This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Deep Mixture of Linear Inverse Regressions Applied to Head-Pose Estimation

Stéphane Lathuiliere!, Rémi Juge!, Pablo Mesejo!, Rafael Mufioz-Salinas?, Radu Horaud!
Inria Grenoble Rhone-Alpes, France
2Computing and Numerical Analysis Department, Cordoba University, Spain

stephane.lathuiliere@inria.fr

Abstract

Convolutional Neural Networks (ConvNets) have be-
come the state-of-the-art for many classification and re-
gression problems in computer vision. When it comes to
regression, approaches such as measuring the Euclidean
distance of target and predictions are often employed as
output layer. In this paper, we propose the coupling of a
Gaussian mixture of linear inverse regressions with a Con-
vNet, and we describe the methodological foundations and
the associated algorithm to jointly train the deep network
and the regression function. We test our model on the head-
pose estimation problem. In this particular problem, we
show that inverse regression outperforms regression models
currently used by state-of-the-art computer vision methods.
Our method does not require the incorporation of additional
data, as it is often proposed in the literature, thus it is able
to work well on relatively small training datasets. Finally,
it outperforms state-of-the-art methods in head-pose esti-
mation using a widely used head-pose dataset. To the best
of our knowledge, we are the first to incorporate inverse
regression into deep learning for computer vision applica-
tions.

1. Introduction

Deep learning has been playing a very important role
in the computer vision field during the last years. Many
methods have been proposed for challenging tasks, such as
image classification [17, 33] or object detection [12, 29].
State-of-the-art results in these classification tasks have
been achieved with the use of Convolutional Neural Net-
works (ConvNets) trained to minimize a loss function on
the output of a softmax layer. Besides classification, Con-
vNets have also been employed to solve regression prob-
lems, e.g. image registration [21], organ volume estima-
tion [37], or salient object detection [19], just to name a
few. In most cases, when dealing with regression prob-
lems, the last softmax layer used in classification tasks is

replaced with a fully connected regression layer with lin-
ear or sigmoid activations that minimizes an Euclidean loss.
This type of configuration ignores the existence of other re-
gression techniques, like inverse regression models, that are
suitable in high-dimensional to low-dimensional settings
[6, 16, 18, 25] which are of particular interest in computer
vision. To identify the benefit of using inverse regression in-
stead of forward (or standard) regression, let’s consider the
simple case in which we want to estimate a linear regres-
sion from & € RP to y € R, with N training samples such
that D > N. The problem is ill-posed in the case of for-
ward regression (y = a' «, a € RP) and regularization is
required because one needs to estimate D parameters from
only N equations. Interestingly, for linear models in the in-
verse regression setting (z = a*y,a* € RP), the problem
is well defined since one still needs to estimate a set of D
parameters but from D x NN equations.

The most common strategy when using deep learning
consists in taking an architecture that has already proven
to be competitive (in our case VGG-16 [30], the model with
the smallest localization error on the ImageNet Large-Scale
Visual Recognition Challenge 2014 [28]), download a pre-
trained model, slightly modify it (e.g. replacing the last
softmax layer with a regression layer), and fine-tune it on
the particular application under study. In this scenario, we
propose a new output layer designed specifically to perform
regression. This output layer is a Gaussian mixture of in-
verse linear regressions. Mixtures of inverse linear regres-
sions [60] have already been successfully applied to hyper-
spectral image analysis [5], sound-source localization [7]
and head-pose estimation [8]. Moreover, it has been ex-
tended to mixtures of t-distributions [25] which provides an
inverse regression formulation that is robust to outliers.

