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2Computing and Numerical Analysis Department, Cordoba University, Spain

stephane.lathuiliere@inria.fr

Abstract

Convolutional Neural Networks (ConvNets) have be-

come the state-of-the-art for many classification and re-

gression problems in computer vision. When it comes to

regression, approaches such as measuring the Euclidean

distance of target and predictions are often employed as

output layer. In this paper, we propose the coupling of a

Gaussian mixture of linear inverse regressions with a Con-

vNet, and we describe the methodological foundations and

the associated algorithm to jointly train the deep network

and the regression function. We test our model on the head-

pose estimation problem. In this particular problem, we

show that inverse regression outperforms regression models

currently used by state-of-the-art computer vision methods.

Our method does not require the incorporation of additional

data, as it is often proposed in the literature, thus it is able

to work well on relatively small training datasets. Finally,

it outperforms state-of-the-art methods in head-pose esti-

mation using a widely used head-pose dataset. To the best

of our knowledge, we are the first to incorporate inverse

regression into deep learning for computer vision applica-

tions.

1. Introduction

Deep learning has been playing a very important role

in the computer vision field during the last years. Many

methods have been proposed for challenging tasks, such as

image classification [17, 33] or object detection [12, 29].

State-of-the-art results in these classification tasks have

been achieved with the use of Convolutional Neural Net-

works (ConvNets) trained to minimize a loss function on

the output of a softmax layer. Besides classification, Con-

vNets have also been employed to solve regression prob-

lems, e.g. image registration [21], organ volume estima-

tion [37], or salient object detection [19], just to name a

few. In most cases, when dealing with regression prob-

lems, the last softmax layer used in classification tasks is

replaced with a fully connected regression layer with lin-

ear or sigmoid activations that minimizes an Euclidean loss.

This type of configuration ignores the existence of other re-

gression techniques, like inverse regression models, that are

suitable in high-dimensional to low-dimensional settings

[6, 16, 18, 25] which are of particular interest in computer

vision. To identify the benefit of using inverse regression in-

stead of forward (or standard) regression, let’s consider the

simple case in which we want to estimate a linear regres-

sion from x ∈ R
D to y ∈ R, with N training samples such

that D ≫ N . The problem is ill-posed in the case of for-

ward regression (y = a⊤x,a ∈ R
D) and regularization is

required because one needs to estimate D parameters from

only N equations. Interestingly, for linear models in the in-

verse regression setting (x = a∗y,a∗ ∈ R
D), the problem

is well defined since one still needs to estimate a set of D
parameters but from D ×N equations.

The most common strategy when using deep learning

consists in taking an architecture that has already proven

to be competitive (in our case VGG-16 [30], the model with

the smallest localization error on the ImageNet Large-Scale

Visual Recognition Challenge 2014 [28]), download a pre-

trained model, slightly modify it (e.g. replacing the last

softmax layer with a regression layer), and fine-tune it on

the particular application under study. In this scenario, we

propose a new output layer designed specifically to perform

regression. This output layer is a Gaussian mixture of in-

verse linear regressions. Mixtures of inverse linear regres-

sions [6] have already been successfully applied to hyper-

spectral image analysis [5], sound-source localization [7]

and head-pose estimation [8]. Moreover, it has been ex-

tended to mixtures of t-distributions [25] which provides an

inverse regression formulation that is robust to outliers.

We believe that inverse regression models are well-suited

in the deep learning framework because deep neural net-

works represent images in high-dimensional feature spaces

that must subsequently be mapped onto low-dimensional

manifolds. Interesting enough, recognizing the caveats of

high-dimensional regression and exploring inverse regres-
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sion models have received little attention in the literature of

both computer vision and deep learning fields. In this work,

we propose to couple a Gaussian mixture of linear inverse

regressions with a ConvNet, we describe the methodologi-

cal foundations and the associated algorithm to jointly train

the network and the regression function, and we evaluate

our model on the problem of head-pose estimation. The

training algorithm we propose is a fine-tuning procedure

designed to transfer the representations learned in a clas-

sification task to our specific problem. However, using pre-

trained ConvNets to estimate the head-pose is not an easy

task because very deep ConvNets have been trained to clas-

sify objects independently of their pose. As a consequence,

the deep features have been designed to be as pose-invariant

as possible. Conversely, in our case we want the model to be

highly dependent on the pose but independent of the person.

