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Abstract

Maximum consensus estimation plays a critically impor-

tant role in computer vision. Currently, the most preva-

lent approach draws from the class of non-deterministic

hypothesize-and-verify algorithms, which are cheap but do

not guarantee solution quality. On the other extreme, there

are global algorithms which are exhaustive search in na-

ture and can be costly for practical-sized inputs. This paper

aims to fill the gap between the two extremes by proposing

a locally convergent maximum consensus algorithm. Our

method is based on a formulating the problem with linear

complementarity constraints, then defining a penalized ver-

sion which is provably equivalent to the original problem.

Based on the penalty problem, we develop a Frank-Wolfe al-

gorithm that can deterministically solve the maximum con-

sensus problem. Compared to the randomized techniques,

our method is deterministic and locally convergent; relative

to the global algorithms, our method is much more practical

on realistic input sizes. Further, our approach is naturally

applicable to problems with geometric residuals1.

1. Introduction

Robust model fitting lies at the core of computer vision,

due to the need of many fundamental tasks to deal with real-

life data that are noisy and contaminated with outliers. To

conduct robust model fitting, a robust fitting criterion is op-

timized w.r.t. a set of input measurements. Arguably the

most popular robust criterion is maximum consensus, which

aims to find the model that is consistent with the largest

number of inliers, i.e., has the highest consensus.

Due to the critical importance of maximum consensus

estimation, considerable effort has been put into devising

algorithms for optimizing the criterion. A large amount of

work occurred within the framework of hypothesize-and-

verify methods, i.e., RANSAC [8] and its variants. Broadly

speaking, these methods operate by fitting the model onto

randomly sampled minimal subsets of the data, and return-

1Code and demo are available in the supplementary material.

ing the candidate with the largest inlier set. Improvements

to the basic algorithm include guided sampling and speed-

ing up the model verification step [4].

An important innovation is locally optimized RANSAC

(LO-RANSAC) [6, 15]. As the name suggests, the objec-

tive of the method is to locally optimize RANSAC esti-

mates. This is achieved by embedding in RANSAC an inner

hypothesize-and-verify routine, which is triggered when-

ever the solution is updated in the outer loop. Different from

the main RANSAC algorithm, the inner subroutine gener-

ates hypotheses from larger-than-minimal subsets sampled

from the inlier set of the incumbent solution, in the hope of

driving it towards an improved result.

Though efficient, there are fundamental shortcomings in

the hypothesize-and-verify heuristic. Primarily, it does not

give analytical assurances of the quality of its solutions.

This weakness manifests in LO-RANSAC in that the algo-

rithm does not strictly guarantee local convergence. The

randomized nature of the heuristic also means that different

runs may give unpredictably different results, which makes

it non-ideal for tasks that require high repeatability.

More recently, there is a growing number of globally op-

timal algorithms for consensus maximization [19, 26, 7, 16,

3]. The fundamental intractability of maximum consensus

estimation, however, means that the global optimum can

only be found by searching. Indeed, the previous techniques

respectively conduct branch-and-bound search [26, 16], tree

search [3], or exhaustive search [19, 7]. Thus, global algo-

rithms are practical only on problems with a small number

of measurements and/or models of low dimensionality.

So far, what is sorely missing in the literature is an al-

gorithm that lies in the middle ground between the above

two extremes. Specifically, a maximum consensus algo-

rithm that is deterministic and locally convergent would add

significantly to the robust fitting toolbox of computer vision.

In this paper, we contribute such an algorithm. We

reformulate consensus maximization with linear comple-

mentary constraints, then define a penalized version of the

problem. We prove that, under easily achievable condi-

tions, the penalty problem is equivalent to the original prob-

lem, in the sense that they have the same optima. We
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then develop a Frank-Wolfe algorithm that can determin-

istically and locally improve a given maximum consensus

estimate. Overall, our method executes a sequence of linear

programs (LP), which enables it to be efficient on realis-

tic inputs (hundreds to thousands of measurements). Fur-

ther, our algorithm is naturally capable of handling the non-

linear geometric residuals commonly used in computer vi-

sion [13, 14]. As will be demonstrated, our method can

consistently improve upon a rough estimate (obtained us-

ing least squares, RANSAC, etc.) while incurring only

marginally higher runtimes.