We believe that inverse regression models are well-suited
in the deep learning framework because deep neural net-
works represent images in high-dimensional feature spaces
that must subsequently be mapped onto low-dimensional
manifolds. Interesting enough, recognizing the caveats of
high-dimensional regression and exploring inverse regres-
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sion models have received little attention in the literature of
both computer vision and deep learning fields. In this work,
we propose to couple a Gaussian mixture of linear inverse
regressions with a ConvNet, we describe the methodologi-
cal foundations and the associated algorithm to jointly train
the network and the regression function, and we evaluate
our model on the problem of head-pose estimation. The
training algorithm we propose is a fine-tuning procedure
designed to transfer the representations learned in a clas-
sification task to our specific problem. However, using pre-
trained ConvNets to estimate the head-pose is not an easy
task because very deep ConvNets have been trained to clas-
sify objects independently of their pose. As a consequence,
the deep features have been designed to be as pose-invariant
as possible. Conversely, in our case we want the model to be
highly dependent on the pose but independent of the person.

In this paper, we show that inverse regression outper-
forms Lo-based regression models currently used in head-
pose estimation. Our proposal works well without the use of
additional data, in opposition to other approaches yielding
state-of-the-art results. Finally, it outperforms state-of-the-
art methods in head-pose estimation using a widely used
head-pose dataset. The implementation of the proposed
method used in our experiments is publicly available'.

2. Related Work

In this section, we discuss deep learning approaches in
conjunction with regression methods. In addition, we re-
view the related work on head-pose estimation, since it is
used in our experiments for evaluation and comparison with
other methods.

Deep regression algorithms, where the goal is to predict
a set of interdependent continuous values, have been well
studied in recent years. For instance, in human pose estima-
tion, the target represents the positions of the human-body
joints [34]; in head-pose estimation, the target represent the
yaw, pitch and roll angles [22]; and in facial landmark de-
tection, the predicted target denotes the image locations of
the facial points [32]. In all aforementioned references, a
ConvNet has been trained using a loss function that mea-
sures the Lo distance of the prediction from the target, with-
out considering its vulnerability to outliers (as evidenced
by [2], where the authors argue that training a ConvNet us-
ing a loss function that is robust to outliers, e.g. Tukey’s
biweight function, results in faster convergence and better
generalization). Also, when substituting the final regression
layer by a more sophisticated regression, most of previous
networks employed discriminative approaches like random
forests [37] or support vector regression [ 1]. Finally, the

Ihttps://team.inria.fr/perception/research/
dmlir/

vast majority of existing works tries to solve a specific com-
puter vision task which is expressed as a regression problem
without focusing onto the regression framework itself. To
the best of our knowledge, there are no other methods that
attempt to incorporate inverse regression into deep learning
for computer vision applications.

Head-pose estimation is an important cue for tasks such
as human-robot interaction, computer-human interaction,
analysis of human behavior, or driver-assistance systems
[23]. The pose is typically expressed by three angles that
describe the orientation of the head (looking up or down:
pitch, left or right: yaw, and tilting left or right: roll).
The estimation of the pose parameters is challenging due to
changing illumination conditions, to the background scene,
to partial occlusions, and to inter-person and intra-person
variabilities.

There are few recent papers using deep learning to
regress the angles that determine the human head pose. The
pioneering work of Osadchy et al. [24] synergistically per-
forms face detection and pose estimation by employing a
ConvNet to map face images to points on a manifold pa-
rameterized by pose, and non-face images to points away
from that manifold. In [22], the authors use GoogLeNet
[33] and replace the last softmax layer with an Euclidean
loss layer that measures the L, distance of the prediction
from the target. Liu et al. [20] train on synthetic head im-
ages and employ a quite simple ConvNet (3 convolutional
and 2 fully connected layers; with a linear activation func-
tion to predict the head poses in the output layer) to per-
form head-pose estimation. A quite similar approach can
be found in [1], [36] and [27], where slightly different Con-
vNet architectures are used. Finally, HyperFace [26] is a
single ConvNet model (5 convolutional layers along with
3 fully connected layers using the Euclidean loss to train
the head-pose estimates) for simultaneous face detection,
landmark localization, pose estimation and gender classifi-
cation. The proposed method is one of the first attempts to
use a very deep pre-trained network to effectively tackle the
head-pose estimation problem.