In this paper, we show that inverse regression outper-

forms L2-based regression models currently used in head-

pose estimation. Our proposal works well without the use of

additional data, in opposition to other approaches yielding

state-of-the-art results. Finally, it outperforms state-of-the-

art methods in head-pose estimation using a widely used

head-pose dataset. The implementation of the proposed

method used in our experiments is publicly available1.

2. Related Work

In this section, we discuss deep learning approaches in

conjunction with regression methods. In addition, we re-

view the related work on head-pose estimation, since it is

used in our experiments for evaluation and comparison with

other methods.

Deep regression algorithms, where the goal is to predict

a set of interdependent continuous values, have been well

studied in recent years. For instance, in human pose estima-

tion, the target represents the positions of the human-body

joints [34]; in head-pose estimation, the target represent the

yaw, pitch and roll angles [22]; and in facial landmark de-

tection, the predicted target denotes the image locations of

the facial points [32]. In all aforementioned references, a

ConvNet has been trained using a loss function that mea-

sures the L2 distance of the prediction from the target, with-

out considering its vulnerability to outliers (as evidenced

by [2], where the authors argue that training a ConvNet us-

ing a loss function that is robust to outliers, e.g. Tukey’s

biweight function, results in faster convergence and better

generalization). Also, when substituting the final regression

layer by a more sophisticated regression, most of previous

networks employed discriminative approaches like random

forests [37] or support vector regression [11]. Finally, the

1https://team.inria.fr/perception/research/

dmlir/

vast majority of existing works tries to solve a specific com-

puter vision task which is expressed as a regression problem

without focusing onto the regression framework itself. To

the best of our knowledge, there are no other methods that

attempt to incorporate inverse regression into deep learning

for computer vision applications.

Head-pose estimation is an important cue for tasks such

as human-robot interaction, computer-human interaction,

analysis of human behavior, or driver-assistance systems

[23]. The pose is typically expressed by three angles that

describe the orientation of the head (looking up or down:

pitch, left or right: yaw, and tilting left or right: roll).

The estimation of the pose parameters is challenging due to

changing illumination conditions, to the background scene,

to partial occlusions, and to inter-person and intra-person

variabilities.

There are few recent papers using deep learning to

regress the angles that determine the human head pose. The

pioneering work of Osadchy et al. [24] synergistically per-

forms face detection and pose estimation by employing a

ConvNet to map face images to points on a manifold pa-

rameterized by pose, and non-face images to points away

from that manifold. In [22], the authors use GoogLeNet

[33] and replace the last softmax layer with an Euclidean

loss layer that measures the L2 distance of the prediction

from the target. Liu et al. [20] train on synthetic head im-

ages and employ a quite simple ConvNet (3 convolutional

and 2 fully connected layers; with a linear activation func-

tion to predict the head poses in the output layer) to per-

form head-pose estimation. A quite similar approach can

be found in [1], [36] and [27], where slightly different Con-

vNet architectures are used. Finally, HyperFace [26] is a

single ConvNet model (5 convolutional layers along with

3 fully connected layers using the Euclidean loss to train

the head-pose estimates) for simultaneous face detection,

landmark localization, pose estimation and gender classifi-

cation. The proposed method is one of the first attempts to

use a very deep pre-trained network to effectively tackle the

head-pose estimation problem.

3. Mixture of Linear Inverse Regressions

In this section we describe in detail the regression layer

of the proposed model. We consider a deep neural net-

work φ with weights w that maps an image i ∈ R
M onto

a high-dimensional feature vector x = φ(i;w) ∈ R
D.

The regression r∗, with parameters θ∗, maps x onto a low-

dimensional target y = r∗(x;θ∗) ∈ R
L with L ≪ D.