The above properties make our algorithm an excellent

post processor for RANSAC and its variants, which are cur-

rently dominant in the field.

1.1. M­estimators and IRLS

More broadly in statistics, M-estimators [12] is an estab-

lished robust statistical method. The M-estimate is obtained

by minimizing the sum of a set of ρ functions defined over

the residuals, where ρ (e.g., the Huber norm) is responsible

for discounting the effects of outliers. The primary tech-

nique for the minimization is iteratively reweighted least

squares (IRLS). At each iteration of IRLS, a weighted least

squares problem is solved, where the weights are computed

based on the previous estimate. Provided that ρ satisfies

certain properties [25, 1], IRLS will converge to a mini-

mum. This unfortunately precludes consensus maximiza-

tion, since the corresponding ρ (a symmetric step function)

is not positive definite and differentiable everywhere.

Arguably, one can simply choose a robust ρ that works

with IRLS and dispense with maximum consensus. How-

ever, another vital requirement for IRLS to be feasible is

that the weighted least squares problem is efficiently solv-

able. This unfortunately is not the case for many of the

geometric distances used in computer vision [13, 14, 10].

The above limitations with IRLS suggest that locally

convergent algorithms for robust fitting remains an open

problem, and that our proposed algorithm should represent

a significant contribution towards this direction.

2. Problem definition

We develop our algorithm in the context of fitting linear

models, before extending to models with geometric residu-

als in Sec. 4.2. The goal of maximum consensus is to find

the model, parametrized by vector θ ∈ R
d, that is consistent

with as many of the input data as possible, i.e.,

max
θ∈Rd, I∈P(N)

|I|

subject to |xT
j θ − yj | ≤ ǫ ∀j ∈ I,

(1)

where {xj , yj}
N
j=1 is a set of N measurements for the linear

model, ǫ is the inlier threshold, and P(N) is the power set

(the set of all subsets) of the index set {1, 2, . . . , N}.

Expressing each constraint of the form |xT
j θ − yj | ≤ ǫ

equivalently using the two linear constraints

xT
j θ − yj ≤ ǫ, −xT

j θ + yj ≤ ǫ, (2)

and collecting the data into the matrices

A =
[

x1,−x1, . . . ,xN ,−xN

]

, (3)

b =
[

ǫ+ y1, ǫ− y1, . . . , ǫ+ yN , ǫ− yN
]T

, (4)

where A ∈ R
d×M , b ∈ R

M and M = 2N , we can

rewrite (1) equivalently as

max
θ∈Rd, I∈P(M)

|I|

subject to aTi θ − bi ≤ 0 ∀i ∈ I,
(5)

where ai is the i-th column of A and bi is the i-th element of

b. Problems (1) and (5) are equivalent in the sense that they

have the same maximizer, though the maximum objective

value of (5) is N plus the maximum objective value of (1)

since for any θ, at least one of the constraints in (2) are

satisfied. Henceforth, we will be developing our maximum

consensus algorithm based on (5) as our target problem.

2.1. Complementarity constraints

Introducing indicator variables u ∈ {0, 1}M and slack

variables s ∈ R
M , we reformulate (5) equivalently as an

outlier count minimization problem

min
u∈{0,1}M , s∈RM , θ∈Rd

∑

i

ui (6a)

subject to si − aTi θ + bi ≥ 0, (6b)

ui(si − aTi θ + bi) = 0, (6c)

si(1− ui) = 0, (6d)

si ≥ 0. (6e)

Intuitively, si must be non-zero if the i-th datum is an out-

lier w.r.t. θ; in this case, ui must be set to 1 to satisfy (6d).

In turn, (6c) forces the quantity (si − aTi θ + bi) to be zero.

Conversely, if the i-th datum is an inlier w.r.t. θ, then si is

zero, ui is zero and (si − aTi θ + bi) is non-zero. Observe,

therefore, that (6c) and (6d) implement complementarity be-

tween ui and (si − aTi θ + bi).
Note also that, due to the objective function and the con-

dition (6d), the indicator variables can be relaxed without

impacting the optimum, leading to the equivalent problem

min
u,s∈RM , θ∈Rd

∑

i

ui (7a)

subject to si − aTi θ + bi ≥ 0, (7b)

ui(si − aTi θ + bi) = 0, (7c)

si(1− ui) = 0, (7d)

1− ui ≥ 0, (7e)

si, ui ≥ 0. (7f)
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This, however, does not make (7) tractable to solve exactly,

since (7c) and (7d) are bilinear in the unknowns.

