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Abstract

A novel contour-constrained superpixel (CCS) algorithm

is proposed in this work. We initialize superpixels and re-

gions in a regular grid and then refine the superpixel la-

bel of each region hierarchically from block to pixel levels.

To make superpixel boundaries compatible with object con-

tours, we propose the notion of contour pattern matching

and formulate an objective function including the contour

constraint. Furthermore, we extend the CCS algorithm to

generate temporal superpixels for video processing. We ini-

tialize superpixel labels in each frame by transferring those

in the previous frame and refine the labels to make super-

pixels temporally consistent as well as compatible with ob-

ject contours. Experimental results demonstrate that the

proposed algorithm provides better performance than the

state-of-the-art superpixel methods.

1. Introduction

Superpixel segmentation is a preprocessing task to par-

tition an input image into smaller meaningful regions. In

comparison with the pixel representation of an image, the

superpixel representation can reduce the number of im-

age primitives or units greatly. Recently, superpixel meth-

ods have been widely used in many computer vision al-

gorithms, including image segmentation [15], video object

segmentation [9], semantic segmentation [12], saliency de-

tection [21], and stereo matching [31].

Many superpixel methods have been proposed [1, 8, 10,

11, 13, 16, 18, 24, 34, 35], which achieve superpixel parti-

tioning by optimizing objective functions in general. Since

each superpixel is employed as a minimal unit in appli-

cations, it should belong to a single object without over-

lapping with multiple objects. In other words, superpixels

should adhere to image contours. Thus, a few superpixel

methods [8, 18, 35] use contour information in their objec-

tive functions. On the other hand, several advanced contour

detection techniques, based on deep learning, have been

proposed recently [28,33], which can detect object contours

faithfully with relatively low complexity. In this work, we

attempt to exploit learning-based contour information ex-

plicitly to achieve accurate superpixel segmentation.

Also, temporal superpixel (or supervoxel) methods for

video processing have been proposed [1, 5, 20, 25]. If a

superpixel method is applied to each frame in a video se-

quence independently, it will lead to flickering artifacts.

Therefore, a temporal superpixel method should consider

temporal correlation to label the same regions consistently

in consecutive frames while making superpixel boundaries

compatible with object contours.

We propose a novel superpixel algorithm, referred to as

contour-constrained superpixel (CCS). We initialize super-

pixels and regions in a regular grid and then refine the su-

perpixel label of each region hierarchically from block to

pixel levels. At each level, we use a cost function to ex-

plicitly enforce the contour constraint that two neighbor-

ing regions should belong to different superpixels if there

is an object contour between them. To this end, we pro-

pose the notion of contour pattern matching. Moreover,

we extend the proposed CCS algorithm to generate tem-

poral superpixels. We initialize superpixel labels in each

frame by transferring those in the previous frame using op-

tical flows. Then, we perform the temporal superpixel la-

beling to make superpixels temporally consistent, as well

as compatible with object contours. Experimental results

show that the proposed algorithm outperforms the conven-

tional superpixel [1,8,10,11,13,16,24,34] and temporal su-

perpixel [1, 5, 20, 30] methods and can be applied to object

segmentation [9] and saliency detection [14,32] effectively.

To summarize, this paper has three main contributions.

∙ Introduction of the contour constraint to compel su-

perpixel boundaries to be compatible with object con-

tours, by adopting the contour pattern matching.

∙ Extension of the proposed CCS algorithm for video

processing, which yields temporally consistent and

spatially accurate superpixels.

∙ Remarkable performance achievement on superpixel

and temporal superpixel datasets and improvement of

many computer vision algorithms by applying the pro-

posed CCS.
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2. Related Work

2.1. Superpixel Methods

A variety of superpixel methods have been proposed.

Levinshtein et al. [10] proposed Turbopixels. They initial-

ized seeds and propagated them using the level set method

to obtain superpixels.

Achanta et al. [1] proposed the simple linear itera-

tive clustering (SLIC), which is a K-means optimization

method. SLIC represents each pixel with a 5-dimensional

feature vector, composed of spatial coordinates and colors.