The regression layer can be expressed probabilistically in

the following way. Let i, x and y be realizations of the

random variables I , X and Y . The goal is to estimate the

target Y given an input image I and the model parame-
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ters (w,θ∗), i.e. the conditional density p(Y |φ(I;w);θ∗).
Once this posterior distribution is estimated, one can predict

the target corresponding to an input based on the conditional

expectation of the target, namely ŷ = r∗(φ(i; w̄);θ∗) =
E[y|φ(i; w̄);θ∗], where w̄ denotes the optimized values of

the weights.

Estimating a regression function defined over a high-

dimensional space, as above, is generally difficult because

one has to estimate a large number of parameters, typically

of the order of D2. We bypass this difficulty by training

an inverse regression, e.g. Fig. 1. More precisely, at train-

ing the low-dimensional target Y is the input to the re-

gressor, while the high-dimensional feature vector X is the

output. Hence, Y is assumed to lie on a low-dimensional

(linear or non-linear) manifold embedded in R
D and pa-

rameterized by X . Choosing the low-dimensional vari-

able to be the input implies a smaller number of param-

eters, typically L(D + L)), to be estimated. Hence, the

parameters of the inverse conditional density are estimated

at training, i.e. p(φ(I;w)|Y ;θ), from which the forward

conditional density is then derived and used for prediction,

i.e. p(Y |φ(I; w̄);θ∗). Such an inverse regression can be

implemented with either non-parametric [18] or parametric

[6, 25] methods. The advantage of the latter over the former

is twofold: (i) the inverse parameters θ can be estimated in

closed-form either with Gaussian mixtures [6] or with mix-

tures of t-distributions [25], and (ii) the forward parameters

θ∗ can be analytically derived from the inverse parameters

with both these two mixture models. Moreover, a paramet-

ric model allows us to alternate between the optimization of

the network weights and of the regression parameters.

We consider the following mixture of K affine regres-

sions:

X =

K
∑

k=1

I(Z = k)(AkY + bk +Ek), (1)

where I is the indicator function, Z is a hidden variable

such that Z = k if and only if X is the result of map-

ping Y using the affine transformation AkY + bk, with

Ak ∈ R
D×L and bk ∈ R

D, and Ek ∈ R
D is an error vec-

tor. By marginalization over Z, the joint probability of y

and x can be written as p(x,y;θ,w) =
∑K

k=1 p(x|y, Z =
k;θ,w)p(y|Z = k;θ)p(Z = k;θ). Under the assump-

tion that Ek is a zero-mean Gaussian variable with diago-

nal covariance Σk ∈ R
D×D, we obtain that p(x|y, Z =

k;θ,w) = N (x;Aky + bk,Σk). We further assume that

Y follows a mixture of Gaussians. We can now write

p(y|Z = k;θ) = N (y; ck,Γk) and p(Z = k;θ) = πk,

where ck ∈ R
L, Γk ∈ R

L×L and
∑K

k=1 πk = 1.

Altogether, the regression layer is described by the pa-

rameter set θ = {ck,Γk, πk,Ak, bk,Σk}
K
k=1. Both θ and

(a) Inverse training (b) Forward prediction

Figure 1: The method proposed in this paper performs train-

ing by gluing inverse regression (r parameterized by θ) and

network fine-tuning (φ parameterized by w) in an EM pro-

cedure. The parameters θ∗ of the forward regression r∗ can

be derived analytically from θ, which allows to predict a

target y associated with an input i.

w can be estimated via the EM algorithm described in de-

tail in Sec. 4. Once optimal values for θ and w are esti-

mated, namely θ̄ and w̄, the inverse conditional density can

be written as:

p(φ(i; w̄)|y; θ̄) =
K
∑

k=1

ν̄kN (φ(i; w̄); Āky+b̄k, Σ̄k), (2)

with ν̄k = π̄kN (y; c̄k, Γ̄k)/
K
∑

j=1

π̄jN (y; c̄jΓ̄j). The for-

ward predictive distribution can then be expressed as:

p(y|φ(i; w̄);θ∗) =
K
∑

k=1

ν∗k N (y;A∗

kφ(i; w̄) + b∗k,Σ
∗

k),

(3)