3. Mixture of Linear Inverse Regressions

In this section we describe in detail the regression layer
of the proposed model. We consider a deep neural net-
work ¢ with weights w that maps an image i € R onto
a high-dimensional feature vector x = ¢(i;w) € RP.
The regression 7*, with parameters 6", maps x onto a low-
dimensional target y = r*(x;0") € RE with L < D.
The regression layer can be expressed probabilistically in
the following way. Let 2,  and y be realizations of the
random variables I, X and Y. The goal is to estimate the
target Y given an input image I and the model parame-
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ters (w, 8), i.e. the conditional density p(Y | (I; w); 6™).
Once this posterior distribution is estimated, one can predict
the target corresponding to an input based on the conditional
expectation of the target, namely § = r*(¢(¢; w); 0*) =
E[y|¢(i; w); 0], where w denotes the optimized values of
the weights.

Estimating a regression function defined over a high-
dimensional space, as above, is generally difficult because
one has to estimate a large number of parameters, typically
of the order of D?. We bypass this difficulty by training
an inverse regression, e.g. Fig. 1. More precisely, at train-
ing the low-dimensional target Y is the input to the re-
gressor, while the high-dimensional feature vector X is the
output. Hence, Y is assumed to lie on a low-dimensional
(linear or non-linear) manifold embedded in R” and pa-
rameterized by X. Choosing the low-dimensional vari-
able to be the input implies a smaller number of param-
eters, typically L(D + L)), to be estimated. Hence, the
parameters of the inverse conditional density are estimated
at training, i.e. p(¢(I;w)|Y;0), from which the forward
conditional density is then derived and used for prediction,
ie. p(Y|¢p(I;w);0"). Such an inverse regression can be
implemented with either non-parametric [ 8] or parametric
[6, 25] methods. The advantage of the latter over the former
is twofold: (i) the inverse parameters € can be estimated in
closed-form either with Gaussian mixtures [0] or with mix-
tures of t-distributions [25], and (ii) the forward parameters
0" can be analytically derived from the inverse parameters
with both these two mixture models. Moreover, a paramet-
ric model allows us to alternate between the optimization of
the network weights and of the regression parameters.

We consider the following mixture of K affine regres-
sions:

=k)(AyY + by, + Ey), (1)

where I is the indicator function, Z is a hidden variable
such that Z = k if and only if X is the result of map-
ping Y using the affine transformation A;yY + by, with
Ay € RP*L and by, € RP, and Ej, € RP is an error vec-
tor. By marginalization over Z, the joint probability of y
and x can be written as p(x, y; 0, w) = Zszl p(xly, Z =
k;0,w)p(y|Z = k;0)p(Z = k;0). Under the assump-
tion that E, is a zero-mean Gaussian variable with diago-
nal covariance X3, € RP*P, we obtain that p(z|y, Z =
k;0,w) = N(x;Ary + br, Xy). We further assume that
Y follows a mixture of Gaussians. We can now write
p(YlZ = k;0) = N(y;cx,Ty) and p(Z = k;0) = my,
where ¢, € R, T, € REXE and Zszl 7 = 1.

Altogether, the regression layer is described by the pa-
rameter set 6 = {cy, L'y, Tg, Ak, by, i He_ ;. Both 6 and

x = ¢(i,w)
! !

(] (]

(a) Inverse training (b) Forward prediction

Figure 1: The method proposed in this paper performs train-
ing by gluing inverse regression (r parameterized by 8) and
network fine-tuning (¢ parameterized by w) in an EM pro-
cedure. The parameters 8™ of the forward regression r* can
be derived analytically from 6, which allows to predict a
target y associated with an input <.

w can be estimated via the EM algorithm described in de-
tail in Sec. 4. Once optimal values for 8 and w are esti-
mated, namely 0 and w, the inverse conditional density can
be written as:

