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Abstract

We introduce a Deep Stochastic IOC1 RNN Encoder-

decoder framework, DESIRE, for the task of future pre-

dictions of multiple interacting agents in dynamic scenes.

DESIRE effectively predicts future locations of objects in

multiple scenes by 1) accounting for the multi-modal nature

of the future prediction (i.e., given the same context, future

may vary), 2) foreseeing the potential future outcomes and

make a strategic prediction based on that, and 3) reason-

ing not only from the past motion history, but also from the

scene context as well as the interactions among the agents.

DESIRE achieves these in a single end-to-end trainable neu-

ral network model, while being computationally efficient.

The model first obtains a diverse set of hypothetical future

prediction samples employing a conditional variational auto-

encoder, which are ranked and refined by the following RNN

scoring-regression module. Samples are scored by account-

ing for accumulated future rewards, which enables better

long-term strategic decisions similar to IOC frameworks.

An RNN scene context fusion module jointly captures past

motion histories, the semantic scene context and interactions

among multiple agents. A feedback mechanism iterates over

the ranking and refinement to further boost the prediction

accuracy. We evaluate our model on two publicly available

datasets: KITTI and Stanford Drone Dataset. Our experi-

ments show that the proposed model significantly improves

the prediction accuracy compared to other baseline methods.

1. Introduction

It is far better to foresee even without certainty than not

to foresee at all.

Henri Poincaré (Foundations of Science)

Considering the future as a consequence of a series of

past events, a prediction entails reasoning about probable

1IOC: Abbreviation for inverse optimal control, which will be more

explained throughout the paper.

(a) Future prediction example

Pedestrian

Car

Future 

Trajectory

Past

Trajectory

Scene

Elements

Observations Sample
Generation

Ranking 

Refinement 

1

2

3

4

(b) Workflow of DESIRE
Figure 1. (a) A driving scenario: The white van may steer into left

or right while trying to avoid a collision to other dynamic agents.

DESIRE produces accurate future predictions (shown as blue paths)

by tackling multi-modaility of future prediction while accounting

for a rich set of both static and dynamic scene contexts. (b) DESIRE

generates a diverse set of hypothetical prediction samples, and then

ranks and refines them through a deep IOC network.

outcomes based on past observations. But predicting the fu-

ture in many computer vision tasks is inherently riddled with

uncertainty (see Fig. 1). Imagine a busy traffic intersection,

where such ambiguity is exacerbated by diverse interactions

of automobiles, pedestrians and cyclists with each other, as

well as with semantic elements such as lanes, crosswalks and

traffic lights. Despite tremendous recent interest in future

prediction [3, 5, 17, 23, 26, 45, 46], existing state-of-the-art

produces outcomes that are either deterministic, or do not

fully account for interactions, semantic context or long-term

future rewards.

In contrast, we present DESIRE, a Deep Stochastic IOC

RNN Encoder-decoder framework, to overcome those limi-

tations. The key traits of DESIRE are its ability to simultane-

ously: (a) generate diverse hypotheses to reflect a distribution

over plausible futures, (b) reason about interactions between

multiple dynamic objects and the scene context, (c) rank

and refine hypotheses with consideration of long-term future

rewards (see Fig. 1). These objectives are cast within a deep

learning framework.
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We model the scene as composed of semantic elements

(such as roads and crosswalks) and dynamic participants or

agents (such as cars and pedestrians). A static or moving

observer is also considered as an instance of an agent. We

formulate future prediction as determining the locations of

agents at various instants in the future, relying solely on ob-

servations of the past states of the scene, in the form of agent

trajectories and scene context derived from image-based fea-

tures or other sensory data if available. The problem is posed

in an optimization framework that maximizes the potential

future reward of the prediction. Specifically, we propose the

following novel mechanisms to realize the above advantages,

also illustrated in Fig. 2:

• Diverse Sample Generation: Sec. 3.1 presents a condi-

tional variational auto-encoder (CVAE) framework [41]

to learn a sampling model that, given observations of past

trajectories, produces a diverse set of prediction hypothe-

ses to capture the multimodality of the space of plausible

futures. The CVAE introduces a latent variable to account

for the ambiguity of the future, which is combined with a

recurrent neural network (RNN) encoding of past trajecto-

ries, to generate hypotheses using another RNN.

• IOC-based Ranking and Refinement: In Sec. 3.2, we pro-

pose a ranking module that determines the most likely

hypotheses, while incorporating scene context and interac-

tions. Since an optimal policy is hard to determine where

multiple agents make strategic inter-dependent choices,

the ranking objective is formulated to account for potential

future rewards similar to inverse optimal control (IOC).

This also ensures generalization to new situations further

in the future, given limited training data. The module is

trained in a multitask framework with a regression-based

refinement of the predicted samples. In the testing phase,

we iterate the above multiple times to obtain more accurate

refinements of the future prediction.