with ν∗k = π∗

kN (x; c∗k,Γ
∗

k)/
K
∑

j=1

π∗

jN (x; c∗j .Γ
∗

j ) and with

parameters θ∗ = {c∗k,Γ
∗

k, π
∗

k,A∗

k, b
∗

k,Σ
∗

k}
K
k=1. An inter-

esting feature of this model is that the forward parameters

θ∗ can be expressed analytically from the inverse parame-

ters θ:

c∗k = Akck + bk,

Γ
∗

k = Σk + AkΓkA⊤

k ,

π∗

k = πk,

A∗

k = Σ
∗

kA⊤

k Σ
−1
k ,

b∗k = Σ
∗

k(Γ
−1
k ck − A⊤

k Σ
−1
k bk),

Σ
∗

k = (Γ−1
k + A⊤

k Σ
−1
k Ak)

−1.
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As a consequence, one can use the conditional expectation

associated with (3) to predict a target:

ŷ = r∗(φ(i; w̄);θ∗) =

K
∑

k=1

ν∗k(A
∗

kφ(i; w̄) + b∗k). (4)

4. Training the Proposed Model

In this section we describe the estimation of the model

parameters θ and w based on an expectation-maximization

algorithm and using a training dataset {in,yn}
N
n=1, i.e.

Alg. 1. Fig. 2 shows the proposed training applied to a toy

example.

The E-step updates the posterior probabilities with the

following expression:

µ
(i+1)
nk =p(Zn = k|yn,xn;θ

(i),w(i))

=
π
(i)
k p(yn,xn|Zn = k;θ(i),w(i))

∑K

j=1 π
(i)
j p(yn,xn|Zn = j;θ(i),w(i))

(5)

with:

p(yn,xn|Zn = k;θ,w) =p(xn|yn, Zn = k;θ,w)

× p(yn|Zn = k;θ) (6)

The M-step performs the following maximization:

(θ(i+1),w(i+1)) =

argmax
(θ,w)

E
[

log p((x,y, Z)1:N ;θ,w)|(y, i)1:N ;θ(i),w(i)
]

(7)

This is further decomposed in three sub-steps: M-GMM-

step, M-Mapping-step, and the M-Network-step, i.e. Alg. 1.

The update formulae for the parameters θ can be found in

[6]. The network’s weights are estimated as follows. By de-

veloping the expected complete-data log-likelihood (7) and

after keeping the terms that depend on w, we obtain the

following loss function:

L(w) =

N
∑

n=1

K
∑

k=1

p(Zn = k|(yn, in))

× log p(φ(in,w)|yn, Zn = k;θ)

=

N
∑

n=1

K
∑

k=1

µnk log p(φ(in,w)|yn, Zn = k;θ)

=
N
∑

n=1

K
∑

k=1

µnk log N (φ(in,w);Akyn + bk,Σk)

(8)

Data: Training dataset (i,y)Nn=1:N , number of

components K, and convergence threshold

ǫ ∈ R;

Result: θ and w;

Initialize θ(0) and w(0);

while ||θ(i+1)
-θ(i)|| > ǫ do

E-step: Update the posteriors

µ(i+1) = {µ
(i+1)
nk }N,K

n=1,k=1 given the current

parameters θ(i) and weights w(i).

M-GMM-step: Update the mixture parameters

{c
(i+1)
k ,Γ

(i+1)
k , π

(i+1)
k , }Kk=1 given the posteriors

µ(i+1) and the current mapping parameters and

the current network weights;

M-Mapping-step: Update the affine parameters

{A
(i+1)
k , b

(i+1)
k ,Σ

(i+1)
k }Kk=1 given the posteriors

µ(i+1), the mixture parameters and the current

network weights, and

M-Network-step: Update the weights w(i+1)

given the posteriors µ(i+1) and the current

parameter values θ(i+1).

end

Algorithm 1: EM algorithm for deep inverse regression.