K
p(li; w)|y:0) = 3 N

k=1

(4 w); Apy+by, i), (2)

with 7, = 7N (y; &, Tk)/ Z 7T
j=1
ward predictive distribution can then be expressed as:

ka

N (y;e;T;). The for-

(y; Ard(; w) + b, 3),

3)

p(ylo(i; w)

K

with vf = miN(z; ¢}, T)/ 21 i N(x; c;.T'5) and with
‘7:

parameters 0* = {c;,T;, 7, A}, by, E:H< . An inter-

esting feature of this model is that the forward parameters

0" can be expressed analytically from the inverse parame-

ters 0:

cz = Apcy + by,

;=3 +ATRAL,

T = Tk,

AL =SiA ST

by =I5 (T ter — AL 2 by,
= (T + AL S MA) !
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As a consequence, one can use the conditional expectation
associated with (3) to predict a target:

K
g =r"(( ZV (Aro(i;w) +b). (4
k=1

4. Training the Proposed Model

In this section we describe the estimation of the model
parameters 6 and w based on an expectation-maximization
algorithm and using a training dataset {i,,y, }_,, i.e.
Alg. 1. Fig. 2 shows the proposed training applied to a toy
example.

The E-step updates the posterior probabilities with the
following expression:
MS};H) =p(Zn = k|Y,,, Tn; g(i)7'w(i))
T DY @0l Zo = k; 09, w)

- )
zj{l g()p('ym-’/ﬂn\Z —1,9(1 w(?)

with:

p(ynvwnlzn = k;07w) :p(wn|yn7Zn = k§07w)

X p(Yp|Zn =k;0)  (6)

The M-step performs the following maximization:
(0(i+1)7w(i+1)) —
argmax E[log p((xv Y, Z)I:N; 07 w)'(ya i)l:N; O(Z)a w(l)]
(6,w)
)

This is further decomposed in three sub-steps: M-GMM-
step, M-Mapping-step, and the M-Network-step, i.e. Alg. 1.
The update formulae for the parameters 6 can be found in
[6]. The network’s weights are estimated as follows. By de-
veloping the expected complete-data log-likelihood (7) and
after keeping the terms that depend on w, we obtain the
following loss function:

N K
w) = Z ZP(ZVL = k[(Y,,%n))

n=1k=1
x log p(@(in, w)|y,,, Zn = k;0)
N K
=3 palog p(@(in, w)ly,,, Zn = k;6)
n=1k=1
N K
= Z Z Hnk log N(¢(Zn7 ’l.U); Ak:yn + bk, Ek)
n=1k=1

®)

Data: Training dataset (,y))\_,. 5, number of
components K, and convergence threshold
e e R;

Result: 6 and w;

Initialize *) and w(©);

while |00 -0 > ¢ do

E-step: Update the posteriors

plt) = {u,sf,jl)}n 1 k=1 given the current

parameters 6" and weights w ().
M-GMM-step: Update the mixture parameters
c(iH), I‘(Hl), (H_l), }k 1 given the posteriors
£t and the current mapping parameters and
the current network weights;

M-Mapping-step: Update the affine parameters
{Ag’ﬂ), bgﬂ), ESCZH) }X_ | given the posteriors
1) | the mixture parameters and the current
network weights, and

M-Network-step: Update the weights w (1)
given the posteriors p(“+1) and the current
parameter values 1)

end
Algorithm 1: EM algorithm for deep inverse regression.

If we further assume that the error covariances are
isotropic, i.e. Xy = )\,;111 where A\, € R > 0 is the preci-
sion associated with each affine transformation, we obtain
the following loss function:

Z /lnkAkHAkynwLbk* O (i, w )HQ ©)

This loss function has the form of a weighted mean-squared
error and hence gradient descent techniques for deep neural
network optimization are well suited and can be easily used
[13]. Notice however that gradient stability issues are com-
mon. In particular deep regression can be difficult to train
when the target space is unbounded because it is likely to
lead to exploding gradient problems [3]. As a consequence,
the targets «,, may reach really high values after a few EM
iterations. To avoid this problem we use a normalization
layer [14]. Moreover this layer avoids converging to the un-
desirable solution where A, = 0 and by = 0 that would
maximize the likelihood.

