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Abstract

Traditional matrix factorization methods approximate

high dimensional data with a low dimensional subspace.

This imposes constraints on the matrix elements which al-

low for estimation of missing entries. A lower rank provides

stronger constraints and makes estimation of the missing

entries less ambiguous at the cost of measurement fit.

In this paper we propose a new factorization model

that further constrains the matrix entries. Our approach

can be seen as a unification of traditional low-rank ma-

trix factorization and the more recent union-of-subspace

approach. It adaptively finds clusters that can be modeled

with low dimensional local subspaces and simultaneously

uses a global rank constraint to capture the overall scene

interactions. For inference we use an energy that penalizes

a trade-off between data fit and degrees-of-freedom of the

resulting factorization. We show qualitatively and quanti-

tatively that regularizing both local and global dynamics

yields significantly improved missing data estimation. 1

1. Introduction

Matrix factorization is a an important tool in many engi-

neering applications. The assumption that data belongs to a

low dimensional subspace has been proven useful in numer-

ous computer vision applications, e.g. non-rigid and artic-

ulated structure from motion [6, 1, 41], photometric stereo

[3], optical flow [15], face recognition [40, 34] and texture

reparation [25].

Given an m × n matrix M containing m-dimensional

measurements a low dimensional approximation X ≈ M ,

where rank(X) = r0, can be found using singular value

decomposition (SVD). Since rank(X) = r0 the matrix X

can be written

X = BCT , (1)

where B is m × r0 and C is n × r0. The columns of B

constitute a basis for the column-space of X . The matrix C

contains coefficients used to form the columns of X from

the basis. Alternatively one may think of the rows of X as

1This work has been funded by the Swedish Research Council (grant

no. 2012-4213) and the Swedish Foundation for Strategic Research (Se-

mantic Mapping and Visual Navigation for Smart Robots).

(a) (b) (c)

Figure 1: 3D illustration of subspace representations. (a) -

A 2D subspace is fitted to all the data (global model). (b) -

A union of independent 1D subspaces is fitted to clustered

data (local models). (c) - Our unified approach. 1D sub-

spaces are fitted to clustered data and restricted to lie in a

2D subspace. (For this data m = 3, n = 100, r0 = 2 and

rk = 1, see Section 2 for definitions.)

n-dimensional data, C as a basis for the row-space and B as

the coefficients. In both cases the data is approximated by

an r0-dimensional subspace, as illustrated in Figure 1(a).

In a sense the factorization BCT can be seen as a com-

pressed representation of M where the mn elements have

been reduced to (m + n − r0)r0 degrees of freedom (see

Section 3.1). It is therefore possible to compute the fac-

torization even if only a subset of the elements of M are

known, by solving W⊙M ≈ W⊙(BCT ). Here ⊙ denotes

element-wise multiplication and the matrix W has elements

wij = 1 for known data and 0 for missing data. Note that

once computed, BCT contains estimates of both known and

missing data. In this way it is theoretically possible to ”pre-

dict” at most mn− (m+ n− r0)r0 missing elements.

In the presence of missing data the low rank approxima-

tion problem becomes very difficult, some variations of the

problem even NP-hard [17]. However, due to its practical

importance a lot of research have been directed at finding

good algorithms. In [2] it is shown that under the spectral

norm a closed form solution exist if the missing data forms a

so called Young pattern. A recent trend has been to replace

the rank function with the nuclear norm [31, 8, 30]. How-

ever, in many applications such as structure from motion,

where missing entries are highly correlated, this approach

has been shown to perform poorly (e.g. [24]).

If the rank of the sought matrix is known, the bilinear
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parametrization (1) can be locally optimized. Buchanan and

Fitzgibbon [7] showed that alternating methods often ex-

hibit very slow convergence and proposed a damped Gauss-

Newton update. In [28] it was illustrated that the Wiberg

elimination strategy [39] is very robust to local minima. For

a recent comparison of different approaches to minimize the

bilinear formulation see [19]. In [22] the ℓ1 norm is used

to address outliers. The proposed alternating approach is

shown to converge slowly in [13]. Instead [13, 35] use gen-

eralizations of the Wiberg approach designed to handle the

non-differentiable objective function while jointly updating

the two factors.