If we further assume that the error covariances are

isotropic, i.e. Σk = λ−1
k I where λk ∈ R > 0 is the preci-

sion associated with each affine transformation, we obtain

the following loss function:

L(w) =

N
∑

n=1

K
∑

k=1

µnkλk||Akyn + bk − φ(in,w)||22 (9)

This loss function has the form of a weighted mean-squared

error and hence gradient descent techniques for deep neural

network optimization are well suited and can be easily used

[13]. Notice however that gradient stability issues are com-

mon. In particular deep regression can be difficult to train

when the target space is unbounded because it is likely to

lead to exploding gradient problems [3]. As a consequence,

the targets xn may reach really high values after a few EM

iterations. To avoid this problem we use a normalization

layer [14]. Moreover this layer avoids converging to the un-

desirable solution where Ak = 0 and bk = 0 that would

maximize the likelihood.

The proposed EM algorithm is initialized as follows. We

first perform clustering in the target space using a standard

procedure, i.e. K-means with random initializations fol-

lowed by fitting a GMM. This yields initial values for the

posteriors, namely µ
(0)
nk . Notice however from (6) that the

posteriors depend on feature clustering as well and this clus-

tering is not reliable at the start of the algorithm. For this

reason, we freeze the E-step (the posteriors are set to their
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Figure 2: Training the deep inverse regression EM with a toy example, e.g. L = 1, D = 2 and K = 2. The E-step computes

the posteriors µ
(i+1)
nk . The M-GMM-step fits a mixture to the data given the posteriors. The M-mapping-step estimates the

parameters of the affine regressions (the two lines illustrate the projection of the target space onto the feature space). Finally,

the M-network-step fine-tunes the network weights via minimization of a mean-square error loss function.

initial values) and perform a few iterations of the M steps,

which amounts to alternate between updating the regression

parameters and tuning the network weights.

Finally, it is worth mentioning that the proposed inverse

regression can be used with a single Gaussian distribution,

i.e. K = 1. In this case (1) reduces to X = AY + b +E

where, again, E is a zero-mean Gaussian variable with

diagonal covariance Σ ∈ R
D×D, hence p(y|x;θ) =

N (y|Ax+ b,Σ). Notice that it is still interesting to train a

low-dimensional to high-dimensional mapping (inverse re-

gression), on the following grounds. The low-to-high re-

gression that we propose to train provides D linear con-

straints with D×(L+2) free parameters. Hence, one needs

a minimum L + 2 image-target training pairs to estimate

the model parameters. In contrast, high-to-low regression

would have provided L linear constraints for training, with

L×(D+2) free parameters; D+2 image-target pairs would

have been at least necessary for training.

Because there is no assignment variable in the case of a

single Gaussian, the training procedure alternates between

estimating the regression parameters A, b and Σ, and updat-

ing the network weights w, i.e. M-step iterations of Alg. 1.

5. Experiments

In this section we first describe the datasets used to evalu-

ate the performance of our model. After that, we present the

ConvNet architecture employed and the results obtained.

Datasets. The Biwi Kinect head-pose dataset [10] con-

sists of over 15K images including video recordings of 20

people (16 men, 4 women, some of them recorded twice)

using a Kinect camera. During the recordings, the partic-

ipants freely move their head and the corresponding head

angles lie in the intervals [−60◦, 60◦] (pitch), [−75◦, 75◦]

(yaw), and [−20◦, 20◦] (roll). Fig. 4 shows examples of the

synthetic images generated.

Figure 3: Example frames of the Biwi head-pose dataset.

We employed the following protocol to create a fair data

partition: we run Support Vector Regression (SVR) [31]

on HOG features [4] using an 8-fold cross-validation (21

randomly selected videos for training and the remaining 3

videos for test). After that, we ordered the performance on

each fold in terms of their MSE and, finally, we kept the

best performing fold for the HOG-based methods and the

median performing fold for the VGG-based methods. We

acted in this manner to give some advantage to the most

simple approaches and to avoid a bias towards our deep

learning proposal. In other words, HOG-based methods are

trained and tested on the most advantageous fold for them.

It is important to notice that we used 20% of the training set

as validation set, and that no person appears both in training

and test sets.