To re-express (7) using only positive variables, define

v =

[

θ + γ1

γ

]

, ci =
[

aTi −aTi 1
]T

, (8)

where both are real vectors of length (d + 1). Problem (7)

can then be reformulated equivalently as

min
u,s∈RM , v∈Rd+1

∑

i

ui

subject to si − cTi v + bi ≥ 0,

ui(si − cTi v + bi) = 0,

si(1− ui) = 0,

1− ui ≥ 0,

si, ui, vi ≥ 0.

(9)

Given a solution û, ŝ and v̂ to (9), the corresponding solu-

tion θ̂ to (7) can be obtained by simply subtracting the last

element of v̂ from its first-d elements.

3. Penalty method

Incorporating the equality constraints in (9) into the cost

function as a penalty term, we obtain the penalty problem

min
u,s,v

∑

i

ui + α
[

ui(si − cTi v + bi) + si(1− ui)
]

s.t. si − cTi v + bi ≥ 0,

1− ui ≥ 0,

si, ui, vi ≥ 0.
(10)

The constant α ≥ 0 is called the penalty parameter. Intu-

itively, the penalty term discourages solutions that violate

the complementarity constraints, and the strength of the pe-

nalization is controlled by α.

Henceforth, to reduce clutter, we sometimes use

z =
[

uT sT vT
]T

. (11)

In addition, the cost function in (10) is rewritten as

P (z | α) = F (z) + αQ(z), (12)

where F (z) = ‖u‖1 and

Q(z) =
∑

i

ui(si − cTi v + bi) + si(1− ui) (13)

=
∑

i

si − ui(c
T
i v − bi). (14)

In particular, Q(z) is called the complementarity residual.

In Sec. 3.3, we will investigate the conditions under

which solving (10) is equivalent to solving (9), and devise

an algorithm in Sec. 4 to exploit the equivalence for con-

sensus maximization. First, in the next two subsections, we

discuss solving the penalty problem (10) for a given α.

3.1. Necessary optimality conditions

Although P (z | α) is quadratic, problem (10) is non-

convex. However, it can be shown that (10) has a vertex

solution, i.e., is an extreme point of the convex set

P = {z ∈ R
2M+d+1 |Mz+ q ≥ 0, z ≥ 0}, (15)

where

M =

[

0 I −C
−I 0 0

]

,

C =
[

c1 c2 . . . cM
]T

,

q =
[

bT 1T
]T

;

(16)

(here and henceforth, to minimize clutter we do not define

the sizes of I, 0 and 1, but the sizes can be worked out based

on the context). To begin, observe that the minima of (10)

obey the KKT conditions [18, Chap. 12]

uT (−αCv + αb+ 1+ λG) = 0,

sT (α1− λH) = 0,

vT (−αCTu+CTλH) = 0,

(λH)T (s−Cv + b) = 0,

(λG)T (1− u) = 0,

s−Cv + b ≥ 0,

1− u ≥ 0,

λH,λG ,u,v, s ≥ 0,

(17)

where λH = [λH
1 . . . λH

M ]T and λG = [λG
1 . . . λG

M ]T

are the Lagrange multipliers for the first two types of con-

straints in (10); see supplementary material for details.

By rearranging, the KKT conditions (17) can be summa-

rized by the following relations

M′z′ + q′ ≥ 0, z′ ≥ 0, (z′)T (M′z′ + q′) = 0, (18)

where

z′ =
[

zT (λH)T (λG)T
]T

,

M′ =













0 0 −αC 0 I

0 0 0 −I 0

−αCT 0 0 CT 0

0 I −C 0 0

−I 0 0 0 0













,

q′ =
[

(αb+ 1)T α1T 0T bT 1T
]T

.

(19)

Finding a feasible z′ for (18) is an instance of a linear com-

plementarity problem (LCP) [17]. Define the convex set

P ′ = {z′ ∈ R
4M+d+1 |M′z′ + q′ ≥ 0, z′ ≥ 0}. (20)

We invoke the following result from [17, Lemma 2].
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Theorem 1 If the LCP defined by the constraints (18) has

a solution, then it has a solution at a vertex of P ′.