It assigns each pixel to the nearest cluster and updates the

cluster centers iteratively. Li and Chen [11] proposed the

linear spectral clustering (LSC), based on a weighted K-

means scheme. However, these K-means-based methods

may not preserve the connectedness of each superpixel, and

thus they should perform postprocessing. Liu et al. [16] ex-

tended SLIC to yield small superpixels in detailed regions

and large superpixels in flat regions.

Liu et al. [13] proposed an entropy-based superpixel

method. Their method constructs a graph on an input image

and formulates a cost function, which consists of the en-

tropy rate of a random walker on the graph and a balancing

term. The entropy rate enforces each superpixel to be com-

pact and homogeneous, while the balancing term constrains

the size of each superpixel to be similar.

Also, coarse-to-fine methods have been proposed. Van

den Bergh et al. [24] proposed the superpixels extracted via

energy-driven sampling (SEEDS) method, which changes

the superpixel label of each region to refine superpixel

boundaries in a coarse-to-fine manner. The superpixel la-

bels are updated to improve the homogeneity of colors

within each superpixel. However, SEEDS may fail to ob-

tain compact superpixels. Thus, Yao et al. [34] proposed

another coarse-to-fine method. They defined the cost func-

tion based on the distances from the centers of superpixels

to achieve compactness.

However, the aforementioned methods [1, 10, 11, 13, 16,

24,34] do not exploit contour information, and thus their su-

perpixel boundaries may be incompatible with image con-

tours. Only a few contour-based superpixel methods have

been proposed [8,18,35]. Moore et al. [18] and Fu et al. [8]

determined superpixel boundaries, by finding paths con-

taining many image contour pixels. However, both meth-

ods should maintain a regular grid structure of superpix-

els, which limits their clustering performance. Zeng et

al. [35] proposed a superpixel method using geodesic dis-

tances. Their algorithm assigns each pixel to the seed that

has the smallest geodesic distance and updates the position

of each seed alternately. For the geodesic distance compu-

tation, gradient magnitudes are utilized. However, note that

the gradient information is not sufficient for detecting true

image contours.

2.2. Temporal Superpixel Methods

For video processing, temporal superpixel methods have

been proposed. Achanta et al. [1] and Van den Bergh et

al. [25], respectively, modified superpixel methods to pro-

cess video sequences. Achanta et al. [1] extended their

SLIC algorithm for 2D images straightforwardly to ob-

tain temporal superpixels, by considering a video sequence

as the 3D signal. Van den Bergh et al. [25] extended

SEEDS [24], by considering previous frames when con-

structing color histograms. They also created and termi-

nated labels to reflect color changes in different frames.

Reso et al. [20] proposed temporally consistent super-

pixels (TCS). They labeled each superpixel using the K-

means optimization as in [1]. However, they adopted a

temporal sliding window to improve temporal consistency.

Specifically, to calculate the average color of a superpixel,

they considered not only the pixels in the current frame but

also those in the other frames in the sliding window. Chang

et al. [5] proposed another temporal superpixel method,

called TSP, which is allowed to change the superpixel label

of each pixel only if the topological relationship of super-

pixels is maintained. Both TCS and TSP use optical flow

information from the previous frame to initialize the parti-

tioning of a current frame to achieve temporal consistency.

3. Contour-Constrained Superpixels

This section proposes a novel superpixel algorithm,

referred to as CCS. We first initialize � superpixels

�1, . . . , �� in a regular grid, as shown in Figure 1(a). Then,

we refine those superpixels hierarchically. Specifically, we

divide regions and update their superpixel labels hierarchi-

cally at three block levels in Figures 1(b)∼(d) and perform

the finest update at the pixel level in Figure 1(e).

Let �(��) ∈ {1, . . . ,�} denote the superpixel label of

the �th region ��, which can be either a block or a pixel

according to the refinement level. Note that �� constitutes

the �(��)-th superpixel, and thus �� ⊂ ��(��). At each re-

finement level, we iteratively update the superpixel label of

a boundary region �� from �(��) to �(��) of a neighbor-

ing region �� ∈ ���
, which has the smallest cost �(�, �).