The main drawback of the Biwi dataset is that most of

faces are looking squarely or present small angles. So, the

distribution of the targets is almost Gaussian. Since we sus-

pected this property would favor models with a low num-

ber of Gaussians, we evaluated our proposal with differ-

ent target distributions. To do so, we created a synthetic

dataset utilizing the MakeHuman 3D software2 to gener-

ate 50 different body models. Parameters like age, gen-

der or color skin were randomly selected by the software.

Then, we randomly generated 100K images of the models’

2www.makehuman.org
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head with uniformly distributed angles. To ensure robust-

ness during training, each generated image has a randomly

selected lighting position and color for the OpenGL engine

lighting system. Fig. 4 shows examples of the synthetic im-

ages generated.

Figure 4: Example frames of our synthetic head-pose

dataset.

We generated two smaller datasets (approximately 20K
images per dataset) from this uniformly sampled dataset.

First, we selected the images in order to obtain a mix-

ture of two Gaussians centered around (35◦, 60◦, 0◦) and

(−35◦,−60◦, 0◦). This dataset is referred to as S2G dataset

(Synthetic with 2 Gaussians), and is used to study the im-

pact of the target distribution on the number of Gaussians

employed (K). Secondly, we removed some images from

the uniformly distributed dataset with a Gaussian of mean

(0◦, 0◦, 0◦). This dataset is referred to as SSV dataset (Syn-

thetic with only Side Views). Since the distribution of poses

in the SSV dataset is not directly obtained by combining

Gaussian distributions, it can be considered as a difficult

case for our model in which we could think that K=1 would

not necessarily perform well.

ConvNet architectures. In practice, it is relatively diffi-

cult to train an entire ConvNet from scratch because it re-

quires a sufficiently large dataset. Furthermore, if the net-

work is very deep, an important amount of computational

power would be necessary. A common alternative approach

consists in taking a network already trained on ImageNet

and use its weights as initialization to train your own Con-

vNet. In this paper, we use VGG-16 [30]. However, since

these networks have been trained to solve a classification

task, they have learned to be invariant to the pose of ob-

jects. On the contrary, we want our model to be indepen-

dent of the object but highly dependent on the pose. To face

this problem, we use the initialization procedure explained

in the last paragraph of Section 4.

The size of the last fully-connected layer of VGG-16

pre-trained on ImageNet is relatively large (4096) as it is

designed to recognize approximately 1000 objects. How-

ever, in our case we predict only three angles. Thus, we can

reduce this dimension in order to reduce the number of pa-

rameters in the network and hence the computation burden.

To do so, we add a fully connected layer of size 512 with

a linear activation function and initialize it with the eigen-

vectors of a PCA trained on the output of the network. This

layer is added before the batch normalizer. This solution

presents the advantage that back propagation can be easily

performed through this layer.

In practice, we do not exactly iterate between E and M

steps as described in Alg.1. We first alternate between the

E step and the two M-GMM and M-Mapping steps. When

convergence has been reached, we apply the M-Network

step. This procedure has two advantages. First, the network

weights are not modified before having good mapping func-

tions. Secondly, the θ updates are performed with the CPU

whereas the M-Network utilizes the GPU. The computation

is faster if we do not alternate too often between CPU and

GPU operations.

Comparison Between Regression Models. We show the

results from a series of experiments in order to illustrate

the effectiveness of the proposed model. In Table 1, we

compare 7 different regression models:

• (0◦, 0◦, 0◦): In order to have a reference about the

learning ability of our model we introduce this mean

pose estimator, i.e. a fictitious method that always re-

turn (0◦, 0◦, 0◦) as predicted angles.

• HOG-SVR: An SVR is trained using the HOG repre-

sentation of the input images. The HOG features used

in this paper were extracted following the same strat-

egy as in [9], i.e. a HOG pyramid (p-HOG) by stacking

HOG descriptors at multiple resolutions and providing

a feature vector of dimension 1888.

• HOG-IR: An inverse regression (IR) approach equiv-

alent to the model described in [6] with a mixture of

50 affine mappings is trained using HOG features. In

other words, HOG-IR is equivalent to our proposal in

the case K=50, without the M-network step, and using

HOG features instead of a deep network.