The proposed EM algorithm is initialized as follows. We
first perform clustering in the target space using a standard
procedure, i.e. K-means with random initializations fol-

lowed by fitting a GMM. This yields initial values for the

posteriors, namely u( k) Notice however from (6) that the

posteriors depend on feature clustering as well and this clus-
tering is not reliable at the start of the algorithm. For this
reason, we freeze the E-step (the posteriors are set to their
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E-step M-GMM step

M-Mapping step M-Network step

Figure 2: Training the deep inverse regression EM with a toy example, e.g. L = 1, D = 2 and K = 2. The E-step computes

the posteriors uif,j 2

. The M-GMM-step fits a mixture to the data given the posteriors. The M-mapping-step estimates the

parameters of the affine regressions (the two lines illustrate the projection of the target space onto the feature space). Finally,
the M-network-step fine-tunes the network weights via minimization of a mean-square error loss function.

initial values) and perform a few iterations of the M steps,
which amounts to alternate between updating the regression
parameters and tuning the network weights.

Finally, it is worth mentioning that the proposed inverse
regression can be used with a single Gaussian distribution,
i.e. K = 1. In this case (1) reducesto X = AY + b+ E
where, again, E is a zero-mean Gaussian variable with
diagonal covariance ¥ € RP*P, hence p(y|x;0) =
N (y|Az + b, X). Notice that it is still interesting to train a
low-dimensional to high-dimensional mapping (inverse re-
gression), on the following grounds. The low-to-high re-
gression that we propose to train provides D linear con-
straints with D x (L4 2) free parameters. Hence, one needs
a minimum L 4 2 image-target training pairs to estimate
the model parameters. In contrast, high-to-low regression
would have provided L linear constraints for training, with
L x (D+2) free parameters; D+2 image-target pairs would
have been at least necessary for training.

Because there is no assignment variable in the case of a
single Gaussian, the training procedure alternates between
estimating the regression parameters A, b and ¥, and updat-
ing the network weights w, i.e. M-step iterations of Alg. 1.

S. Experiments

In this section we first describe the datasets used to evalu-
ate the performance of our model. After that, we present the
ConvNet architecture employed and the results obtained.

Datasets. The Biwi Kinect head-pose dataset [10] con-
sists of over 15K images including video recordings of 20
people (16 men, 4 women, some of them recorded twice)
using a Kinect camera. During the recordings, the partic-
ipants freely move their head and the corresponding head
angles lie in the intervals [—60°,60°] (pitch), [—75°, 75°]

(yaw), and [—20°, 20°] (roll). Fig. 4 shows examples of the
synthetic images generated.

s == =

Figure 3: Example frames of the Biwi head-pose dataset.

We employed the following protocol to create a fair data
partition: we run Support Vector Regression (SVR) [31]
on HOG features [4] using an 8-fold cross-validation (21
randomly selected videos for training and the remaining 3
videos for test). After that, we ordered the performance on
each fold in terms of their MSE and, finally, we kept the
best performing fold for the HOG-based methods and the
median performing fold for the VGG-based methods. We
acted in this manner to give some advantage to the most
simple approaches and to avoid a bias towards our deep
learning proposal. In other words, HOG-based methods are
trained and tested on the most advantageous fold for them.
It is important to notice that we used 20% of the training set
as validation set, and that no person appears both in training
and test sets.

The main drawback of the Biwi dataset is that most of
faces are looking squarely or present small angles. So, the
distribution of the targets is almost Gaussian. Since we sus-
pected this property would favor models with a low num-
ber of Gaussians, we evaluated our proposal with differ-
ent target distributions. To do so, we created a synthetic
dataset utilizing the MakeHuman 3D software’ to gener-
ate 50 different body models. Parameters like age, gen-
der or color skin were randomly selected by the software.
Then, we randomly generated 100K images of the models’

2www.makehuman.org
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head with uniformly distributed angles. To ensure robust-
ness during training, each generated image has a randomly
selected lighting position and color for the OpenGL engine
lighting system. Fig. 4 shows examples of the synthetic im-
ages generated.