Here, ���
denotes the set of neighboring regions of ��,

which are adjacent to ��. We update the superpixel label of

the boundary region ��, only if �� is a simple point [3], to

preserve the topological relationship among superpixels, as

done in [24,34]. We formulate the cost function �(�, �), for

updating the superpixel label of �� from �(��) to �(��), as

�(�, �) = [�D(�, �) + ��L(�, �) + ��I(�, �)]× �C(�, �)
(1)

where parameters � and � control the relative contributions

of the feature distance�D, the boundary length cost�L, and

the inter-region color cost �I. In all experiments, � = 2
and � = 10. We amplify the cost in (1) when there is a
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(a) Initial superpixels (b) Level 1 (c) Level 2 (d) Level 3 (e) Level 4

Figure 1. Hierarchical superpixel labeling (� = 96). Red lines depict superpixel boundaries, while black lines in (b)∼(d) are block

boundaries. (b)∼(d) hierarchical superpixel labeling at three block levels and (e) the finest pixel level labeling.

contour between �� and �� , by adopting the contour con-

straint �C(�, �). In other words, we constrain superpixels to

be compatible with image contours.

Let us describe each term in the cost function �(�, �) in

(1) subsequently in more detail.

3.1. Feature Distance from Superpixel Centroid

We use the feature distance between a boundary region

�� and the �(��)-th superpixel ��(��), which a neighbor-

ing region �� constitutes. We adopt color and position as

features and define the feature distance �D(�, �) as

�D(�, �) =
∥

∥c(��)− c(��(��))
∥

∥

2

+
∥

∥p(��)− p(��(��))
∥

∥

2
(2)

where c(��) and c(��(��)) denote the average CIELAB

colors of region �� and superpixel ��(��), respectively.

Similarly, p(��) and p(��(��)) are the average positions of

�� and ��(��). The color distance makes that a superpixel

consists of homogenous colors, while the spatial distance

imposes that a superpixel is composed of nearby pixels.

3.2. Boundary Length Cost

To yield superpixels of compact shapes, we minimize the

boundary lengths of superpixels explicitly. To this end, we

define the boundary length cost �L(�, �), by counting the

changed number of boundary regions when the superpixel

label of region �� is updated from �(��) to �(��), i.e.,

�L(�, �) = �(��, �(��))− �(��, �(��)) (3)

where �(��, �) denotes the total number of boundary re-

gions in the image when the superpixel label of �� is �. In

the implementation, we only consider the set of neighbor-

ing regions ���
of ��, since the states (boundary or not)

of the other regions are not affected by the superpixel label

of ��. If �L(�, �) is positive, the label change of �� from

�(��) to �(��) increases the total boundary length. Thus, by

minimizing �L(�, �), we constrain each superpixel to have

a small boundary length and thus have a compact shape.

3.3. Inter-Region Color Cost

We assign each region to a superpixel by considering

the color difference between the region and its neighbor-

ing regions. It is more likely that an object boundary ex-

ists between the two regions when they have different col-

ors. Therefore, we attempt to assign different superpixel

labels to neighboring regions with dissimilar color infor-

mation. Moreover, we adopt the notion of the internal

difference [7] to consider the texture information in each

superpixel. Specifically, we define the internal difference

�(��(��)) of superpixel ��(��) as the maximum color differ-

ence between neighboring regions within ��(��),

�(��(��)) = max
��,��∈��(��)

,

��∈���

∥c(��)− c(��)∥
2
. (4)

A large �(��(��)) indicates that ��(��) has complex texture

in general.

Then, we compute the inter-region color cost�I(�, �), by

comparing the color distance between neighboring regions

�� and �� and the internal difference �(��(��)),

�I(�, �) = max
{

0, ∥c(��)− c(��)∥
2 − �(��(��))

}

.

(5)

We hence impose the inter-region color cost only when the

color difference between�� and�� is larger than �(��(��)).
Hence, superpixel ��(��) can include a new region �� with

high tolerance of color difference, if it has complex texture.