Despite numerous recent developments in rank optimiza-

tion missing data is still a problem plaguing vision algo-

rithms. Dai et al. [10] argue that researchers have focused

too much on optimization and ignored modeling issues.

While the rank constraint provides a compact model rep-

resentation it is limited by only measuring the overall com-

plexity of the matrix even though individual sub-blocks may

be less complex. Hence, there is no incentive to use fewer

basis columns for sub-blocks than what the total rank ad-

mits. A relatively high overall model complexity is a par-

ticular problem when missing data needs to be estimated.

As noted in [27, 18, 14] the availability of too many ba-

sis elements causes methods only optimizing a global rank

constraint to over-fit giving very poor results.

A related model used in clustering is the union-of-

subspace approach [44, 42]. Here data is clustered into sim-

ilar groups that can be represented with independent low

dimensional subspaces, see Figure 1(b). We refer to these

as local subspaces since they are local to a particular clus-

ter. In [26, 23] these are used to cluster frames into groups

that allow simple deformation models. In principle these

could also be used to address the missing data problem. In

contrast to the global rank constraint, which constrains the

whole matrix, each cluster has its own set of basis vectors

and can only be constructed from these. This gives a data

representation that is often (but not always, see Section 3.1)

more compact. The overall idea of dividing the matrix into

less complex parts and treating them separately is shared

with the multi-body factorization methods [38, 9, 43] which

typically perform clustering on the trajectories.

In this paper we address the missing data problem by

presenting a new compact factorization formulation. Our

approach unifies the local and global subspace approaches

leveraging the benefits of them both. Our method adaptively

clusters the data and fits local subspaces, but also enforces

a low rank on the entire data matrix. This ensures that any

potential interactions between clusters are identified by the

model which increases the prediction capability. For exam-

ple, if clusters correspond to rigid parts of an object, similar

to [32], our model can predict occluded parts if a motion

dependency exists. In contrast the union-of-subspace ap-

proach lacks the ability to learn global scene dependence

since subspaces are treated independently. Figure 1(c) il-

lustrates our approach for a simple 3D example.

Our main contributions are

• We analyze the performance of global and local mod-

els with respect to different types of missing data.

• We present a new factorization that incorporates both

a global rank constraint and local subspace constraints

and show how this reduces model complexity.

• For computing the factorization we propose an energy-

based model fitting framework that is able to perform

joint clustering and adaptive model selection.

• We show on real and synthetic experiments that the

proposed approach handles missing data much more

accurately than existing factorization models.

2. A Dependent Subspace Model

In this section we present our model. We make two as-

sumptions on the data matrix; that the entire scene is ex-

plained well by a low rank model, and that it can be par-

titioned into clusters that are explained by simpler models.

Let X be an m × n matrix. The model can then (possibly

after column permutations) be written as

X =
[

X1 X2 . . . XK

]

(2)

rank(X) = r0, rank(Xk) = rk

where each Xk is an m × nk matrix that contains the data

points of a cluster. It is clear that r0 ≥ rk and typically

we try to have r0 ≪
∑K

k=1
rk since we want to model the

dependence between the clusters. Here we have divided the

matrix columns into clusters. Note however that the same

model can be applied to the rows by transposing.

Since Xk is of rank rk it can be factorized into Xk =
BkC

T
k , where Bk is m × rk and Ck is nk × rk. The ma-

trix Bk contains a basis for the subspace spanned by the

columns of Xk. The full matrix X can thus be written

X =
[

B1C
T
1

B2C
T
2

. . . BKCT
K

]

. (3)

Note that if the global rank constraint rank(X) = r0 is ig-

nored then B1, B2, ..., BK are assumed to be independent

and this expression constitutes a union of subspace repre-

sentation of X .