Theorem 1 implies that the KKT points of (10) (includ-

ing the solutions of the problem) occur at the vertices of P ′.

This also implies that (10) has a vertex solution, viz.:

Theorem 2 For any vertex

z′v = [zTv (λH
v )T (λG

v )
T )]T (21)

of P ′, zv is a vertex of P .

Proof If z′v is a vertex ofP ′, then, there is a diagonal matrix

E such that

M′Ez′v + q′ − γ′ = 0, (22)

where Ei,i = 1 if the i-th column of M′ appears in the basic

solution corresponding to vertex z′v , and Ei,i = 0 otherwise

(the non-negative vector γ′ contains the values of additional

slack variables to convert the constraints in P ′ into standard

form). Let M′
J be the last-2M rows of M′. Then,

M′
JEz′v +

[

bT 1T
]T
− γ′

J = 0, (23)

where γ′
J is the last-2M elements of γ′. Note that, since

the right-most 2M × 2M submatrix of M′
J is a zero matrix

(see (19)), then

M′
JEKzv +

[

bT 1T
]T
− γ′

J = 0, (24)

where EK is the first-(2M + d + 1) columns of E. Since

M′
JEK = M, then (24) implies that zv is a vertex ofP .

3.2. Frank­Wolfe algorithm

Theorem 2 suggests an approach to solve (10) by search-

ing for a vertex solution. Further, note that for a fixed

u, (10) reduces to an LP. Conversely, for fixed s and v, (10)

is also an LP. This advocates alternating between optimizing

subsets of the variables using LPs. Algorithm 1 summarizes

the method, which is in fact a special case of the Frank-

Wolfe method [9] for non-convex quadratic minimization.

Theorem 3 In a finite number of steps, Algorithm 1 con-

verges to a KKT point of (10).

Proof The set of constraints P can be decoupled into the

two disjoint subsets

P = P1 × P2, (25)

where P1 involves only s and v, and P2 is the comple-

ment of P1. With u fixed in Line 5, the LP converges to

a vertex of P1. Similarly, with s and v fixed in Line 6, the

LP converges to a vertex in P2. Each intermediate solution

u(t),v(t), s(t) is thus a vertex of P or a KKT point of (10).

Since each LP must reduce or maintain P (z | α) which is

bounded below, the process terminates in finite steps.

Algorithm 1 Frank-Wolfe method for (10).

Require: Data {ci, bi}
M
i=1, penalty value α, initial solution

u(0), v(0), s(0), threshold δ.

1: P (0) ← P (u(0), s(0),v(0) | α).
2: t← 0.

3: while true do

4: t← t+ 1.

5: s(t),v(t) ← argmin
s,v P (u(t−1), s,v | α) s.t. P .

6: u(t) ← argmin
u
P (u, s(t),v(t) | α) s.t. P .

7: P (t) ← P (u(t), s(t),v(t) | α).
8: if |P (t−1) − P (t)| ≤ δ then

9: Break.

10: end if

11: end while

12: return u(t),v(t), s(t).

Analysis of update steps A closer look reveals the LP in

Line 5 (Algorithm 1) to be

min
s,v

∑

i

si − ui(c
T
i v − bi)

s.t. si − cTi v + bi ≥ 0,

si, vi ≥ 0,

(LP1)

and the LP in Line 6 (Algorithm 1) to be

min
u

∑

i

ui

[

1− α(cTi v − bi)
]

s.t. 0 ≤ ui ≤ 1.

(LP2)

Observe that LP2 can be solved in closed form and it also

drives u to integrality: if [1−α(cTi v− bi)] ≤ 0, set ui = 1,

else, set ui = 0. Further, LP1 can be seen as “weighted” ℓ1-

norm minimization, with u being the weights. Intuitively,

therefore, Algorithm 1 alternates between residual mini-

mization (LP1) and inlier-outlier dichotomization (LP2).

3.3. Exactness of penalization

The penalty problem (10) is an instance of a non-smooth

exact penalty method [18, Sec. 17.2]. Observe that Q(z) is

the ℓ1-norm of the LHS of the equality constraints in (9).

The exactness of the penalization is exhibited in the follow-

ing theorems (rephrased in the context of our problem).