In contrast, a superpixel with flat texture cannot include a

new region with a large color difference.

3.4. Contour Constraint

Superpixels should adhere to object contours since they

are mainly used as processing units to detect and segment

objects. In other words, object contours should be com-

posed of superpixel boundaries, although superpixel bound-

aries are not necessarily object contours. In this work, we

adopt the contour constraint�C in (1) to form superpixels so

that their boundaries are compatible with object contours.

Given an input image, we obtain its contour map by

employing the holistically-nested edge detection (HED)

scheme [28]. HED can extract faithful contours with rel-

atively low computational complexity, by adopting a con-

volutional neural network. However, it is hard to determine

the existence of a contour between distant pixels based on

the primitive contour map. Thus, we match each patch in
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(c) Ground-Truth Contour Maps

(e) Contour Pattern Set Extraction

(a) Input Image (b) HED Contour Map

(d) Thin Binary Contour Map

(f) Contour Pattern Matching

Figure 2. Contour pattern set extraction and contour pattern

matching. In the contour pattern set, the patterns are ordered by

occurring frequencies from the left to the right.

the contour map to a pre-extracted contour pattern. By ex-

amining these matching patterns, we can estimate the prob-

ability that two pixels are separated by a contour.

Figure 2 shows the processes of contour pattern set ex-

traction and contour pattern matching, which are used to

define the contour constraint. To construct a set of con-

tour patterns, we use 200 training images in the BSDS500

dataset [17], in which each training image has ground-truth

contour maps, as shown in Figure 2(c). We use the 7 × 7
patch, centered at each contour pixel, as a contour pattern.

Since each patch is binary and the center pixel value is 1,

there can be 27×7−1 contour patterns. However, we only

consider the patterns, whose elements are divided into two

mutually exclusive regions by the contours. Also, we con-

struct the contour pattern set by selecting only top 1,000

frequently occurring patterns in the contour maps as in Fig-

ure 2(e). These 1,000 patterns cover 90.5% of the patches

in the training contour maps.

On the HED contour map in Figure 2(b), we perform

the non-maximum suppression [4] and then thresholding to

yield a thin binary contour map, as shown in Figure 2(d).

Then, we employ the pattern matching process in Fig-

ure 2(f). We consider the 7 × 7 patch ��, centered at a

contour pixel � in an input image, as shown in Figure 3.

Let ℳ denote the contour pixel set. For each patch ��,

� ∈ ℳ, we compute its Hamming distances from the con-

tour patterns and select the best matching pattern �� with

the shortest distance. Then, the contour probability �(�, �)

(a) (b) (c) (d)

Figure 3. An example of the contour pattern matching: (a) input

contour map, including three patches depicted in orange, green

blue dashed boxes, and (b)∼(d) the matching contour patterns for

the three patches.

between pixels � and � is modeled as

�(�, �) =

∑

�∈ℳ �
(1)
� (�, �)× �

(2)
� (�, �)

∑

�∈ℳ �
(1)
� (�, �)

(6)

where the binary function �
(1)
� (�, �) = 1 only if both � and

� are within patch �� as in Figures 3(b)∼(d). So the de-

nominator in (6) counts the number of patches that include

both � and �. Also, the binary function �
(2)
� (�, �) = 1 only

if � and � belong to different components in the matching

pattern �� as in Figures 3(b) and (c). Hence, �(�, �) mea-

sures the proportion of patches whose matching patterns

separate � from �. In the case of Figure 3, out of the three

matching patterns, two separate � and � successfully. Thus,

by considering all the patches containing both pixels � and

�, we can obtain the contour probability �(�, �) faithfully,

although the contour is not closed in Figure 3(a).

Then, we determine the contour probability �(��, ��)
between regions �� and �� , by finding the maximum con-

tour probability between the pixels in �� and �� ,

�(��, ��) = max
�∈��,�∈��

�(�, �). (7)

We then compute the contour constraint �C(�, �) by

�C(�, �) = exp (� × �(��, ��)) (8)

where � = 3. The exponential function is used in (8) so

as to amplify the cost function �(�, �) in (1) significantly

when there is an object contour between regions�� and�� .