Now, assuming r0 <
∑K

k=1
rk there is a dependence be-

tween the cluster subspaces. Since the columns of X are

spanned by the columns of
[

B1 B2 . . . BK

]

this ma-

trix must also be of rank r0. Therefore we may factor it

into

[

B1 B2 . . . BK

]

= B
[

U1 U2 . . . UK

]

, (4)
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where B is m × r0 and Uk is r0 × rk. Here B is a basis

of the column space of
[

B1 B2 . . . BK

]

and therefore

also of X . Inserting into (3) gives our model

X = B
[

U1C
T
1

U2C
T
2

. . . UKCT
K

]

. (5)

We can think of the r0 × rk matrices Uk as selecting a rk-

dimensional basis within the r0-dimensional space spanned

by the columns of B. While the union-of-subspace model

(3) treat subspaces independently by allowing arbitrary se-

lection of the bases B1, B2, ..., Bk our model forces these to

be selected in the global subspace spanned by B. Figure 2

shows an example of the three model factorizations when

r0 = 5 and rk = 3 for k = 1, 2, 3.

In the above description of our model we have assumed

that the subspaces are linear. Note however that it is easy

to use affine subspaces by restricting the last row of CT
k

to be all ones. If Bk =
[

A t
]

and CT
k =

[

CT

1
T

]

then

BkC
T
k = ACT + t1T , which is an affine function in C.

3. Benefits of Dependent Models

In this section we discuss the benefits of using both lo-

cal and global subspace constraints. We compare three for-

mulations: the global model (1), local models (3) and our

unified model (5).

3.1. Degrees of Freedom

We first compute the degrees of freedom (DOF) of the

three models. Note that it is clear that the unified model will

have fewer DOF than both the local and the global models

since (5) is a special case of both (1) and (3). Having an ac-

curate model with few DOF makes matrix completion more

well posed and reduces the space of feasible matrices.

Linear Subspace Models Under the global model the

data matrix X can be factorized as in (1). The matrices

B and C have mr0 and nr0 elements respectively. How-

ever due to the gauge freedom X = BCT = BGG−1CT ,

where G is an unknown invertible r0 × r0 matrix the DOF

for the global model are

mr0 + nr0 − r2
0
. (6)

For cluster k in (3) the matrices Bk and Ck have mrk and

nkrk elements respectively. Similarly to the global model

Bk and Ck are only determined up to an invertible rk × rk
matrix Gk. We therefore get

K
∑

k=1

mrk + nkrk − r2k (7)

DOF for the local models.

For the unified model we first consider the term BUkC
T
k .

Since B is m× r0, Uk is r0 × rk and Ck nk × rk this term

has mr0 + r0rk + nkrk elements. However, since

Xk = BUkC
T
k = BGG−1UkGkG

−1

k CT
k , (8)

there are two ambiguities here. The first subtracts r2
0

DOF

once and the second r2k DOF for each cluster. Summing

over k we thus get

mr0 − r2
0
+

K
∑

k=1

r0rk + rknk − r2k. (9)

Note that for independent clusters this reduces to (7). How-

ever when r0 <
∑

k rk (and typically r0 ≪
∑

k rk) it is

easy to see that the unified model is at least as compact as

the local model. To compare to the global model we note

that
∑

k nk = n and subtract (9) from (6). This gives

nr0−

K
∑

k=1

(r0rk+rknk−r2k) =

K
∑

k=1

(r0−rk)(nk−rk). (10)

Since we can’t form clusters with fewer columns than their

rank both terms of the product are positive, which confirms

that the unified model is always at least as compact as the

global model.

Affine Subspace Models In our applications we will typ-

ically use affine subspaces since this removes some scale

ambiguities. In this case the matrix CT
k is required to have

one row of all ones, which reduces the DOF in this matrix

to nk(rk − 1). Furthermore, this requires the last row of

G−1

k to be
[

0 0 . . . 1
]

which therefore has rk(rk − 1)
DOF. The unified model then has

mr0 − r2
0
+

K
∑

k=1

r0rk + (rk − 1)nk − (rk − 1)rk (11)

DOF. Note that the dimension of the affine subspace is rk−1
while the rank of its matrix BUkC

T
k is still rk.

3.2. Predicting Missing Data

In this section we discuss the prediction capabilities of

the unified model and illustrate how the global and local

models complement each other when recovering missing

data. To gain some intuition about the model we first con-

sider the situation where a new column is added to each of

the three factorizations, see Figure 2. In SfM this corre-

sponds to estimation of a point track from a motion model.

