two methods (24.25 and 24.45 dB PSNR / 0.318 and

0.299 RMSE). Histogram predictions are meant to address

the problem of color uncertainty. However, the way they

instantiate an image by using summary statistics from the

histogram predictions, means this problem to some extent

is re-introduced. Since we do not care about instantiating

images, we do not suffer this penalty and thus see a much

larger improvement using a loss based on histogram pre-

dictions. Our choice of predicting separate histograms in

the hue/chroma space also yields an interesting finding in

Fig. 5, where we seem to have non-semantic filters that re-

spond to input with high chromaticity as well as low chro-

maticity, clearly catering to the chroma prediction.

6.2. Network architecture

The investigation into the impact of network architec-

ture has been a neglected aspect of recent self-supervision

work, which has focused only on AlexNet. We present the

first detailed study into the untapped potential of using more

modern networks. These results are presented in Tab. 3.

It is not entirely obvious that an increase in model com-

plexity will pay off, since our focus is small-sample datasets

and a smaller network may offer a regularizing effect.

Take ImNt-100k, where AlexNet, VGG-16, and ResNet-

152 all perform similarly when trained from scratch (39.1%,

43.2%, 42.5%). However, the percentage point improve-

ment when utilizing colorization pretraining follows a clear

trend (+9.1, +15.8, +20.6). This shows that self-supervision
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Pretraining Samples Epochs Seg. (%mIU)

None - - 35.1

C1000 1.3M 80 66.5

C1000 1.3M 20 62.0

C1000 100k 250 57.1

C1000 10k 250 44.4

E10 (1.17M) 1.3M 20 61.8

E50 (0.65M) 1.3M 20 59.4

H16 1.3M 20 60.0

H2 1.3M 20 46.1

R50 1.3M 20 57.3

40 59.4

R16 1.3M 20 42.6

40 53.5

Example: H3 (3 hierarchical label buckets)

Label #1 Label #2 Label #3

Example: R3 (3 random label buckets)

Label #1 Label #2 Label #3

Table 4. ImageNet pretraining. We evaluate how useful various

modifications of ImageNet are for VOC 2012 Segmentation (val-

gray). We create new datasets either by reducing sample size or

by reducing the label space. The former is done simply by reduc-

ing sample size or by introducing 10% (E10) or 50% (E50) label

noise. The latter is done using hierarchical label buckets (H16 and

H2) or random label buckets (R50 and R16). The model trained

for 80 epochs is the publicly available VGG-16 (trained for 76

epochs) that we fine-tuned for grayscale for 4 epochs. The rest of

the models were trained from scratch on grayscale images.

allows us to benefit from higher model complexity even in

small-sample regimes. Compare this with k-means initial-

ization [19], which does not show any improvements when

increasing model complexity (Tab. 1).

Training ResNet from scratch for semantic segmentation

is an outlier value in the table. This is the only experiment

that trains a residual network from scratch together with a

hypercolumn; this could be a disruptive combination as the

low numbers suggest.

Initialization Grayscale input Color input

Classification 66.5 69.5

Colorization 56.0 55.9

Table 5. Color vs. Grayscale input. (VOC 2012 Segmentation,

%mIU) Even though our classification-based model does 3 points

better using color, re-introducing color yields no benefit.

6.3. ImageNet pretraining

We relate self-supervised pretraining to ImageNet pre-

training by revisiting and reconsidering various aspects of

this paradigm (see Tab. 4). First of all, we investigate the

importance of 1000 classes (C1000). To do this, we join Im-

ageNet classes together based on their place in the WordNet

hierarchy, creating two new datasets with 16 classes (H16)

and only two classes (H2). We show that H16 performs

only slightly short of C1000 on a downstream task with 21

classes, while H2 is significantly worse. If we compare this

to our colorization pretraining, it is much better than H2 and

only slightly worse than H16.

Next, we study the impact of sample size, using the

subsets ImNt-100k and ImNt-10k described in Section 6.

ImNt-100k does similarly well as self-supervised coloriza-

tion (57.1% vs. 56.0% for VGG-16), suggesting that our

method has roughly replaced 0.1 million labeled samples

with 3.7 million unlabeled samples. Reducing samples to

10 per class sees a bigger drop in downstream results. This

result is similar to H2, which is somewhat surprising: col-

lapsing the label space to a binary prediction is roughly as

bad as using 1/100th of the training data. Recalling the im-

provements going from regression to histogram prediction

for colorization, the richness of the label space seems criti-

cal for representation learning.

We take the 1000 ImageNet classes and randomly place

them in 50 (R50) or 16 (R16) buckets that we dub our new

labels. This means that we are training a highly complex

decision boundary that may dictate that a golden retriever

and a minibus belong to the same label, but a golden re-

triever and a border collie do not. We consider this analo-

gous to self-supervised colorization, since the supervisory

signal similarly considers a red car arbitrarily more simi-

lar to a red postbox than to a blue car. Not surprisingly,

our contrived dataset R50 results in a 5-point drop on our

downstream task, and R16 even more so with a 20-point

drop. However, we noticed that the training loss was still

actively decreasing after 20 epochs. Training instead for 40

epochs showed an improvement by about 2 points for R50,

while 11 points for R16. In other words, complex classes

can provide useful supervision for representation learning,

but training may take longer. This is consistent with our

impression of self-supervised colorization; although it con-

verges slowly, it keeps improving its feature generality with
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Figure 4. Learning rate. The blue line shows colorization train-

ing loss and the vertical dashed lines are scheduled learning rate

drops. The red squares are results on a downstream task (VOC

2012 Segmentation) initialized by the corresponding snapshot of

the colorization network. Some key observations: We quickly get

value for our money, with a 6-point improvement over random

initialization with only 0.2 epochs of training. Furthermore, im-

provements on the downstream task do not quickly saturate, with

results improving further when trained 10 epochs in total. Drop-

ping the learning rate on the pretraining task helps the downstream

task, with a similarly abrupt improvement as with the training loss

around 2 epochs. Training the full 3 epochs without ever drop-

ping the learning rate results in 49.1% (yellow square) compared

to 52.9% mIU.

more training.