2929

Figure 4: Example frames of our synthetic head-pose
dataset.

We generated two smaller datasets (approximately 20K
images per dataset) from this uniformly sampled dataset.
First, we selected the images in order to obtain a mix-
ture of two Gaussians centered around (35°,60°,0°) and
(—35°,—60°,0°). This dataset is referred to as S2G dataset
(Synthetic with 2 Gaussians), and is used to study the im-
pact of the target distribution on the number of Gaussians
employed (K). Secondly, we removed some images from
the uniformly distributed dataset with a Gaussian of mean
(0°,0°,0°). This dataset is referred to as SSV dataset (Syn-
thetic with only Side Views). Since the distribution of poses
in the SSV dataset is not directly obtained by combining
Gaussian distributions, it can be considered as a difficult
case for our model in which we could think that K'=1 would
not necessarily perform well.

ConvNet architectures. In practice, it is relatively diffi-
cult to train an entire ConvNet from scratch because it re-
quires a sufficiently large dataset. Furthermore, if the net-
work is very deep, an important amount of computational
power would be necessary. A common alternative approach
consists in taking a network already trained on ImageNet
and use its weights as initialization to train your own Con-
vNet. In this paper, we use VGG-16 [30]. However, since
these networks have been trained to solve a classification
task, they have learned to be invariant to the pose of ob-
jects. On the contrary, we want our model to be indepen-
dent of the object but highly dependent on the pose. To face
this problem, we use the initialization procedure explained
in the last paragraph of Section 4.

The size of the last fully-connected layer of VGG-16
pre-trained on ImageNet is relatively large (4096) as it is
designed to recognize approximately 1000 objects. How-
ever, in our case we predict only three angles. Thus, we can
reduce this dimension in order to reduce the number of pa-
rameters in the network and hence the computation burden.
To do so, we add a fully connected layer of size 512 with

a linear activation function and initialize it with the eigen-
vectors of a PCA trained on the output of the network. This
layer is added before the batch normalizer. This solution
presents the advantage that back propagation can be easily
performed through this layer.

In practice, we do not exactly iterate between E and M
steps as described in Alg.1. We first alternate between the
E step and the two M-GMM and M-Mapping steps. When
convergence has been reached, we apply the M-Network
step. This procedure has two advantages. First, the network
weights are not modified before having good mapping func-
tions. Secondly, the @ updates are performed with the CPU
whereas the M-Network utilizes the GPU. The computation
is faster if we do not alternate too often between CPU and
GPU operations.

Comparison Between Regression Models. We show the
results from a series of experiments in order to illustrate
the effectiveness of the proposed model. In Table 1, we
compare 7 different regression models:

e (0°,0°,0°): In order to have a reference about the
learning ability of our model we introduce this mean
pose estimator, i.e. a fictitious method that always re-
turn (0°,0°,0°) as predicted angles.

e HOG-SVR: An SVR is trained using the HOG repre-
sentation of the input images. The HOG features used
in this paper were extracted following the same strat-
egy asin [9],i.e. a HOG pyramid (p-HOG) by stacking
HOG descriptors at multiple resolutions and providing
a feature vector of dimension 1888.

e HOG-IR: An inverse regression (IR) approach equiv-
alent to the model described in [0] with a mixture of
50 affine mappings is trained using HOG features. In
other words, HOG-IR is equivalent to our proposal in
the case /=50, without the M-network step, and using
HOG features instead of a deep network.

e VGG-SVR: We remove the softmax layer of VGG-16
trained on ImageNet, and we train an SVR to predict
the head pose angles from the network features.

e VGG-IR: In this case, after removing the softmax layer
of the pre-trained VGG-16, our inverse regressor is
trained on the output of this network without perform-
ing the M-network step and K=50.