To generate a new column we need to specify coefficients

in the C and Ck matrices (for some k ∈ {1, ...,K}), that is,

the elements marked with c in Figure 2. In this example the

global model needs to determine 5 parameters and there-

fore require at least 5 known elements in the new column.
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Figure 2: Three factorizations: Left - global model. Middle - union of subspace model. Right - unified model. Here r0 = 5
and ri = 3, i = 1, 2, 3. The r and c markers highlight elements that need to be estimated when adding a new row or column.

For the local and unified models we only have 3 unknowns.

(Additionally we may need a 4th known element to deter-

mine which cluster the new column belongs to.) Hence, in

this situation the local and unified models require less data

than the global model to predict missing elements.

Interestingly, when we consider rows instead of columns

(see Figure 2) the relation is different. In SfM this situa-

tion corresponds to estimating a new scene shape from a

shape model. For the global and the unified models there

are 5 coefficients that needs to be determined. For the local

model there are 9 since the cluster bases are independent.

Hence the global and unified models can recover the entire

row using 5 available measurements while the local model

requires 9. Furthermore, note that the local model needs at

least three measurements for each cluster since these are es-

timated independently. In contrast, the unified model could

theoretically predict the entire row from measurements in a

subset of the clusters. Specifically, if Xnew is the new row

(with missing data) we want to find a row Bnew by solving

Xnew = Bnew

[

U1C
T
1

UTC
T
2

. . . UKCT
K

]

(12)

(possibly in a least squares sense). This is possible if

the columns of
[

U1C
T
1

U2C
T
2

. . . UKCT
K

]

that corre-

spond to known data entries of Xnew span a r0-dimensional

space. In the example of Figure 2 each UiV
T
i is of at

most rank 3 hence it is not possible to completely determine

Bnew from only one cluster. However two clusters could be

enough if their columns span the entire column space of B.

Next we show a real example that illustrates the benefits

of using the unified model. The sequence consists of im-

ages containing two hands flexing, see Figure 3. Using the

method of [36] we tracked points on the hands throughout

the sequence. The dataset contains 7899 point trajectories

in 441 frames with 67% missing data due to tracking fail-

ures. Figure 3 shows three of the 441 images together with

the tracked points as well as the missing data pattern.

The point trajectories were manually partitioned into 14

approximately rigid components (see Figure 4d). Since

each rigid component essentially only undergoes planar ro-

tation and translation we restrict each cluster to a two-

dimensional affine subspace (i.e. rk = 3). For the global

model we used r0 = 5.

(a) Frame 1 (b) Frame 200

(c) Frame 441 (d) The missing data pattern.

Figure 3: Frames 1, 200 and 441 of the hand sequence. Note

that in the last frame the right thumb has no tracks. Bottom

right shows the missing data pattern. The observed entries

of the measurement matrix are shown in white.

Figure 4 shows the result for the last frame of the se-

quence. In this frame the right thumb has almost no point

trajectories due to tracking failures. Using only the global

model (Figure 4a) we can successfully recover the unob-

served thumb but each rigid part is over-parameterized lead-

ing to over-fitting and noisy tracks. Table 1 (first column)

shows the number of parameters for the three alternatives.

Using only the local models (Figure 4b) it is difficult to

recover the correct track locations at the thumb when there

are only a few visible tracks. Combining both the global and

local models (Figure 4c) allows us to deal with the missing

observations without over-parameterizing each rigid part.

Figure 5 illustrates how the unified model can estimate

new poses (rows) from only 5 known point positions (since

r0 = 5). Note that since the hands move together through-

out the sequence the learned model can infer the pose of the

right hand (for which there are no measurements) from the

left. If the clusters were treated independently each cluster

would need at least 3 measurements for successful estima-

tion. On the other hand our model would not fit well to a
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(a) Global model (b) Local models

(c) Unified model (d) Partitioning for local models.

Figure 4: The reconstructed tracks in the last frame of the

sequence. The tracks which have observations in the current

frame are shown in blue.

Dataset Hand Paper Back Heart

Global model 43880 3311 166824 547576

Local models 52758 2750 63472 163134

Unified model 20309 1686 43908 138814

Table 1: DOF for the three type of models for various

datasets used in the experiments (see Section 5.2 for more

information.)