By adopting the contour constraint in (1), we can make su-

perpixels compatible with image contours.

3.5. Hierarchical Superpixel Refinement

As shown in Figure 1, we refine superpixels hierarchi-

cally from block to pixel levels. At the coarsest level (level

1) in Figure 1(b), each initial rectangular superpixel is di-

vided into four blocks, and then each block is regarded as

a refinement unit, i.e. region ��. We update the superpixel

label of each region to minimize the cost�(�, �) in (1) itera-

tively. Then, we use the divisive algorithm [22] to determine

the block structure at the finer level (level 2) in Figure 1(c).
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Algorithm 1 Contour-Constrained Superpixels

1: Initialize superpixels and regions in a regular grid

2: for level = 1 to 4 do

3: repeat for all boundary simple regions ��

4: �∗ ← argmin� �(�, �) and �(��) ← �(��∗) ⊳ (1)

5: Update the average colors and positions of superpixels

6: Update the internal differences of superpixels

7: until convergence or pre-defined number of iterations

8: if level = 1 or 2 then

9: Divide regions into blocks ⊳ (9)

10: else if level = 3 then

11: Divide all regions into pixels

12: end if

13: end for

To decide whether to divide region �� or not, we compute

its inhomogeneity

�(��) = max
�,�∈��,�∈��

∥c(�)− c(�)∥2

+exp(� × max
�,�∈��,�∈��

�(�, �)), (9)

where �� is the set of 4-adjacent pixels to pixel �, and

c(�) is the CIELAB color of �. In (9), the first term mea-

sures the maximum color difference between adjacent pix-

els in ��, and the second term computes the maximum con-

tour strength between adjacent pixels in �� similarly to (8).

When �(��) is higher than a threshold �div = 100, we di-

vide �� into four blocks for level 2.

This division process is repeated once more to refine su-

perpixels at level 3. Notice that unlike the conventional

coarse-to-fine methods [24, 34], the proposed hierarchical

refinement divides only inhomogeneous regions containing

complicated texture and contours. Thus, homogeneous re-

gions are not divided, and the corresponding superpixels

can maintain relatively regular and compact shapes.

Finally, we conduct the superpixel labeling at the pixel

level (level 4). At level 4, contrary to levels 1∼3, we di-

vide all blocks into pixels to perform the finest scale super-

pixel labeling. Algorithm 1 summarizes the proposed CCS

algorithm. The iteration terminates when there is no label

change or the maximum number of iterations are performed.

We set the maximum number of iterations to 20.

4. Contour-Constrained Temporal Superpixels

We extend the proposed CCS algorithm to generate tem-

poral superpixels for video processing.

4.1. Initialization

We perform the CCS algorithm to obtain the superpixel

labels of the first frame �(1) in a video sequence. Then,

for each frame �(�), � ≥ 2, we estimate optical flows [26]

from �(�−1) to �(�). We transfer the label of each superpixel

Algorithm 2 Contour-Constrained Temporal Superpixels

1: Apply Algorithm 1 to �(1)

2: for � = 2 to �end do

3: Initialize superpixels using the results in �(�−1)

4: repeat for all boundary simple pixels �
(�)
�

5: �∗ = argmin� �(�, �, �) ⊳ (10)

6: �(�
(�)
� ) ← �(�

(�)
�∗ )

7: Update the average positions of superpixels

8: Update the internal differences of superpixels

9: until convergence or pre-defined number of iterations

10: Perform superpixel merging, splitting, and relabeling

11: end for

in �(�−1) to �(�) by employing the average optical flow of

the superpixel. By initializing the labels with the optical

flow information, we can label the same regions in consec-

utive frames consistently. During the initialization, we do

not assign any superpixel labels to occluded or disoccluded

pixels. Note that we refer to a pixel mapped from multiple

superpixels in the previous frame as an occluded pixel, and

a pixel mapped from no superpixel as a disoccluded pixel.