• Scene Context Fusion: Sec. 3.3 presents the Scene Context

Fusion (SCF) layer that aggregates interactions between

agents and the scene context encoded by a convolutional

neural network (CNN). The fused embedding is channeled

to the aforementioned RNN scoring module and allows to

produce the rewards based on the contextual information.

While DESIRE is a general framework that is applicable

to any future prediction task, we demonstrate its utility in two

applications – traffic scene understanding for autonomous

driving and behavior prediction in aerial surveillance. Sec. 4

demonstrates outstanding accuracy for predicting the future

locations of traffic participants in the KITTI raw dataset and

pedestrians in the Stanford Drone dataset.

To summarize, this paper presents DESIRE, which is a

deep learning based stochastic framework for time-profiled

distant future prediction, with several attractive properties:

• Scalability: The use of deep learning rather than hand-

crafted features enables end-to-end training and easy incor-

poration of multiple cues arising from past motions, scene

context and interactions between multiple agents.

• Diversity: The stochastic output of a deep generative

model (CVAE) is combined with an RNN encoding of past

observations to generate multiple prediction hypotheses

that hallucinate ambiguities and multimodalities inherent

in future prediction.

• Accuracy: The IOC-based framework accumulates long-

term future rewards for sampled trajectories and the

regression-based refinement module learns to estimate a

deformation of the trajectory, enabling more accurate pre-

dictions further into the future.

2. Related Works

Classical methods Path prediction problems have been stud-

ied extensively with different approaches such as Kalman

filters [18], linear regressions [29] to non-linear Gaussian

Process regression models [49, 33, 34, 48], autoregressive

models [2] and time-series analysis [32]. Such predictions

suffice for scenarios with few interactions between the agent

and the scene or other agents (like a flight monitoring sys-

tem). In contrast, we propose methods for more complex

environments such as surveillance for a crowd of pedestrians

or traffic intersections, where the locomotion of individual

agents is severely influenced by the scene context (e.g., driv-

able road or building) and the other agents (e.g., people or

cars try to avoid colliding with the other).

IOC for path prediction Kitani et al. recover human pref-

erences (i.e., reward function) to forecast plausible paths

for a pedestrian in [23] using inverse optimal control (IOC),

or inverse reinforcement learning (IRL) [1, 52], while [26]

adapt IOC and propose a dynamic reward function to ad-

dress changes in environments for sequential path predic-

tions. Combined with a deep neural network, deep IOC/IRL

has been proposed to learn non-linear reward functions and

showed promising results in robot control [11] and driv-

ing [50] tasks. However, one critical assumption made in

IOC frameworks, which makes them hard to be applied to

general path prediction tasks, is that the goal state or the

destination of agent should be given a priori, whereby fea-

sible paths must be found to the given destination from the

planning or control point of view. A few approaches relaxed

this assumption with so-called goal set [28, 10], but these

goals are still limited to a target task space. Furthermore, a

recovered cost function using IOC is inherently static, thus it

is not suitable for time-profiled prediction tasks. Finally, past

approaches do not incorporate interaction between agents,

which is often a key constraint to the motion of multiple

agents. In contrast, our methods are designed for more natu-

ral scenarios where agent goals are open-ended, unknown or

time-varying and where agents interact with each other while

dynamically adapting in anticipation of future behaviors.

Future prediction Walker et al. [47] propose a visual pre-
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diction framework with a data-driven unsupervised approach,

but only on a static scene, while [5] learn scene-specific mo-

tion patterns and apply to novel scenes for motion prediction

as a knowledge transfer. A method for future localization

from egocentric perspective is also addressed successfully

in [30]. But unlike our method, none of those can provide

time-profiled predictions. Recently, a large dataset is col-

lected in [36] to propose the concept of social sensitivity

to improve forecasting models and the multi-target tracking

task. However, their social force [14] based model has lim-

ited navigation styles represented merely using parameters

of distance-based Gaussians.

Interactions When modeling the behavior of an agent, it

should also be taken into account that the dynamics of an

agent not only depend on its own, but also on the behavior

of others. Predicting the dynamics of multiple objects is also

studied in [24, 25, 3, 31], to name a few. Recently, a novel

pooling layer is presented by [3], where the hidden state of

neighboring pedestrians are shared together to joinly rea-

son across multiple people. Nonetheless, these models lack

predictive capacity as they do not take into account scene

context. In [24], a dynamic Bayesian network to capture situ-

ational awareness is proposed as a context cue for pedestrian

path prediction, but the model is limited to orientations and

distances of pedestrians to vehicles and the curbside. A large

body of work in reinforcement learning, especially game

theoretical generalizations of Markov Decision Processes

(MDPs), addresses multi-agent cases such as minmax-Q

learning [27] and Nash-Q learning [16]. However, as noted

in [38], typically learning in multi-agent setting is inherently

more complex than single agent setting [40, 39, 6].