• VGG-SVR: We remove the softmax layer of VGG-16

trained on ImageNet, and we train an SVR to predict

the head pose angles from the network features.

• VGG-IR: In this case, after removing the softmax layer

of the pre-trained VGG-16, our inverse regressor is

trained on the output of this network without perform-

ing the M-network step and K=50.

• VGG-FCL-FT: We replace the softmax layer of a pre-

trained VGG-16 by a fully connected layer (FCL) of

3 units and a linear activation function. This layer is

trained with a loss function that measures the L2 dis-

tance of the prediction from the target. To draw a fair
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comparison, we trained this network with different op-

timizers and kept the best result. We obtained this re-

sult with SGD optimizer, a learning rate of 10−3 and

a learning decay of 0.5 every 3 epochs. We fine-tune

(FT) for 3 epochs only the last layer and then the last

four layers. The loss is similar to the commonly em-

ployed in the literature [15, 22, 32, 34]. It is important

to mention that the results reported here are obtained

with the use of a batch normalizer before the regres-

sion layer as we obtained poor results without it.

• VGG-IR-FT: This is our proposal. The results dis-

played in Table 1 correspond to the best performing

number of Gaussians (K=2), as shown in Table 2.

Pitch Yaw Roll Mean

(0◦, 0◦, 0◦) 23.92 28.50 8.48 20.30

HOG-SVR 8.50 6.45 5.04 6.66
HOG-IR 6.39 5.69 4.77 5.62
VGG-SVR 10.60 19.34 7.79 12.57
VGG-IR 15.26 26.79 10.76 17.60
VGG-FCL-FT 5.65 4.44 2.93 4.34
VGG-IR-FT (proposed) 4.68 3.12 3.07 3.62

Table 1: Comparison of different methods on the Biwi head-

pose database. Mean absolute errors are given in degrees.

The best results are highlighted in bold.

First, we notice that, with HOG features, the inverse re-

gressor outperforms SVR (a forward regressor). However,

the results obtained using the deep features given by the

pre-trained VGG (VGG-SVR and VGG-IR) are somewhat

disappointing, since the error obtained is much worse than

the one obtained by HOG-based methods. This could il-

lustrate the previously mentioned pose-invariance property

of the pre-trained VGG-16. These results also show that

deep features can hardly be used for head-pose estimation

without fine-tuning. In fact, if we fine-tune the network we

obtain comparable results to state-of-the-art. The proposed

method improves the result by 0.71 degrees with respect to

VGG-FCL-FT.

In Table 2, we study how the performance of our pro-

posal (VGG-IR-FT) evolves as we increase K. We also

study how this performance is affected by the type of dataset

employed. From the results obtained one can hardly draw a

definitive conclusion. On real data, K=2 provides the best

performance. However, on cases specifically designed to

make fail the model employing K=1 (S2G and SSV), we

obtain comparable results independently of the value of K.

This behavior can be explained by the following reasons.

First, the difficulty of the synthetic datasets is not enough to

make fail the model with K=1. Second, as we can see in

(5), the updates of the EM algorithm do not depend only on

K=1 K=2

Biwi 5.12/3.45/3.39 4.68/3.12/3.07

S2G 2.87/3.54/1.65 2.53/3.36/1.97
SSV 3.12/3.75/2.01 2.86/3.83/2.04

K=5 K=10

Biwi 5.55/3.74/4.01 5.93/3.45/3.99
S2G 2.63/3.33/1.94 2.89/3.35/2.06
SSV 2.77/4.12/1.95 2.74/3.91/2.18

Table 2: Mean absolute error in degrees for the

Pitch/Yaw/Roll angles on three datasets using VGG-IR-FT

and different K values. The best results per angle and

dataset are highlighted in bold.

the target distribution but also rely on the existing clusters in

feature space. So, the optimal K cannot be established only

by looking at the target distribution. In particular, in S2G

the model seems to favor the pre-existing clustering in fea-

ture space over the mixture of two Gaussians in the target

space (as would happen if the best performing model was

K=2). In practical terms, one reasonable solution would

be to use K=1 by default, since it reduces the complexity

of the approach and at the same time provides sufficiently

good results. It confirms that deep neural networks are ef-

fective linearizers and therefore adding a nonlinearity in the

regression layer does not help very much. The benefit of

the proposed model comes mainly from the inverse formu-

lation.