4.2. Temporal Superpixel Labeling

After the initialization, we perform the temporal super-

pixel labeling in a similar manner to Section 3. However,

the temporal superpixel labeling is performed at the pixel

level only. Thus, the cost function �(�, �, �) for updating

the superpixel label of a boundary pixel �
(�)
� from �(�

(�)
� )

to �(�
(�)
� ) in frame �(�) is defined as

�(�, �, �) = (10)

[�D(�, �, �) + ��L(�, �, �) + ��I(�, �, �)]× �T(�, �, �)

where �T(�, �, �) is the temporal contour constraint. Note

that the feature distance �D(�, �, �), the boundary length

cost �L(�, �, �), and the inter-region color cost �I(�, �, �) are

defined in the same way as (2), (3), and (5), respectively.

We adopt the temporal contour constraint �T(�, �, �) in

(10) to make superpixels temporally consistent and also

compatible with image contours. It is formulated as

�T(�, �, �) = �C(�, �, �)× �(�, �, �) (11)

where �C(�, �, �) is computed in the same way as (8), i.e.

�C(�, �, �) = exp(� × �(�
(�)
� , �

(�)
� )). (12)

Also, �(�, �, �) is a relaxation factor that diminishes the con-

tour constraint adaptively to improve the temporal consis-

tency of superpixel labels, which is defined as

�(�, �, �) =

⎧

⎨

⎩

1

1+exp
(

−�×ℎ(�
(�)
�

)
) if �(�

(�)
� ) ∈ ℒ

(�)
� ,

1 otherwise,
(13)
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(a) ASA ↑ (b) BR ↑ (c) UE ↓

Figure 4. Quantitative evaluation of superpixel algorithms. The horizontal axis represents the number of segments (or superpixels) in each

image. CCS and CCS-wo-CC denote the proposed CCS algorithm with and without the contour constraint, respectively.

(a) Input (b) SEEDS (c) LSC (d) Proposed

Figure 5. Visual comparison of superpixel results. Each image

consists of about 400 superpixels. The second and last row show

the magnified parts of the images in the first and third rows, respec-

tively. In (b)∼(d), each superpixel is represented by the average

color.

where � = 2, ℒ
(�)
� is the set of superpixel labels that are

mapped to �
(�)
� from �(�−1), and ℎ(�

(�)
� ) is the HED con-

tour response [28] for �
(�)
� . Thus, if the neighboring label

�(�
(�)
� ) belongs to ℒ

(�)
� , we relax the contour constraint in

(11). However, the relaxation factor gets closer to 1 if the

contour response ℎ(�
(�)
� ) increases.

4.3. Merging, Splitting, and Relabeling

As the superpixel labeling is performed frame by frame,

a superpixel can grow or shrink. To prevent irregular super-

pixel sizes, we carry out superpixel merging and splitting.

Also, superpixels can be labeled incorrectly because of oc-

clusion or illumination variation. To avoid this mislabeling,

we perform relabeling as postprocessing.

Let �̄ = �/� denote the average superpixel size, where

� is the number of pixels in a frame. By comparing the

size �
(�)
� of each superpixel �� at frame �(�) with �̄, we

decide whether to merge or split ��. When �
(�)
� /�̄ is larger

than �spl, we divide superpixel �� in �(�) across the main

Table 1. Run-times of the superpixel algorithms.
[10] [8] [1] [13] [11] [24] [16] Proposed

Time (s) 8.09 12.78 0.26 1.52 0.34 0.06 0.36 0.97

axis, corresponding to the biggest eigenvector of the spatial

distribution, as done in [35]. Also, when �
(�)
� /�̄ is smaller

than �mer, we merge �� with the nearest superpixel. We

find the nearest superpixel by comparing the centroid of ��
with those of adjacent superpixels. We set �spl = 3 and

�mer = 1/16 in all experiments.

We also perform superpixel relabeling, by measuring

color consistency. We define the color consistency�� of su-

perpixel ��, by comparing the average color c1:�−1(��) of

�� from frame �(1) to �(�−1) and the average color c�(��)
of superpixel �� in frame �(�),

�� = ∥c1:�−1(��)− c�(��)∥
2
. (14)

If �� is larger than a threshold �rel = 120, we relabel ��
with a new label. Algorithm 2 summarizes the proposed

temporal superpixel algorithm.