RNNs for sequence prediction Recurrent neural networks

(RNNs) are natural generalizations of feedforward neu-

ral networks to sequences [42] and have achieved remark-

able results in speech recognition [13], machine transla-

tion [4, 42, 7] and image captioning [19, 51, 9]. The power of

RNNs for sequence-to-sequence modeling thus makes them

a reasonable model of choice to learn to generate sequential

future prediction outputs. Our approach is similar to [7] in

making use of the encoder-decoder structure to embed a hid-

den representation for encoding and decoding variable length

inputs and outputs. We choose to use gated recurrent units

(GRUs) over long short-term memory units (LSTMs) [15]

since the former is found to be simpler yet yields no degraded

performance [8]. Despite the promise inherent in RNNs,

however, only a few works have applied RNNs to behavior

prediction tasks. Multiple LSTMs are used in [3] to jointly

predict human trajectories, but their model is limited to pro-

ducing fixed-length trajectories, whereas our model can pro-

duce variable-length ones. A Fusion-RNN that combines

information from sensory streams to anticipate a driver’s

maneuver is proposed in [17], but again their model outputs

deterministic and fixed-length predictions.

Deep generative models Our work is also related to deep

generative models [37, 35, 44], as we have a sample gen-

eration process that is built on a variational auto-encoder

(VAE) [22] within the framework. Since our prediction

model essentially performs posterior-based probabilistic in-

ference where candidate samples are generated based on

conditioning variables (i.e., past motions besides latent vari-

ables), we naturally extend our method to exploit a condi-

tional variational auto-encoder (CVAE) [21, 41] during the

sample generation process. Dense trajectories of pixels are

predicted from a single image using CVAE in [46], while we

focus on predicting long-term behaviors of multiple interact-

ing agents in dynamic scenes.

Unlike our framework, all aforementioned approaches

lack either consideration of scene context, modeling of inter-

action with other agents or capabilities in producing continu-

ous, time-profiled and long-term accurate predictions.

3. Method

We formulate the future prediction problem as an opti-

mization process, where the objective is to learn the posterior

distribution P (Y|X, I) of multiple agents’ future trajecto-

ries Y = {Y1, Y2, .., Yn} given their past trajectories X =
{X1, X2, .., Xn} and sensory input I where n is the number

of agents. The future trajectory of an agent i is defined as

Yi = {yi,t+1, yi,t+2, .., yi,t+δ}, and the past trajectory is de-

fined similarly as Xi = {xi,t−ι+1, xi,t−ι+2, .., xi,t}. Here,

each element of a trajectory (e.g., yi,t) is a vector in R
2 (or

R
3) representing the coordinates of agent i at time t, and δ

and ι refer to the maximum length of time steps for future

and past respectively. Since direct optimization of continu-

ous and high dimensional Y is not feasible, we design our

method to first sample a diverse set of future predictions

and assign a probabilistic score to each of the samples to

approximate P (Y|X, I). In this section, we describe the

details of DESIRE (Fig. 2) in the following structure: Sam-

ple Generation Module (Sec. 3.1), Ranking and Refinement

Module (Sec. 3.2), and Scene Context Fusion (Sec. 3.3).

3.1. Diverse Sample Generation with CVAE

Future prediction can be inherently ambiguous and has

uncertainties as multiple plausible scenarios can be explained

under the same past situation (e.g., a vehicle heading toward

an intersection can make different turns as seen in Fig. 1).

Thus, learning a deterministic function f that directly maps

{X, I} to Y will under-represent potential prediction space

and easily over-fit to training data. Moreover, a naively

trained network with a simple loss will produce predictions

that average out all possible outcomes.

In order to tackle the uncertainty, we adopt a deep

generative model, conditional variational auto-encoder

(CVAE) [41], inside of DESIRE framework. CVAE is a

generative model that can learn the distribution P (Yi|Xi) of
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Figure 2. The overview of proposed prediction framework DESIRE. First, DESIRE generates multiple plausible prediction samples Ŷ via a

CVAE-based RNN encoder-decoder (Sample Generation Module). Then the following module assigns a reward to the prediction samples

at each time-step sequentially as IOC frameworks and learns displacements vector ∆Ŷ to regress the prediction hypotheses (Ranking

and Refinement Module). The regressed prediction samples are refined by iterative feedback. The final prediction is the sample with the

maximum accumulated future reward. Note that the flow via aquamarine-colored paths is only available during the training phase.

the output Yi conditioned on the input Xi by introducing

a stochastic latent variable zi
2. It is composed of multiple

neural networks, such as recognition networkQφ(zi|Yi, Xi),
(conditional) prior network Pν(zi|Xi), and generation net-

work Pθ(Yi|Xi, zi). Here, θ, φ, ν denote the parameters of

corresponding networks. The prior of the latent variables zi
is modulated by the input Xi, however, this can be relaxed

to make the latent variables statistically independent of input

variables, i.e., Pν(zi|Xi) = Pν(zi) [21, 41]. Essentially,

a CVAE introduces stochastic latent variables zi that are

learned to encode a diverse set of predictions Yi given input

Xi, making it suitable for modeling one-to-many mapping.