Head-Pose Estimation State-of-the-Art Comparison.

We compare the performance of our proposal with state-

of-the-art methods on head-pose estimation.

Pitch Yaw Roll Mean

Methods using only RGB

Liu et al.[20] 6.1 6.0 5.7 5.94
Mukherjee et al.[22] 5.18 5.67 / 5.43
Drouard et al.[9] 5.43 4.24 4.13 4.60
VGG-IR-FT (proposed) 4.68 3.12 3.07 3.62

Methods using additional information

Wang et al.[35]∗∗ 8.5 8.8 7.4 8.23
Mukherjee et al.[22]∗∗ 4.76 5.32 / 5.04
Fanelli et al.[10]∗∗ 3.8 3.5 5.4 4.23
Liu et al.[20]∗ 4.5 4.3 2.4 3.73

Table 3: Comparison of different methods on the Biwi head-

pose database. Mean absolute errors are given in degrees.

The last four methods use additional or slightly different

data (∗extra annotation used for training, ∗∗
3D depth data used). The

best results are highlighted in bold.

As can be seen in Table 3, our proposal VGG-IR-FT out-
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performs state-of-the-art approaches. Drouard et al.[9], in

an extension of their previous work [8], employ 4 partially-

latent variables in their mixture of linear regression ap-

proach to establish the state-of-the-art. Moreover, we can

even compete with methods using additional information

(see the last four methods in Table 3). Deep learning is not

used neither in [10] nor in [35], and both use depth infor-

mation. Importantly, our approach provides a competitive

performance even in absence of this additional information.

In [20], Liu et al. train using synthetic data because oth-

erwise they get results comparable to the ones provided by

HOG-based methods. Their experience confirms the intu-

ition that a forward regression technique does not perform

well without using a large dataset. Among all competitor

methods the only one using a very deep network is Mukher-

jee et al. [22]. They use a GoogLeNet architecture on both

RGB and depth images. The superiority of VGG-IR-FT can

indicate again the benefits of using inverse regression. Fi-

nally, an important remark is that all these results could even

be further improved by including temporal information, e.g.
the temporally stable head-pose estimation proposed by [1].

In order to compare the sensibility to the training set size,

we randomly down-sample the Biwi database training set.

We show the results in Table 4. We can notice that even

employing only 40% of data we are competitive with most

of the methods in Table 3. The performance seems to scale

linearly with respect to the available training set size. This

trend seems to suggest that additional data would further

improve the performance.

Pitch Yaw Roll Mean

20% 9.36 7.00 6.19 7.55
40% 6.2 5.00 5.14 5.45
60% 6.33 4.33 4.18 4.95
80% 5.49 3.77 4.12 4.46
100% 4.68 3.12 3.07 3.62

Table 4: Influence on the mean absolute error of amount

of training data employed as percentage of total number of

training examples in the Biwi dataset.

6. Conclusions

In this paper, we propose the coupling of a Gaussian

mixture of linear inverse regressions with a ConvNet, we

describe the methodological foundations and the associated

algorithm to jointly train the deep network and the regres-

sion function, and we evaluate our model on the problem

of head-pose estimation. From an experimental point of

view, our contribution can be summarized as follows. First,

we show that the proposed inverse regression model out-

performs L2-based regression models used by most of the

state-of-the-art computer vision methods, at least in the case

of head-pose estimation. Second, our method works effec-

tively on relatively small training datasets, without the need

of incorporating additional data, as it is often proposed in

the literature. Lastly, our proposal outperforms state-of-

the-art methods in head-pose estimation testing on the most

widely used head-pose dataset. To the best of our knowl-

edge, we are the first to propose an inverse regression ap-

proach to train a deep network. As future work, we plan

to test our method on other computer vision problems, like

facial keypoint detection or full body pose estimation, and

extend the type of distributions used in our mixtures, as for

example t-distributions to make the model more robust to

outliers.
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