Figure 5: The constraint r0 = 5 allows us to generate new

shapes. Here the position of the five blue points where spec-

ified while the red points where predicted by the model.

new image where for example the distance between the two

hands is significantly different from what has been previ-

ously observed.

4. Inference

In this section we present an energy-based optimization

framework for computing compact factorizations. Given a

measurement matrix M we seek a factorization

W ⊙M ≈ W ⊙
(

B
[

U1C
T
1

. . . UKCT
K

]

P
)

, (13)

where P is a permutation matrix that switches the order of

columns and W is a binary matrix with element wij = 1
if mij is known and 0 otherwise. Changing column order

using P corresponds to assigning a column of M to a par-

ticular cluster. Note that the overall rank r0 (and thereby the

size of B) is assumed to be known (otherwise it is possible

that rank estimation methods similar to [21] could be used).

However, the cluster number K, the ranks rk and assign-

ments are estimated by penalizing a trade-off between data

fit and complexity.

For a fixed B determining the factorization can be seen

as a model fitting problem where we assign affine subspaces

to the columns of M . In the discrete setting, it is well known

that these problems are NP hard [20]. However, [20, 11]

has demonstrated that move making approaches such as α-

expansion typically provide good solutions.

4.1. Energy Formulation

The approach we take essentially follows [20, 11] which

generates a large but finite number of proposal subspaces

and fuses them into a complete clustering by optimizing a

discrete labeling energy using α-expansion [5].

Let l be a labeling of the matrix columns. Then given a

finite set of proposal subspaces {BUk}, letting lp = k cor-

responds to assigning column p to cluster k. Note that once

a column is assigned to a local subspace the coefficients Ck

can be determined solving a simple least squares problem.

From the proposals we compute the cluster assignment

by minimizing the discrete function

E(l) =
∑

p

Dp(lp) +
∑

k

hkδk(l). (14)

The data term Dp consists of two components. The first is a

standard least squares term that measures the fit to the mea-

surement matrix. The second component counts the number

of elements required for representing the column in the fac-

torization. Specifically, we use

Dp(k) = min
c

‖Wp ⊙ (Mp −BUkc)‖
2

F +λ(rk − 1), (15)

where Wp and Mp denote the p:th column of W and M

respectively. Summing over the columns in the cluster the

second term contributes λnk(rk − 1), which is the DOF

in the Ck matrix of (11) times a weight λ. The weight λ

controls the trade-off between data-fit and DOF.

The second term in (14) is a label cost term which we

use to encode the remaining part of the model-complexity

in (11) by setting

hk = λ (r0rk − (rk − 1)rk) . (16)

The function δk returns one if any of the columns is as-

signed to proposal k and zero otherwise. Thus using both

the data term and the label cost we can achieve an adaptive

penalization of the complexity of the factorization. Since

we assume that r0 is known the first term of (11) is constant

and ignored.
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Note that a pairwise Potts terms Vpq(lp, lq) [5] can eas-

ily be introduced to (14) to add geometric context. From

a practical point of view this can help to resolve ambigu-

ous assignments in the vicinity of subspace intersections

and therefore typically yield visually more appealing clus-

ters. However this requires a neighborhood system and a

number of additional parameters. For the experiments we

therefore only use (14). In the supplementary material we

perform experiments with the pairwise term.

4.2. Optimization

It is clear from [11] that the above energy yields sub-

modular α-expansions. Note however that the dimensional-

ity of the search space is typically very large, which makes

efficient proposal generation difficult. For example, to com-

pute a 3-dimensional affine subspace we need to specify the

elements of 4 columns, that is 4m elements, where m is

the number of rows of M . Furthermore, because of miss-

ing data we cannot expect to be able to sample complete

columns directly from M . To address this issue we main-

tain estimates of the B, Uk and Ck matrices and use these to

fill in the measurement matrix. Using the completed mea-

surement matrix we sample subsets of columns Ms and use

these to estimate new Uk such that Ms ≈ BUk. If there

is no application specific prior on the dimension of the lo-

cal subspaces, the number of sampled columns is also se-

lected at random in order to ensure that subspaces of differ-

ent dimensions are generated. We employ the above pro-

posal generation with α-expansion as outlined in [20]. In

each iteration re-estimation is performed individually for

the B, Uk and Ck matrices by solving the corresponding

linear least squares problems. For initialization we find one

r0-dimensional subspace for the whole matrix using local

optimization.