During training, Qφ(zi|Yi, Xi) is learned such that it gives

higher probability to zi that is likely to produce a reconstruc-

tion Ŷi close to actual prediction given the full context Xi

and Yi. At test time zi is sampled randomly from the prior

distribution and decoded through the decoder network to

produce a prediction hypothesis. This enables probabilis-

tic inference which serves to handle multi-modalities in the

prediction space.

Train phase: Firstly, the past and future trajectories of an

agent i, Xi and Yi respectively, are encoded through two

RNN encoders with separate set of parameters (i.e., RNN En-

coder1 and RNN Encoder2 in Fig. 2). The resulting two en-

codings, HXi
and HYi

, are concatenated and passed through

one fully connected (fc) layer with a non-linear activation

(e.g., relu). Two side-by-side fc layers are followed to

produce both the mean µzi and the standard deviation σzi
over zi. The distribution of zi is modeled as a Gaussian

distribution (i.e., zi ∼ Qφ(zi|Xi, Yi) = N (µzi , σzi)) and is

regularized by the KL divergence against a prior distribution

Pν(zi) := N (0, I) during the training. Upon successful

training, the target distribution is learned in the latent vari-

2Notice that we learn the distribution independently over different agents

in this step. Interaction between agents is considered in Sec. 3.2.

able zi, which allows one to draw a random sample zi from

a Gaussian distribution to reconstruct Yi at test time. Since

back-propagation is not possible through random sampling,

we adopt the standard reparameterization trick [22] to make

it differentiable.

In order to model Pθ(Yi|Xi, zi), zi is combined with Xi

as follows. The sampled latent variable zi is passed to one

fc layer to match the dimension of HXi
that is followed by

a softmax layer, producing β(zi). Then that is combined

with the encodings of past trajectories HXi
through a mask-

ing operation ⊠ (i.e., element-wise multiplication). One can

interpret this as a guided drop out where the guidance β is

derived from the full context of individual trajectory during

the training phase, while it is randomly drawn from Xi, Yi
agnostic prior distribution z

(k)
i ∼ Pν(zi) in the testing phase.

Finally, the following RNN decoder (i.e., RNN Decoder1 in

Fig. 2) takes the output of the previous step, HXi
⊠ β(z

(k)
i ),

and generates K number of future prediction samples, i.e.,

Ŷi
(1)
, Ŷi

(2)
, .., Ŷi

(K)
.

There are two loss terms in training the CVAE-based

RNN encoder-decoder.

• Reconstruction Loss: ℓRecon = 1
K

∑

k ‖Yi − Ŷi
(k)

‖. This

loss measures how far the generated samples are from the

actual ground truth.

• KLD Loss: ℓKLD = DKL(Qφ(zi|Yi, Xi)‖Pν(zi)). This

regularization loss measures how close the sampling dis-

tribution at test time is to the distribution of latent variable

that we learn during training.

Test phase: At test time, the encodings of future trajectories

HYi
are not available, thus the encodings of past trajectories

HXi
are combined with multiple random samples of latent

variable z
(k)
i drawn from the prior z

(k)
i ∼ Pν(zi). Similar to

the training phase, HXi
⊠ β(z

(k)
i ) is passed to the following
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RNN decoder (i.e., RNN Decoder1 in Fig. 2) to generate a

diverse set of prediction hypotheses.

Further details: For both train and test phases, we pass

trajectories through a temporal convolution layer before en-

coding to encourage the network to learn the concept of

velocity from adjacent frames before getting passed into

RNN encoders. Also, RNNs are implemented using gated

recurrent units (GRU) [7] to learn long-term dependencies,

yet they can be easily replaced with other popular RNNs like

long short-term memory units (LSTM) [15]. In summary,

this sample generation module produces a set of diverse

hypotheses critical to capturing the multimodality of the pre-

diction task, through a effective combination of CVAE and

RNN encoder-decoder. Unlike [46], where CVAE is used

to predict for short-term visual motion from a single image,

our CVAE module generates diverse set of future trajectories

based on a past trajectory.

3.2. IOCbased Ranking and Refinement

Predicting a distant future can be far more challenging

than predicting one close by. In order to tackle this, we adopt

the concept of decision-making process in reinforcement

learning (RL) where an agent is trained to choose its actions

that maximizes long-term rewards to achieve its goal [43].

Instead of designing a reward function manually, however,

IOC [50, 11] learns an unknown reward function. Inspired by

this, we design an RNN model that assigns rewards to each

prediction hypothesis Ŷi
(k)

and measures their goodness s
(k)
i

based on the accumulated long-term rewards. Thereafter, we

also directly refine prediction hypotheses by learning dis-

placements △Ŷi
(k)

to the actual prediction through another

fc layer. Lastly, the module receives iterative feedbacks

from regressed predictions and keeps adjusting so that it pro-

duces precise predictions at the end. The model is illustrated

in the right side of Fig. 2. During the process, we combine

1) past motion history through the embedding vector HX, 2)

semantic scene context through a CNN with parameters ρ,

and 3) interaction among multiple agents by using interac-

tion features (Sec. 3.3). Notice that unlike typical robotics

applications [50, 11], we do not assume that the goal (final

destination) is known or the dynamics of the agents are given.