Theorem 4 (based on Theorem 17.3 in [18]) If z∗ is a lo-

cal solution of the original problem (9), then, there exists

α∗ > 0 such that for all α ≥ α∗, z∗ is also a local mini-

mizer of P (z | α) subject to constraints P .

Intuitively, the theorem states that there is a sufficiently

large α for problem (10), such that any small movement

away from z∗ will be penalized strongly enough by αQ(z)

1891



to immediately negate any potential reduction to F (z) en-

abled by violating the complementarity constraints. A

follow-up theorem will prove more useful for our aims.

Theorem 5 (based on Theorem 17.4 in [18]) Let ẑ be a

KKT point of the penalized problem (10) for α greater than

α∗. Then, Q(ẑ) = 0, and ẑ is also a KKT point of (9).

A “one shot” approach that sets α to a very large value

and solves a single instance of (10) is unlikely to be suc-

cessful, however, since we cannot globally solve the penalty

problem. In the next section, we describe a more practical

approach that uses an increasing sequence of α.

4. Main algorithm

Based on the above results, we propose our main algo-

rithm for solving the maximum consensus problem (9); see

Algorithm 2. Our method solves (10) using Algorithm 1

for successively larger α, where the solution ẑ for a partic-

ular α is used to initialize Algorithm 1 for the next larger α.

The sequence terminates when the complementarity resid-

ual Q(z) vanishes. As long as each ẑ is a KKT point of

the associated penalty problem (10), which we can prov-

ably achieve thanks to Theorem 3, Theorem 5 guarantees

that Algorithm 2 will converge to a solution for (9) that sat-

isfies the first-order necessary conditions for optimality.

Algorithm 2 Main algorithm for solving (9).

Require: Data {ci, bi}
M
i=1, initial model parameter θ, ini-

tial penalty value α, increment rate κ, threshold δ.

1: v←
[

(θ + |minj(θj)|1)
T |minj(θj)|

]T
.

2: u← I(Cv − b > 0).
3: s← u⊙ (Cv − b).
4: while true do

5: u, s,v← FW ({ci, bi}
M
i=1, α,u, s,v). /*Algo. 1.*/

6: if Q(z) ≤ δ then

7: Break.

8: end if

9: α← κ · α.

10: end while

11: return u, s,v.

It is worthwhile to note that typical non-smooth penalty

functions cannot be easily minimized (e.g., no gradient in-

formation). In our case, however, we exploited the special

property of (10) (Sec. 3.1) to enable efficient minimization.

4.1. Initialization

Algorithm 2 requires the initialization of u, s and v. For

consensus maximization, it is more natural to initialize the

model parameters θ, which in turn gives values to v, s and

u. In our work, we initialize θ as the least squares solution,

or by executing RANSAC (Sec. 5 will compare the results

of these two different initialization methods).

Other required inputs are the initial penalty parameter α

and the increment rate κ. These values affect the conver-

gence speed of Algorithm 2. To avoid bad minima, we set

α and κ conservatively, e.g., α ∈ [1, 10], κ ∈ [1, 5]. As

we will demonstrate in Sec. 5, these settings enable Algo-

rithm 2 to find very good solutions at competitive runtimes.

4.2. Handling geometric distances

For most applications in computer vision, the residual

function used for geometric model fitting is non-linear. It

has been shown [13, 19, 2], however, that many geometric

residuals have the following generalized fractional form

‖Gθ + h‖p
rTθ + q

with rTθ + q > 0, (26)

where ‖·‖p is the p-norm, and G ∈ R
2×d, h ∈ R

2, r ∈ R
d,

q ∈ R
1 are constants derived from the input data. For exam-

ple, the reprojection error in triangulation and transfer error

in homography estimation can be coded in the form (26).

The associated maximum consensus problem is

max
θ∈Rd, I∈P(N)

|I|

subject to ‖Gjθ + hj‖p ≤ ǫ(rTj θ + qj) ∀j ∈ I,

(27)

where the denominator of (26) can be moved to the RHS

since ǫ is non-negative (see [13] for details). We show that

for p = 1, our method can be easily adapted to solve (27)

up to local optimality2. Define

Gj =

[

gT
j,1

gT
j,2

]

hj =

[

hj,1

hj,2

]

. (28)

Now, for p = 1, the constraint in (27) becomes
∣

∣gT
j,1θ + hj,1

∣

∣+
∣

∣gT
j,2θ + hj,2

∣

∣ ≤ ǫ(rTj θ + qj), (29)

which in turn can be equivalently implemented using four

linear constraints (see [2] for details). We can then manip-

ulate (27) into the form (5), and the rest of our theory and

algorithms will be immediately applicable.