5. Experiments

In this section we will evaluate the performance of our

method both quantitatively and qualitatively on different

datasets and compare to several state-of-the-art methods. In

order to obtain ground truth data we use a number of pub-

licly available data sets and remove random entries from

these. Figure 6 shows the data patterns that we consider.

In the left pattern entries were discarded with a uniform

probability. It is well known from compressed sensing that

nuclear norm optimization works well (and even has per-

formance guarantees [8]) for this kind of data. We argue

that this setup is of limited interest since it does not occur

in tracking based applications and further results in easier

problem instances. Therefore we only test this type of data

in Section 5.3 for completeness.

To construct more realistic patterns we simulate tracking

failure by randomly selecting (with uniform probability) if

a track should have missing data. We then select (with uni-

Figure 6: Examples of synthetic missing data patterns used

for the experiments. Observed entries are shown in white.

Left: Uniformly missing entires. Middle: Trajectories ex-

hibiting tracking failure. Right: Tracking failure and occlu-

sion.

form probability after the first few frames) in which image

tracking failure occurs. No track is restarted after it has been

lost. This results in data patterns such as the on displayed in

the middle of Figure 6. In Section 5.2 we further simulate

occlusion by removing a complete block of the matrix, see

the right pattern of Figure 6.

5.1. Effects of the Trade­off Parameter λ

Our energy contains one parameter λ that controls the

trade-off between model fit and DOF. To evaluate the be-

havior of our energy for different λ we use one instance

from the CMU Motion Capture dataset. We used subject 10,

which contains 5 sequences of a person kicking a soccer ball

and one sequence of walking. These were selected since

they were approximately the same size and they all provided

about 330 point trajectories. The 3D points were projected

into an orthographic camera slowly rotating around the sub-

ject. Some example frames can be seen in Figure 7. We

generated missing data patterns as displayed in the middle

image of Figure 6. Figure 8 shows how the resulting errors

Figure 7: Some example frames from one of the soccer kick

instances. Blue skeleton added for visualization.

on the observed and missing data as well as the model com-

plexity varies for different λ. For low values of λ the model

fit term dominates the energy giving almost perfect fit to

the available measurements. On the other hand model com-

plexity is high which limits the ability to accurately predict

missing data. The best results are achieved for mid range

values of λ (in this case between 1 and 10). When λ is high

the DOF of the model becomes too low to be able to capture

the full scene dynamics resulting in poor prediction.

5.2. Occlusion and Tracking Failures

In this section we show some result on trajectories from

three public image sequences: The paper sequence [33]
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Figure 8: For different values of λ the plots show; Left: the RMS error on the observed data, Middle: the RMS error on the

missing data, Right: the degrees of freedom in the resulting model.

Obtained Clustering: Global: Local: Unified:

(r0 = 7) (rk = 3) (r0 = 7, rk = 3)

(r0 = 8) (rk = 3) (r0 = 8, rk = 3)

(r0 = 8) (rk = 3) (r0 = 8, rk = 3)

Figure 9: Paper, Back and Heart sequences from [33, 16]. The left column shows the clustering obtained using our method.

The rest of the columns show the visible points (blue) and the reconstructed points (red) in one frame.

containing 340 points in 70 frames, the back sequence [16]

containing 20561 points in 150 frames and the heart se-

quence [16] containing 68295 points in 80 frames. To these

we generated missing data as illustrated in the right image

of Figure 6. (For occlusion we remove all trajectories in

one half of the image for the last 25% of the frames.) Since

these sequences are roughly locally planar we only sample

affine rank 3 subspaces. We used λ = 500 in all three cases.

Figure 9 shows the obtained clusterings and one frame from

each sequence with the visible (blue) points and the recon-

structed (red) points. Here we compare the local, global and

unified models. For the local model we used the clustering

computed by our method. Note clusters that do not have

any visible points due to occlusion are not reconstructed by

the local method. Table 2 shows the reconstruction errors

for both missing and visible points. Table 1 shows the DOF

of the resulting factorizations.