Our model learns the agents dynamics as well as the scene

context in a coherent framework.

Learning to score: For an agent i, there are K number of

samples (i.e., Ŷ
(1)
i , Ŷ

(2)
i , .., Ŷ

(K)
i ) that are generated by our

CVAE sampler. Let the score s of individual prediction

hypothesis Ŷ
(k)
i for the agent i be defined as follows,

s(Ŷ
(k)
i ; I,X, Ŷ

(∀)
j\i) =

T
∑

t=1

ψ(ŷ
(k)
i,t ; I,X, Ŷ

(∀)
τ<t), (1)

where Ŷ
(∀)
j\i is the prediction samples of other agents (i.e.,

∀j, where j 6= i), ŷ
(k)
i,t is the kth prediction sample of an

agent i at time t, Ŷ
(∀)
τ<t is all the prediction samples until

a time-step t, T is the maximum prediction length, and ψ
is the reward function that assigns a reward value at each

time-step. ψ is implemented as an fc layer that is connected

to the hidden vector of RNN cell at each time step. We share

the parameters of the fc layer over all the time steps (each

RNN cell outputs the hidden state of the same dimension).

Therefore, the score s is accumulated rewards over time,

accounting for the entire future rewards being assigned to

each hypothesis. This enables our model to make a strategic

decision by allowing us to rank samples as in other sampling-

based IOC frameworks [11]. In addition, the reward function

ψ incorporates both scene context I as well as the interaction

between agents (see Sec. 3.3).

Learning to refine: Alongside the scores, our model also

estimates a regression vector △Ŷ
(k)
i that refines each predic-

tion sample Ŷ
(k)
i . The regression vector for each agent i is

obtained with the regression function η defined as follows,

△Ŷ
(k)
i = η(Ŷ

(k)
i ; I,X, Ŷ

(∀)
j\i). (2)

Represented as parameters of a neural network, the regres-

sion function η accumulates both scene contexts and all other

agents dynamics from the past to entire future frames, and

estimates the best displacement vector △Ŷ
(k)
i over entire

time-horizon T . Similarly to the score s, it accounts for what

happens in the future both in terms of scene context and in-

teractions among dynamic agents to produce the output. We

implement η as another fc layer that is connected to the last

hidden vector of the RNN which outputsM×T dimensional

vector. M = 2 (or 3) is the dimension of the location state.

Iterative feedback: Using the displacement vector △Ŷ
(k)
i ,

we iteratively refine the prediction hypothesis Ŷ
(k)
i . After

each cycle, Ŷ
(k)
i is updated by Ŷ

(k)
i +△Ŷ

(k)
i , and fed into

the IOC module. This process is similar to the gradient de-

scent optimization of Ŷi over the score function s, but it does

not require to compute the gradient over RNN which can be

very unstable due to the recurrent structure (i.e., vanishing

or exploding gradient). We observe that iterative refinement

indeed improves the quality of prediction samples in the

experiments (see Fig. 4 and Fig. 5).

Losses: There are two loss terms in training the IOC ranking

and refinement module.

• Cross-entropy Loss: ℓCE = H(p, q) of which the tar-

get distribution q is obtained by softmax(−d(Yi, Ŷ
(k)
i )),

where d(Yi, Ŷ
(k)
i ) = max ‖Ŷ

(k)
i − Yi‖.

• Regression Loss: ℓReg = 1
K

∑

k ‖Yi − Ŷi
(k)

−△Ŷi
(k)

‖

Finally, the total loss of the entire network is defined as a

multi-task loss as follows, where N is the number of agents

in one batch.

ℓTotal =
1

N

∑

i∈N

ℓRecon + ℓKLD + ℓCE + ℓReg (3)
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3.3. Scene Context Fusion

As discussed in the previous section, our ranking and

refinement module relies on the hidden representation of the

shared RNN module. Thus, it is important that the RNN

must contain the information about 1) individual past motion

context, 2) semantic scene context and 3) the interaction

between multiple agents, in order to provide proper hidden

representations that can score and refine a prediction Ŷ
(k)
i .

We achieve the goal by having an RNN that takes follow-

ing input xt at each time step:

xt =
[

γ(v̂i,t), p(ŷi,t; ρ(I)), r(ŷi,t; ŷj\i,t,hŶj\i
)
]

(4)

where v̂i,t is a velocity of Ŷ
(k)
i at t, γ is a fc layer with

a ReLU activation that maps the velocity to a high dimen-

sional representation space, p(ŷi,t; ρ(I)) is a pooling oper-

ation that pools the CNN feature ρ(I) at the location ŷi,t,
r(ŷi,t; ŷj\i,t,hŶj\i

) is the interaction feature computed by

a fusion layer that spatially aggregates other agents hidden

vectors, similar to SocialPooling (SP) layer [3]. The embed-

ding vector HXi
(the output of the RNN Encoder1 in Fig. 2)

is shared as the initial hidden state of the RNN, in order to

provide the individual past motion context. We share this

embedding with the CVAE module since both require the

same information to be embedded in the vector.