5. Results

We tested our method (Algorithm 2, henceforth abbrevi-

ated as EP) on common parameter estimation problems. We

compared EP against the following well-known methods:

• RANSAC (RS) [8]: We used confidence ρ = 0.99 for

the stopping criterion in all the experiments. On each

data instance, RANSAC was executed 10 times and the

average consensus size and runtime were reported.

2Note that, in the presence of outliers, the residuals are no longer i.i.d.

Normal. Thus, the 1-norm is equally valid as the 2-norm for robust fitting.
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• LO-RANSAC (LORS) [6]: The maximum number of

iterations for the inner sampling over the updated con-

sensus set was set to 100.

• Improved LO-RANSAC (LORS1) [15]: As proposed,

the local refinement will only be run if the new consen-

sus size is higher than a pre-defined threshold (set to

10% of the data size in our experiments).

• ℓ1 approximation (ℓ1) [20]: This method is equivalent

to introducing slack variables to problem (5) and min-

imizing the ℓ1-norm of the slack variables to yield an

approximate solution to maximum consensus.

• ℓ∞ outlier removal (l∞) [21]: Again, in the context

of (5), slack variables are introduced and the maximum

slack value is minimized. Data with the largest slack

value are removed, and the process of repeated until

the largest slack value is not greater than zero.

• For the experiments with image data where keypoint

matching scores are available as inlier priors, we exe-

cuted two state-of-the-art RANSAC variants: PROSAC

(PS) [5] and Guided MLESAC (GMLE) [23].

All the methods and experiments were implemented in

MATLAB and run on a standard desktop machine with

3.5 GHz processor and 8 GB of RAM. For EP, ℓ1 and ℓ∞,

Gurobi was employed as the LP solver.

5.1. Linear models

Linear regression with synthetic data We generated

N = 500 points {xj , yj}
N
j=1 in R

9 following a linear trend

y = xTθ, where θ ∈ R
8 and xj ∈ [−1, 1]8 were ran-

domly sampled. Each yj was perturbed by Gaussian noise

with standard deviation of σin = 0.1. To simulate outliers,

pout% of yj’s were randomly selected and corrupted. To

test the ability of EP to deal with bad initializations, two

different outlier settings were considered:

• Balanced data: the yj of outliers were added with Gaus-

sian noise of σout = 1. This evenly distributed the out-

liers on both sides of the hyperplane.

• Unbalanced data: as above, but the sign of the additive

noise was forced to be positive. Thus, outliers were

distributed only on one side of the hyperplane. On such

data, the least squares solution is heavily biased.

See Fig. 1 for a 2D analogy of these outlier settings. We

tested with pout = {0, 5, 10 . . . , 60}. The inlier threshold

for maximum consensus was set to ǫ = 0.1.

EP was initialized respectively with RANSAC (variant

EP-RS) and least squares (variant EP-LSQ). The initial α

was set to 0.5 and κ = 5 for all the runs.

Fig. 2 shows the average consensus size at termination

and runtime (in log scale) of the methods. Note that runtime

of RS and LSQ were included in the runtime of EP-RS and

-1 -0.5 0 0.5 1

-0.5

0

0.5 RS LSQ EP-RS EP-LSQ

-1 -0.5 0 0.5 1

0

 0.5

1
RS LSQ EP-RS EP-LSQ

Figure 1. 2D analogy of balanced (top) and unbalanced (bottom)

data generated in our experiments. The results of RANSAC, least

squares, and our method initialized with the former two methods

are shown. Observe that least squares is heavily biased under un-

balanced data, but EP is able to recover from the bad initialization.

EP-LSQ. It is clear that, in terms of solution quality, both

variants of EP consistently outperformed the other methods.

The fact that EP-LSQ could match the quality of EP-RS on

unbalanced data attest to the ability of EP to recover from

bad initializations. In terms of runtime, while both EP vari-

ants were slightly more expensive than the RANSAC vari-

ants, as pout increased over 35%, EP-LSQ began to outper-

form the RANSAC variants (since EP-RS was initialized

using RANSAC, its runtime also increased with pout).