5.3. Quantitative Comparisons

Next we compare our approach to a number of state-of-

the-art methods. We test four methods that are based a sin-

gle global rank model:

• LM-r0 and Wiberg: Fitting a rank r0 matrix by

minimizing f(B,C) =
∥

∥W ⊙ (BCT −M)
∥

∥

2

F
using
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Figure 10: The fraction of residuals across all instances less than a threshold for the Hopkins (left) and MOCAP data (right).

Observed data Missing data

Paper Back Heart Paper Back Heart

Global 3.95e1 5.3e2 1.1e3 3.27e3 1.9e3 4.4e3

Local 1.04e2 4.9e2 1.1e3 2.79e4 1.1e5 2.2e5

Unified 1.07e2 6.9e2 1.5e3 2.86e2 1.4e3 3.6e3

Table 2: Reconstruction errors for visible and missing data.

For each column the smallest errors highlighted in bold.

Levenberg-Marquardt and the damped Wiberg method

from [29] respectively.

• CSF and CSF-DCT: The column space fitting method

from [18], both with and without using the DCT basis.

• NN: Nuclear norm minimization f(X) = λ ‖X‖
∗
+

‖W ⊙ (X −M)‖
2

F using ADMM [4].

We also test using two approaches from [42] for clustering

the columns followed by fitting local models to each cluster.

For these methods we use rank 4 affine models since these

correspond to rigid 3D objects.

• SSC-EZWF+LM-r4: The Entry-wise Zero-Fill

method from [42], followed by fitting rank 4 affine

models to each cluster.

• NN+SSC+LM-r4: Nuclear norm minimization (as in

NN) followed by regular SSC [12]. Affine rank 4 mod-

els are fitted to the resulting clusters.

For the competing methods the available parameters were

tuned for each dataset to give the best results. In our com-

parisons we measure the fraction of matrix elements that

have reconstruction error less than a given threshold. This

is because over-fitting to noise may lead to highly unstable

tracks which results in unpredictable ℓ2 errors.

Hopkins155 and CMU Motion Capture. We first con-

sider the Hopkins155 dataset [37] which is commonly used

for motion segmentation. It contains 155 sequences with

multiple rigidly moving objects. Since the dataset contains

a ground truth clustering of the trajectories, we include a

comparison with fitting local models to this partition. This

is denoted GT+LM-r4 in the results. For the methods us-

ing a global rank constraint we use r0 = 4K where K is

the number of scene motions.

Missing data

Method Uniform Tracking failure

Our 155 (100.0%) 148 (95.5%)

LM-r0 143 (92.3%) 26 (16.8%)

Wiberg 152 (98.1%) 75 (48.4%)

NN 155 (100.0%) 6 (3.9%)

NN+SSC+LM-r4 155 (100.0%) 97 (62.6%)

SSC-EWZF+LM-r4 155 (100.0%) 93 (60.0%)

CSF 118 (76.1%) 70 (45.2%)

CSF(DCT) 154 (99.4%) 54 (34.8%)

GT+LM-r4 155 (100.0%) 88 (56.8%)

Table 3: Number of instances where 90% of the missing

entries have less than 10px error.

Here we generated both uniform missing entries and ran-

dom tracking failure (left and middle of Figure 6). Table 3

shows the number of instances where more than 90% of

the missing data was reconstructed with less than a 10 pixel

error. In Figure 10 we vary the pixel threshold and show

the fraction of residuals, across all instances, that are re-

constructed with a lower error. (Here we did not consider

the uniform missing entry pattern.) It is a bit surprising

that our approach outperforms competing methods, even

GT+LM-r4, on this dataset since the ground truth clusters

are typically independently moving objects. Closer inspec-

tion reveals that our method often splits objects into smaller

dependent models, whose interactions are captured by the

global rank constraint. Thus a likely explanation is that

affine rank 4 models with ground truth clusters is still an

over-parametrization. To the right in Figure 10 we show the

results obtained when performing the same experiment on

subject 10 of the MOCAP data set.
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