Interaction Feature: We implement a spatial grid based

pooling layer similar to SP layer [3]. For each sample k of

an agent i at t, we define spatial grid cells centered at ŷ
(k)
i,t .

Over each grid cell g, we pool the hidden representation

of all the other agents’ samples that are within the spatial

cell, ∀j 6= i, ∀k, ŷ
(k)
j,t ∈ g. Instead of using the max pooling

operation with rectangular grids, we adopt log-polar grids

with an average pooling. Combined with CNN features, the

SCF module provides the RNN decoder with both static and

dynamic scene information. It learns consistency between

semantics of agents and scenes for reliable prediction.

3.4. Characteristics of DESIRE

This section highlights particularly distinctive features of

DESIRE that naturally enable higher accuracy and reliability.

• The framework is based on deep neural network and is

trainable end-to-end, rather than relying on hand-crafted

parametric representation and interactions terms. Trajecto-

ries of each agent are represented using RNN encoders and

are combined together through a fusion layer within the

architecture. Scene context is represented through CNN

and is not solely restricted to images (i.e., can handle non-

visual sensors too). Overall, the algorithm is scalable and

flexible.

• CVAE is combined with RNN encodings to generate

stochastic prediction hypothesis, which handles ambigui-

ties and multimodalities inherent in future prediction.

• A novel RNN module coherently integrates multiple cues

that have critical influence on behavior prediction such as

dynamics of all neighboring agents and scene semantics.

• An IOC framework is used to train the trajectory ranking

objective by measuring potential long-term future rewards.

This makes the model less reactive, and enables more

accurate predictions further into the future.

• A regression vector is learned to refine trajectories and

an iterative feedback mechanism sequentially adjusts the

predicted behavior, resulting in more accurate predictions.

4. Experiments

4.1. Datasets

KITTI Raw Data [12]: The dataset provides images of driv-

ing scenes and Velodyne 3D laser scan along with calibration

information between cameras and sensors. To prepare data

examples (i.e., X,Y, I), we performed the following: As

the dataset does not provide semantic labels for 3D points

(which we need for scene context), we first perform semantic

segmentations of images and project Velodyne laser scans

onto the image plane using the provided camera matrix to

label 3D points. The semantically labeled 3D points are

then registered into the world coordinates using GPS-IMU

tags. Finally we create top-down view feature maps I of

size H ×W × C (H,W : size of crop and C: number of

classes for scene elements, e.g., road, sidewalk, and veg-

itation shown as red, blue and green color in Fig. 6.). I
is cropped with respect to the view point of the camera to

simulate actual driving scenario (H,W = 80m and the size

of pixel is 0.5m. The camera is located at the left-center.).

Since laser scans on dynamic objects generate traces dur-

ing registration, we remove moving objects and only use

static scene elements. The trajectories X,Y are generated

by extracting the center locations of the 3D tracklets and reg-

istering them in the world coordinates. We use all annotated

videos from Road and City scenes for our experiments and

generate approximately 2,500 training examples.
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Figure 4. Oracle prediction errors over the number of samples on

the KITTI dataset. X axis represents the ratio of top samples used

in the oracle error evaluation (Y axis). Best viewed in color.

Stanford Drone Dataset [36]: The dataset contains a large

volume of aerial videos captured in a university campus

using a drone. There are various classes of dynamic objects

interacting with each other, often in the form of high density

crowds. Except for less stabilized cameras and lost labels,

we used all videos to create examples to train/test our model,

yielding approximately 16, 000 examples. Note that we

directly use raw images to extract visual features, rather than

semantically labeled feature maps. We resize the images by

1/5 in following experiments to avoid memory overhead.

4.2. Evaluation Metrics and Baselines

The following metrics are used to measure the perfor-

mance of future prediction task in various aspects: (i) L2

distance between the prediction and ground truth at multiple

time steps, (ii) miss-rate with a threshold in terms of L2 dis-

tance at multiple time steps, (iii) maximum L2 distance over

entire time frames, (iv) maximum miss-rate over entire time

frames, and (v) oracle error over top K number of samples

(i.e., Eoracle = min∀k∈K E(Ŷ
(k)
i − Yi)) to account for the

uncertainty in the future prediction (similar to MEE in [46]).

We set K to be 50 throughout the main experiments.

We compare our method with the following baselines:

• Linear: A linear regressor that estimates linear parameters

by minimizing the least square error.

• RNN ED: An RNN encoder-decoder model that directly

regresses the prediction only using the past trajectories.