e VGG-FCL-FT: We replace the softmax layer of a pre-
trained VGG-16 by a fully connected layer (FCL) of
3 units and a linear activation function. This layer is
trained with a loss function that measures the Lo dis-
tance of the prediction from the target. To draw a fair
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comparison, we trained this network with different op-
timizers and kept the best result. We obtained this re-
sult with SGD optimizer, a learning rate of 10~ and
a learning decay of 0.5 every 3 epochs. We fine-tune
(FT) for 3 epochs only the last layer and then the last
four layers. The loss is similar to the commonly em-
ployed in the literature [ 15, 22, 32, 34]. It is important
to mention that the results reported here are obtained
with the use of a batch normalizer before the regres-
sion layer as we obtained poor results without it.

e VGG-IR-FT: This is our proposal. The results dis-
played in Table 1 correspond to the best performing
number of Gaussians (K=2), as shown in Table 2.

Pitch  Yaw Roll | Mean
(0°,0°,0°) 23.92 28.50 8.48 | 20.30
HOG-SVR 8.50  6.45 5.04 | 6.66
HOG-IR 6.39 5.69  4.77 | 5.62
VGG-SVR 10.60 19.34 7.79 | 12.57
VGG-IR 15.26 26.79 10.76 | 17.60
VGG-FCL-FT 5.65 444 293 | 4.34
VGG-IR-FT (proposed) | 4.68 312  3.07 | 3.62

Table 1: Comparison of different methods on the Biwi head-
pose database. Mean absolute errors are given in degrees.
The best results are highlighted in bold.

First, we notice that, with HOG features, the inverse re-
gressor outperforms SVR (a forward regressor). However,
the results obtained using the deep features given by the
pre-trained VGG (VGG-SVR and VGG-IR) are somewhat
disappointing, since the error obtained is much worse than
the one obtained by HOG-based methods. This could il-
lustrate the previously mentioned pose-invariance property
of the pre-trained VGG-16. These results also show that
deep features can hardly be used for head-pose estimation
without fine-tuning. In fact, if we fine-tune the network we
obtain comparable results to state-of-the-art. The proposed
method improves the result by 0.71 degrees with respect to
VGG-FCL-FT.

In Table 2, we study how the performance of our pro-
posal (VGG-IR-FT) evolves as we increase K. We also
study how this performance is affected by the type of dataset
employed. From the results obtained one can hardly draw a
definitive conclusion. On real data, K'=2 provides the best
performance. However, on cases specifically designed to
make fail the model employing K=1 (52G and SSV), we
obtain comparable results independently of the value of K.
This behavior can be explained by the following reasons.
First, the difficulty of the synthetic datasets is not enough to
make fail the model with K'=1. Second, as we can see in
(5), the updates of the EM algorithm do not depend only on

K=1 K=2

Biwi | 5.12/3.45/339 4.68/3.12/3.07
S2G | 2.87/3.54/1.65 2.53/3.36/1.97
SSV | 3.12/3.75/2.01 2.86/3.83/2.04
K=5 K=10

Biwi | 5.55/3.74/4.01 5.93/3.45/3.99
S2G | 2.63/3.33/1.94 2.89/3.35/2.06
SSV | 2.77/4.12/1.95  2.74/3.91/2.18

Table 2: Mean absolute error in degrees for the
Pitch/Yaw/Roll angles on three datasets using VGG-IR-FT
and different K values. The best results per angle and
dataset are highlighted in bold.

the target distribution but also rely on the existing clusters in
feature space. So, the optimal K cannot be established only
by looking at the target distribution. In particular, in S2G
the model seems to favor the pre-existing clustering in fea-
ture space over the mixture of two Gaussians in the target
space (as would happen if the best performing model was
K=2). In practical terms, one reasonable solution would
be to use K=1 by default, since it reduces the complexity
of the approach and at the same time provides sufficiently
good results. It confirms that deep neural networks are ef-
fective linearizers and therefore adding a nonlinearity in the
regression layer does not help very much. The benefit of
the proposed model comes mainly from the inverse formu-
lation.