Fundamental matrix estimation Following [11, Chapter

11], the epipolar constraint is linearized to enable the funda-

mental matrix to be estimated linearly (note that the usual

geometric distances for fundamental matrix estimation do

not have the generalized fractional form (26), thus lineariza-

tion is essential to enable our method. Sec. 5.2 will describe

results for model estimation with geometric distances).

Five image pairs from the VGG data set were used: Cor-

ridor, House, Merton II, Wadham and Aerial View I. The

images were first resized before SIFT (as implemented on

VLFeat [24]) was used to extract around 500 correspon-

dences per pair. An inlier threshold of ǫ = 1 was used

for all image pairs. For EP, apart from initialization with

RANSAC and least squares, we also initialised it with ℓ∞
outlier removal (variant EP-ℓ∞). For all EP variants, the

initial α was set to 0.5 and κ = 5 for all the runs.

Table 1 (top) summarizes the quantitative results for all

methods. Regardless of the initialization method, EP was

able to find the largest consensus set. Though the runtimes

of EP were higher, they were still in the same order of mag-

nitude as the others. Fig. 3(a) displays a sample qualitative

result for EP; for the qualitative results on the other image
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Figure 2. Results for linear regression (d = 8 dimensions). (a)(b) Balanced data; (c)(d) Unbalanced data.

(a) Corridor. (b) Christ Church. (c) Trees.

Figure 3. Qualitative results of EP on (a) fundamental matrix estimation, (b) homography estimation, and (c) affinity estimation. Green

and red lines represent detected inliers and outliers. For clarity, only 100 inliers/outliers are plotted. See supp material for more results.

pairs, please see the supplementary material.

5.2. Models with geometric distances

Homography estimation We estimated 2D homogra-

phies based on the transfer error using all the methods. Five

image pairs form the VGG dataset were used: University

Library, Christ Church, Valbonne, Kapel and Paris’s In-

valides. The same preprocessing and correspondence ex-

traction method as in the fundamental matrix estimation ex-

periment was used to produce 500 matches per image pair.

The inlier threshold of ǫ = 4 pixels was used for all input

data. Initial α was set to 10 and κ = 1.5 for all EP variants.

Quantitative results are shown in Table 1 (middle), and a

sample qualitative result for EP is shown in Fig. 3(b). Sim-

ilar to the fundamental matrix case, the EP variants outper-

formed the other methods in terms of solution quality, but

were slower though its runtime was still within the same

order of magnitude. Note that EP-LSQ was not invoked

here, since finding least squares estimates based on geomet-

ric distances is intractable in general [10].

Affinity estimation The previous experiment was re-

peated for affinity (6 DoF affine transformation) estimation

with initial α set to 0.5, κ = 5 and ǫ = 2 pixels. Five image

pairs from VGG’s affine image dataset were used: Bikes,

Graff, Bark, Tree and Boat. Quantitative results are given

in Table 1 (middle), and sample qualitative result is shown

in Fig. 3(c). Similar conclusions can be drawn.

Triangulation Coordinates of 3D points were estimated

using the reprojection error under outlier contamination.

We selected five feature tracks from the NotreDame

dataset [22] with more than N = 150 views each to test

our algorithm. The inlier threshold for maximum consen-

sus was set to ǫ = 1 pixel. α was initially set to 0.5 and
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Methods RS PS GMLE LORS LORS1 ℓ1 ℓ∞ EP-RS EP-LSQ EP-ℓ∞
House