• RNN ED-SI: An RNN ED augmented with our SCF unit

into the decoder similar to [17]. The model combines the

scene and interaction features while making prediction and

uses the same information as ours, but makes a prediction

at t+ 1 solely based on the past information up to t.
• DESIRE: The proposed method. We denote our model

with only semantic scene context in SCF module as

DESIRE-S and our model with both scene context and

interaction as DESIRE-SI. We also evaluate DESIRE-X-

IT{N}, where N is the number of iterative feedbacks.

4.3. Learning Details

We train the model with Adam optimizer [20] with the

initial learning rate of 0.004. The learning rate is decreased

by half at every quarter of total epochs, albeit we do not

observe clear improvement with this. All the models includ-

ing Encoder-decoder baselines are trained for 600 epochs

for KITTI and 8 epochs for SDD (about 50K iterations with

a batch size 32). The full details on the architecture are

discussed in the supplementary materials. In order to avoid

Iteration 0 Iteration 1 Iteration 3

Figure 5. Improved DESIRE-SI prediction samples (red) over it-

erations. Iterative regression refines the predictions closer to the

ground truth future trajectory (blue) matching with scene context.

exploding gradient in RNNs, we apply gradient clipping

with L2 norm of 1.0. During the training procedure, we

randomly rotate the scene and trajectories to augment data

and reduce over-fitting. For all experiments, we run random-

ized 5 fold cross validation without overlapping videos in

different splits. All models observe maximum of 2 seconds

for past trajectories and make a prediction up to 4 seconds

into the future. All models are implemented using Tensor-

Flow and trained end-to-end with a NVIDIA Tesla K80 GPU.

Training takes approximately one to two days per model.

4.4. Analysis

Table 1 and Fig. 4 compare the oracle prediction errors3

of various methods. We present L2 distance error for both

datasets and miss-rate with 1m threshold for KITTI only, as

trajectories in SDD are defined in image pixel space. Note

that Linear, RNN ED, and RNN ED-SI output a single predic-

tion, thus their results are shown as horizontal lines. CVAE

samples are sorted randomly without confidence values.

Baselines: RNN ED performs significantly better than Lin-

ear since it can learn non-linear motion. We observe that

RNN ED-SI performs worse than RNN ED on the KITTI

since the model learns to behave reactive (see Fig. 6). This

might be due to the small size of the dataset, which makes

it hard to learn predictive CNN/interaction features (i.e.,

features need to have high capacity to encode long-term

information). On the contrary, RNN ED-SI significantly

outperforms RNN ED on SDD dataset since SDD is much

bigger and has a large number of interactions among agents.

Proposed models: With a single random sample (CVAE

1 in Table 1), CVAE performs worse than RNN ED since

RNN ED directly optimizes for L2 distance during training.

Given more than few samples (e.g., CVAE 10% in Table 1),

CVAE outperforms RNN ED quickly on both datasets, which

confirms the multi-modal nature of the prediction problem.

DESIRE-X-IT0 without iterative regression properly ranks

the random CVAE samples achieving lower error with few

samples. Note that DESIRE-X-IT0 only ranks the samples

without regression, thus achieves the same error as used all

samples, i.e., at Top K ratio of 1.0 in Fig. 4. As we iterate

over, the outputs get refined and achieve smaller oracle error

(i.e., DESIRE-X10%-IT0 vs. DESIRE-X10%-IT4). Fig. 5

shows an example of the iterative feedback. Finally, we

observe that considering the interaction between agents fur-

ther helps to achieve lower error. The difference between

3The maximum error in Table 1 might be different from Fig. 4 due to

the test examples without ground truth labels at 4 seconds in the future.
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DESIRE-S Top1
DESIRE-S Top10
DESIRE-SI Top1
DESIRE-SI Top10

Linear
RNN ED
RNN ED-SI

X
Y

(a) GT (b) Baselines (c) DESIRE

Figure 6. KITTI results (top 3 rows): The row 1&2 in (b) show

highly reactive nature of RNN ED-SI (i.e., prediction turns after

it hits near non-drivable area). On the contrary, DESIRE shows

its long-term prediction capability by considering potential future

rewards. DESIRE-SI also produces more convincing predictions

in the presence of other vehicles. SDD results (bottom 3 rows):

The row 4 shows the multi-modal nature of the prediction problem.

While the cyclist is making a right turn, it is also possible that he

turns around the round-about (denoted with arrow). DESIRE-SI

predicts such equally possible future as the top prediction, while

covering the ground truth future within top 10 predictions. The row

5&6 also show that DESIRE-SI provides superior predictions by

reasoning about both static and dynamic scene contexts.

DESIRE-S and DESIRE-SI is smaller in KITTI experiment,

since KITTI has only few interactions between cars. How-

ever, we observe clear improvement on the SDD dataset

since there are rich set of scenes with interactions between

agents. Although our model with top 1 sample (DESIRE

Best) achieves higher error compared to the direct regres-

sion baselines, using a few more samples yields much better

prediction accuracy (i.e., DESIRE 10%). Note that direct

regression models with lower error are not necessarily bet-

ter if averaging various futures (e.g., going straight). We

believe that in some applications, probabilistic prediction

over a variety of outcomes is more desirable than a single

MAP prediction. For both datasets, DESIRE achieves error

on par with best baselines using as little as top 2 samples of

DESIRE-SI-IT4 predictions (see Fig. 4). Qualitative results

are presented in Fig. 6 and in the supplementary material.