5. Experimental Results

5.1. Superpixel Algorithm

We assess the proposed CCS algorithm on the 200 test

images in the BSDS500 dataset [17]. All parameters are

fixed in all experiments. We compare the proposed algo-

rithm with seven conventional superpixel algorithms: Tur-

bopixels [10], regularity preserved superpixels (RPS) [8],

SLIC [1], entropy rate superpixel segmentation (ERS) [13],

LSC [11], SEEDS [24], and manifold SLIC (MSLIC) [16].

We quantify the superpixel partitioning performance us-

ing three evaluation metrics, as in [13]: achievable segmen-

tation accuracy (ASA), boundary recall (BR), and under-

segmentation error (UE). ASA is the highest achievable ob-

ject segmentation accuracy when the resultant superpixels

are employed as units. BR is the proportion of the ground-

truth boundaries that match the superpixel boundaries. UE

measures the proportion of the pixels that leak across the
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Figure 6. Quantitative evaluation of temporal superpixel algorithms on the SegTrack dataset [23].

ground-truth boundaries. Note that higher ASA and BR cor-

responds to better performance, while a lower UE is better.

Figure 4 compares the algorithms, in which CCS and CCS-

wo-CC denote the proposed CCS algorithm with and with-

out the contour constraint, respectively. We see that CCS

performs better than CCS-wo-CC in terms of ASA and UE

while providing comparable BR performance. This indi-

cates that the contour constraint plays an essential role in

the proposed algorithm. Moreover, notice that the proposed

CCS outperforms all the conventional algorithms by consid-

erable margins in terms of all three metrics. Especially, the

proposed algorithm yields 2.1% higher BR and 3.7% lower

UE values than LSC, which is the state-of-the-art conven-

tional algorithm, when the number of segments � is 400.

Figure 5 compares superpixel results qualitatively. We

see that the proposed algorithm successfully separates the

objects from the background regions, even though the ob-

jects and the background regions have similar colors. Es-

pecially, the proposed algorithm successfully delineates the

duck head and the tail rotor of the helicopter, whereas the

three conventional algorithms fail.

We have measured the run-times of the proposed algo-

rithms using a PC with a 2.2 GHz CPU. Table 1 compares

the run-times of the superpixel algorithms for dividing a

481 × 321 image into about 200 superpixels. The run-time

of the proposed algorithm is comparable to those of the con-

ventional algorithms.

5.2. Temporal Superpixel Algorithm

Next, we evaluate the proposed temporal superpixel al-

gorithm using the LIBSVX 3.0 benchmark [29]. Five con-

ventional algorithms are compared: Meanshift [19], stream-

ing hierarchical video segmentation (sGBH) [30], SLIC [1],

TCS [20], and TSP [5]. Note that Meanshift, sGBH, and

SLIC are video segmentation algorithms without topol-

ogy constraint, rather than temporal superpixel algorithms.

Thus, they generate segments that have multiple connected

components or are shaped irregularly. Therefore, we com-

pare the proposed algorithm mainly with TCS and TSP. We

use the eight evaluation metrics in [29]: 2D boundary re-

call (BR2D), 3D boundary recall (BR3D), 2D segmenta-

tion accuracy (SA2D), 3D segmentation accuracy (SA3D),

2D undersegmentation error (UE2D), 3D undersegmenta-

tion error (UE3D), explained variation (EV), and mean du-

ration. BR2D, SA2D, and UE2D are obtained by calculat-

ing BR, ASA, and UE for each frame and averaging them

over all frames. BR3D, SA3D, and UE3D are obtained by

considering a video sequence as a 3D volume and then com-

puting BR, ASA, and UE. Also, EV quantifies how well

the original information can be represented with the aver-

age colors of superpixels, and mean duration measures how

long superpixels last in terms of the number of frames.