Head-Pose Estimation State-of-the-Art Comparison.
We compare the performance of our proposal with state-
of-the-art methods on head-pose estimation.

\ Pitch Yaw Roll \ Mean

Methods using only RGB
Liu et al.[20] 6.1 6.0 5.7 | 594
Mukherjee et al.[22] 5.18 5.67 / 5.43
Drouard et al.[9] 543 424 4.13 | 4.60

VGG-IR-FT (proposed) | 4.68 312 3.07 | 3.62
Methods using additional information

Wang et al.[35]** 8.5 8.8 7.4 8.23
Mukherjee et al.[22]** | 4.76  5.32 / 5.04
Fanelli et al.[10]** 3.8 3.5 5.4 4.23
Livetal [20]* 4.5 4.3 24 | 3.73

Table 3: Comparison of different methods on the Biwi head-
pose database. Mean absolute errors are given in degrees.
The last four methods use additional or slightly different
data (*extra annotation used for training, **3D depth data used). The
best results are highlighted in bold.

As can be seen in Table 3, our proposal VGG-IR-FT out-
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performs state-of-the-art approaches. Drouard et al.[9], in
an extension of their previous work [8], employ 4 partially-
latent variables in their mixture of linear regression ap-
proach to establish the state-of-the-art. Moreover, we can
even compete with methods using additional information
(see the last four methods in Table 3). Deep learning is not
used neither in [10] nor in [35], and both use depth infor-
mation. Importantly, our approach provides a competitive
performance even in absence of this additional information.
In [20], Liu et al. train using synthetic data because oth-
erwise they get results comparable to the ones provided by
HOG-based methods. Their experience confirms the intu-
ition that a forward regression technique does not perform
well without using a large dataset. Among all competitor
methods the only one using a very deep network is Mukher-
jee et al. [22]. They use a GoogLeNet architecture on both
RGB and depth images. The superiority of VGG-IR-FT can
indicate again the benefits of using inverse regression. Fi-
nally, an important remark is that all these results could even
be further improved by including temporal information, e.g.
the temporally stable head-pose estimation proposed by [1].

In order to compare the sensibility to the training set size,
we randomly down-sample the Biwi database training set.
We show the results in Table 4. We can notice that even
employing only 40% of data we are competitive with most
of the methods in Table 3. The performance seems to scale
linearly with respect to the available training set size. This
trend seems to suggest that additional data would further
improve the performance.

Pitch Yaw Roll | Mean
20% 9.36 7.00 6.19 | 7.55
40% 6.2 5.00 5.14 | 5.45
60% 6.33 4.33 4.18 | 4.95
80% 5.49 3.77 4.12 | 4.46
100% | 4.68 3.12 3.07 | 3.62

Table 4: Influence on the mean absolute error of amount
of training data employed as percentage of total number of
training examples in the Biwi dataset.

6. Conclusions

In this paper, we propose the coupling of a Gaussian
mixture of linear inverse regressions with a ConvNet, we
describe the methodological foundations and the associated
algorithm to jointly train the deep network and the regres-
sion function, and we evaluate our model on the problem
of head-pose estimation. From an experimental point of
view, our contribution can be summarized as follows. First,
we show that the proposed inverse regression model out-
performs Lo-based regression models used by most of the

state-of-the-art computer vision methods, at least in the case
of head-pose estimation. Second, our method works effec-
tively on relatively small training datasets, without the need
of incorporating additional data, as it is often proposed in
the literature. Lastly, our proposal outperforms state-of-
the-art methods in head-pose estimation testing on the most
widely used head-pose dataset. To the best of our knowl-
edge, we are the first to propose an inverse regression ap-
proach to train a deep network. As future work, we plan
to test our method on other computer vision problems, like
facial keypoint detection or full body pose estimation, and
extend the type of distributions used in our mixtures, as for
example t-distributions to make the model more robust to
outliers.
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