N = 556

|I| 250 251 254 257 256 175 205 267 267 267

time (s) 2.12 1.60 1.09 1.33 3.41 0.2 0.06 7.62 4.79 4.96

Aerial

N = 421

|I| 267 261 266 283 283 282 277 297 297 297

time (s) 0.12 0.16 0.1 0.17 0.27 0.15 0.03 1.91 2.01 1.67

Merton

N = 590

|I| 367 344 370 377 383 408 404 451 451 451

time (s) 0.14 0.27 0.09 0.21 0.32 0.25 0.04 2.84 2.75 3.69

Wadham

N = 587

|I| 447 426 473 470 476 503 433 512 512 512

time (s) 0.05 0.08 0.04 0.12 0.15 0.2 0.04 2.99 3.29 3.06

Corridor

N = 686

|I| 263 269 263 266 265 246 264 303 303 303

time (s) 5.23 4.22 4.64 3.87 9.06 0.72 0.08 15.26 5.57 5.75

Methods RS PS GMLE LORS LORS1 ℓ1 ℓ∞ EP-RS EP-ℓ∞

H
o

m
o

g
ra

p
h
y

es
ti

m
at

io
n

University Library

N = 545

|I| 251 269 251 294 294 120 53 301 301

time (s) 0.73 0.62 0.69 1.90 1.89 3.10 2.49 12.76 14.49

Christ Church

N = 445

|I| 235 236 227 250 246 246 160 280 280

time (s) 0.47 0.47 0.43 1.33 1.61 1.23 2.44 10.37 12.67

Valbonne

N = 434

|I| 131 134 117 156 136 24 22 158 158

time (s) 3.17 2.39 5.76 3.04 5.80 1.36 1.27 17.20 14.84

Kapel

N = 449

|I| 163 167 130 167 168 28 161 170 170

time (s) 1.19 1.15 9.89 2.18 2.70 1.62 1.16 8.46 8.68

Invalides

N = 413

|I| 144 159 140 149 156 84 142 178 178

time (s) 1.36 0.90 1.60 2.17 2.94 1.04 0.71 10.20 9.15

A
ffi

n
it

y
es

ti
m

at
io

n

Bikes

N = 557

|I| 424 427 425 426 424 387 431 437 437

time (s) 6.09 6.09 5.79 6.28 11.8 1.77 1.77 15.26 9.81

Graff

N = 327

|I| 126 129 127 134 126 147 274 276 276

time (s) 3.51 3.35 3.14 4.07 6.61 0.99 0.23 5.94 2.70

Bark

N = 458

|I| 279 288 270 284 279 298 439 442 442

time (s) 4.89 4.93 4.68 5.11 9.54 1.31 0.19 10.19 5.51

Tree

N = 568

|I| 372 367 371 372 372 377 370 396 396

time (s) 5.70 6.01 5.73 6.93 11.50 4.81 0.81 15.96 11.82

Boat

N = 574

|I| 476 477 476 477 476 469 464 483 483

time (s) 6.32 6.29 6.02 7.18 12.32 4.12 1.02 14.86 9.33

Point 719

N = 192

Point 585

N = 153

Point 570

N = 167

Point 24

N = 155

Point 1

N = 167

|I| time |I| time |I| time |I| time |I| time

RS 102 0.26 77 0.13 47 0.14 111 0.14 94 0.15

LORS 102 1.16 77 0.60 47 0.65 111 0.71 94 0.78

LORS1 103 0.29 77 0.24 47 0.26 111 0.25 94 0.26

ℓ1 61 0.27 20 0.17 14 0.23 60 0.13 62 0.33

ℓ∞ 96 1.29 61 0.75 35 0.95 111 0.46 81 1.06

EP-RS 107 2.06 80 1.02 54 1.40 113 1.10 96 0.96

EP-ℓ∞ 107 3.08 80 1.70 54 2.22 113 1.35 96 2.16

Table 1. (top) Fundamental matrix estimation results. (middle) Homography estimation and affinity estimation results. (bottom) Trian-

gulation results. Legend: |I| = consensus size at termination, RS = RANSAC, PS = PROSAC, GMLE = Guided MLESAC, LORS =

LO-RANSAC, LORS1 = Improved LO-RANSAC, EP = proposed method with different initialization techniques.

κ = 1.5 for all variants of EP.

Table 1 (bottom) shows the quantitative results. Again,

the EP variants are better than the other methods in terms

of solution quality. The runtime gap was not as significant

here due to the low-dimensionality of the model (d = 3).

6. Conclusions

We introduced a novel locally convergent algorithm for

maximum consensus, based on exact penalization of com-

plementary constraints. In terms of solution quality, our al-

gorithm outperforms other heuristic and approximate meth-

ods - this was demonstrated particularly by our method be-

ing able to improve upon the solution of RANSAC. Even

when presented with bad initializations (i.e., when using

least squares to initialize on unbalanced data), our method

was able to recover and attain good solutions. Though our

method can be slower, it is able to guarantee convergence

to local optimum, unlike the randomized heuristics. In fact,

at high outlier rates, our method is actually faster than the

RANSAC variants, while yielding higher-quality results.
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