Figure 6 compares the quantitative results on the Seg-

Track dataset [23]. The proposed algorithm yields the high-

est SA3D and EV curves. Moreover, although sGBH has no

topology and regularity constraints and thus has advantages

when calculating BR2D and BR3D, the proposed algorithm

provides comparable BR2D and BR3D results. Also, when

we compare with the temporal superpixel algorithms TCS

and TSP only, the proposed CCS provides the best BR2D,

BR3D, SA3D, and EV values, while providing compara-

ble results in terms of the other metrics. The results on the

Chen dataset [6] are available in the supplemental materials,

which show similar tendencies to Figure 6.

Figure 7 shows temporal superpixel results. We see that

the proposed algorithm detects and tracks objects faithfully.
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(a) TCS (b) TSP (c) Proposed

Figure 7. Comparison of temporal superpixels on the ‘Container’

and ‘Cheetah’ sequences. Each frame consists of about 200 su-

perpixels. Regions surrounded by black boundaries in the first and

third rows depict the labels of superpixels containing objects in the

first frames. The second and last rows show the superpixels that

still contain the objects in the later frames.

Table 2. Run-times of the temporal superpixel algorithms (per

frame).
[30] [1] [20] [5] Proposed

Time (s) 5.71 0.08 7.83 2.39 1.70

For instance, the proposed algorithm successfully delin-

eates the small boat in the ‘Container’ sequence, while TCS

and TSP yield superpixels whose boundaries do not match

the contour of the boat. Also, notice that, as time goes on,

the proposed algorithm maintains the superpixel labels of

objects more effectively than TCS and TSP do.

Table 2 lists the run-times of the temporal superpixel al-

gorithms to segment a 240 × 160 frame into about 200 su-

perpixels. The proposed algorithm is faster than the con-

ventional algorithms, except for SLIC [1].

5.3. Applications

The proposed CCS algorithm can be applied to various

image and video processing tasks. We demonstrate the effi-

cacy of the proposed algorithm on two exemplar tasks.

First, we improve the video object segmentation tech-

nique based on multiple random walkers (MRW) [9]. We

modify it to use the proposed CCS, instead of SLIC. Then,

we compare the two segmentation techniques, i.e. MRW-

SLIC and MRW-CCS, on the SegTrack dataset [23]. Each

segmentation technique uses about 400 superpixels per

frame. We measure the intersection over union (IoU)

scores [27]. The overall IoU score is increased from 0.532
to 0.571 by replacing SLIC with CCS.

Second, we use contour-constrained temporal superpix-

els to postprocess video saliency detection results. If we

apply an image saliency detection technique to each frame

in a video sequence independently, the resultant saliency

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Figure 8. Precision-recall curves of saliency detection techniques.

maps may be temporally inconsistent. Therefore, we use the

proposed contour-constrained temporal superpixels for the

postprocessing. Specifically, we average the saliency values

of the pixels in all frames, constituting each superpixel, and

then replace those saliency values with the average value.

This simple processing improves the saliency detection per-

formance, as shown by the precision-recall curves in Fig-

ure 8. We test two saliency detection techniques, hierar-

chical saliency detection (HS) [32] and deep hierarchical

saliency network (DHSNet) [14] on the NTT dataset [2].

HS-P and DHSNet-P denote the postprocessing results of

HS and DHSNet. The postprocessing improves the per-

formance of HS significantly. Furthermore, although the

amount of the improvement is relatively small, the post-

processing is still effective for the state-of-the-art saliency

technique DHSNet. The precision of the original DHSNet

saturates at 0.981, while that of DHSNet-P at 0.994.

6. Conclusions

We proposed the CCS algorithm. We initialized super-

pixels in a regular grid and performed the hierarchical re-

finement from block to pixel levels. We adopted the con-

tour constraint to make superpixels adhere to object con-

tours. We also extended to the CCS algorithm for video

processing. We transferred superpixel labels using optical

flows and performed the temporal superpixel labeling to

yield temporally consistent superpixels. Experimental re-

sults showed that the proposed algorithm outperforms the

state-of-the-art superpixel methods and can be applied to

object segmentation and saliency detection effectively.
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