Finally, we test the impact of label noise. When 10% of

the training images are re-assigned a random label (E10),

it has little impact on downstream performance. Increasing

the label noise to 50% (E50) incurs a 2.6-point penalty, but

it is still able to learn a competitive representation.

6.4. Training time and learning rate

We show in Fig. 4 that it is crucial for good performance

on downstream tasks to reduce learning rate during pretrain-

ing. This result was not obvious to us, since it is possible

that the late stage of training with low learning rate is too

task-specific and will not benefit feature generality.

In addition, we show the importance of training time

by demonstrating that training for three times as long (10

epochs, 37M samples) improves results from 52.9% to

56.0% mIU on VOC 2012 Segmentation. Our ResNet-152

model (60.0% mIU) trained for 4 months on a single GPU.

6.5. Latent representation

Good results on secondary tasks only give evidence that

our self-supervised network has the potential to be shaped

into a useful representation. We investigate if the represen-

tation learned through colorization is immediately useful or

only holds a latent representation. If the latter, how is our

representation different from a good initialization scheme?

First, we visualize features to get a sense of how the col-

Fine-tuned layers (VGG-16) Rnd Col Cls

∅ ������� 3.6 36.5 60.8

fc6, fc7 ������� - 42.6 63.1

conv4 1..fc7 ������� - 53.6 64.2

conv1 1..fc7 ������� 35.1 56.0 66.5

Table 6. VOC 2012 Segmentation. (%mIU) Classification-based

pretraining (Cls) needs less fine-tuning than our colorization-based

method (Col). This is consistent with our findings that our network

experiences a higher level of feature shift (Fig. 3). We also include

results for a randomly initialized network (Rnd), which does not

work at all without fine-tuning (3.6%). This is to show that it is

not simply by virtue of the hypercolumn that we are able to do rea-

sonably well (36.5%) without any fine-tuning of the base network.

orization network has organized the input into features. We

posit that we will find features predictive of color, since we

know that the colorization network is able to predict color

with good accuracy. In Fig. 5, we visualize top activations

from the network’s most high-level layer, and indeed we

find color-specific features. However, we also find semantic

features that group high-level objects with great intra-class

variation (color, lighting, pose, etc.). This is notable, since

no labeled data was used to train the network. The notion

of objects has emerged purely through their common color

and visual attributes (compare with [44]). Object-specific

features should have high task generality and be useful for

downstream tasks. Features that are specific to both object

and color (bottom-right quadrant in Fig. 5) can be divided

into two categories: The first is when the object generally

has a unimodal color distribution (e.g. red bricks, brown

wood); the second is when the network has learned a color

sub-category of an object with multimodal color distribu-

tion (e.g. white clothing, yellow vehicle). These should all

have high task generality, since it is easy for a task-specific

layer to consolidate several color sub-categories into color-

invariant notions of objects.

So how much do the features change when fine-tuned?

We visualize top activations before and after in Fig. 2 and

show in Fig. 3 that the colorization features change much

more than label-based features. Some features are com-

pletely repurposed, many are only pivoted, and others re-

main more or less the same. These results are consistent

with the four quadrants in Fig. 5, that show that some fea-

tures are specific to colorization, while others seem to have

general purpose.

Next, we look at how much fine-tuning is required for

the downstream task. Tab. 6 tells us that even though fine-

tuning is more important than for supervised pretraining

(consistent with the correlation results in Fig. 3), it is able

to perform the task with the colorization features alone sim-

ilarly well as randomly initializing the network and training

it end-to-end from scratch.
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Figure 5. Feature visualization. Patches around activations from held-out images are visualized for a select number of fc7 features

(VGG-16). Even though the network takes only grayscale input, we visualize each patch in its original color for the benefit of the reader.

As a result, if all the activations are consistent in color (right column), the feature is predictive of color. Similarly, if a feature is semantically

coherent (bottom row), it means the feature is predictive of an object class. The names of each feature are manually set based on the top

activations.

Somewhat poor results without fine-tuning and a lower

percentage of feature re-use supports the notion that the col-

orization network in part holds latent features. However,

the visualized features and the strong results overall sug-

gest that we have learned something much more powerful

than a good initialization scheme.

6.6. Color

We show in Tab. 5 that re-introducing color yields no

benefit (consistent with the findings of Zhang et al. [42]).

However, concurrent work [43] presents a better method

of leveraging the color channels by separately training a

network for the “opposite” task (predicting intensity from

color). The two separate networks are combined for down-

stream use.

7. Conclusion

We have presented a drop-in replacement for Ima-

geNet pretraining, with state-of-the-art results on seman-

tic segmentation and small-sample classification that do not

use ImageNet labels. A detailed investigation into self-

supervised colorization shows the importance of the loss,

network architecture and training details in achieving com-

petitive results. We draw parallels between this and Ima-

geNet pretraining, showing that self-supervision is on par

with several methods using annotated data.
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