Ablative study: We conduct further experiments for varying

K and past length to supplement the main experiments and

report the results in Table 2 and Table 3.

Method 1.0 (sec) 2.0 (sec) 3.0 (sec) 4.0 (sec)

KITTI (error in meters / miss-rate with 1 m threshold)

Linear 0.89 / 0.31 2.07 / 0.49 3.67 / 0.59 5.62 / 0.64

RNN ED 0.45 / 0.13 1.21 / 0.39 2.35 / 0.54 3.86 / 0.62

RNN ED-SI 0.56 / 0.16 1.40 / 0.44 2.65 / 0.58 4.29 / 0.65

CVAE 1 0.61 / 0.22 1.81 / 0.50 3.68 / 0.60 6.16 / 0.65

CVAE 10% 0.35 / 0.06 0.93 / 0.30 1.81 / 0.49 3.07 / 0.59

DESIRE-S-IT0 Best 0.53 / 0.17 1.52 / 0.45 3.02 / 0.58 4.98 / 0.64

DESIRE-S-IT0 10% 0.32 / 0.05 0.84 / 0.26 1.67 / 0.43 2.82 / 0.54

DESIRE-S-IT4 Best 0.51 / 0.15 1.46 / 0.42 2.89 / 0.56 4.71 / 0.63

DESIRE-S-IT4 10% 0.27 / 0.04 0.64 / 0.18 1.21 / 0.30 2.07 / 0.42

DESIRE-SI-IT0 Best 0.52 / 0.16 1.50 / 0.44 2.95 / 0.57 4.80 / 0.63

DESIRE-SI-IT0 10% 0.33 / 0.06 0.86 / 0.25 1.66 / 0.42 2.72 / 0.53

DESIRE-SI-IT4 Best 0.51 / 0.15 1.44 / 0.42 2.76 / 0.54 4.45 / 0.62

DESIRE-SI-IT4 10% 0.28 / 0.04 0.67 / 0.17 1.22 / 0.29 2.06 / 0.41

SDD (pixel error at 1/5 resolution)

Linear 2.58 5.37 8.74 12.54

RNN ED 1.53 3.74 6.47 9.54

RNN ED-SI 1.51 3.56 6.04 8.80

CVAE 1 2.51 6.01 10.28 14.82

CVAE 10% 1.84 3.93 6.47 9.65

DESIRE-S-IT0 Best 2.02 4.47 7.25 10.29

DESIRE-S-IT0 10% 1.59 3.31 5.27 7.75

DESIRE-S-IT4 Best 2.11 4.69 7.58 10.66

DESIRE-S-IT4 10% 1.30 2.41 3.67 5.62

DESIRE-SI-IT0 Best 2.00 4.41 7.18 10.23

DESIRE-SI-IT0 10% 1.55 3.24 5.18 7.61

DESIRE-SI-IT4 Best 2.12 4.69 7.55 10.65

DESIRE-SI-IT4 10% 1.29 2.35 3.47 5.33

Table 1. Prediction errors over future time steps on KITTI and SDD

datasets. Our method, DESIRE-IT4, achieves by far the lowest top

10% error, addressing the multimodal nature of the task effectively.

Method K (the number of prediction samples)

25 50 100 200

DESIRE-S-IT4 Best 4.87 4.71 4.81 4.70

DESIRE-S-IT4 top20 2.03 2.04 1.99 1.96

Table 2. Prediction errors of DESIRE-S-IT4 on KITTI at 4s for

varying K. The best sample errors remain similar, while top 20

oracle errors decrease slightly as K increases.

Method Time length for past (sec)

1.0 2.0 4.0

DESIRE-S-IT4 Best 4.94 4.71 4.78

DESIRE-S-IT4 10% 2.11 2.07 2.05

Table 3. Prediction errors of DESIRE-S-IT4 on KITTI at 4s for

varying time length for past trajectory. The model trained with

1s past slightly worse than ours (2s), showing that 2 second past

contains enough cues to encode motion context. Note also that

prior works adopt similar past lengths (2.8s in [3, 36])

5. Conclusion

We introduce a novel framework DESIRE for distant fu-

ture prediction of multiple agents in complex scene. The

model incorporates both static and dynamic scene contexts

with a deep IOC framework and produces stochastic, con-

tinuous, and time-profiled long-term predictions that can ef-

fectively account for the uncertainty in the future prediction

task. Our empirical evaluations on driving and surveillance

scenarios demonstrate clear improvement over other base-

lines. For future work, we believe that our model can be

further improved on larger datasets and be applied to various

robotics applications with a direct use of perspective images.
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