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Abstract

We state a combinatorial optimization problem whose

feasible solutions define both a decomposition and a node

labeling of a given graph. This problem offers a common

mathematical abstraction of seemingly unrelated computer

vision tasks, including instance-separating semantic segmen-

tation, articulated human body pose estimation and multiple

object tracking. Conceptually, the problem we state gener-

alizes the unconstrained integer quadratic program and the

minimum cost lifted multicut problem, both of which are NP-

hard. In order to find feasible solutions efficiently, we define

two local search algorithms that converge monotonously to

a local optimum, offering a feasible solution at any time. To

demonstrate their effectiveness in tackling computer vision

tasks, we apply these algorithms to instances of the prob-

lem that we construct from published data, using published

algorithms. We report state-of-the-art application-specific

accuracy for the three above-mentioned applications.

1. Introduction and Related Work

In this article, we state a combinatorial optimization prob-

lem whose feasible solutions define both a decomposition

and a node labeling of a given graph (Fig. 1). This problem

that we call the minimum cost node labeling lifted multicut

problem, NL-LMP, generalizes the NP-hard unconstrained

integer quadratic program, UIQP, that has been studied in-

tensively in the context of graphical models [14], and also

generalizes the NP-hard minimum cost lifted multicut prob-

lem, LMP [16]. Unlike solutions of pure node labeling prob-

lems such as the UIQP, solutions of the NL-LMP can assign

neighboring nodes with the same label to distinct compo-

nents, and neighboring nodes with distinct labels to the same

component. Unlike in pure decomposition problems such as

the LMP, the cost of assigning nodes to the same component

or distinct components can depend on node labels.

In order to find feasible solutions of the NL-LMP effi-

ciently, we define and implement two local search algorithms

(a) Decomposition (b) Node Labeling

Figure 1: This article studies an optimization problem whose

feasible solutions define both a decomposition (a) and a node

labeling (b) of a given graph G = (V,E). A decomposition

of G is a partition Π of the node set V such that, for every

V ′ ∈ Π, the subgraph of G induced by V ′ is connected. A

node labeling of G is a map f : V → L from its node set V
to a finite, non-empty set L of labels.

that converge monotonously to a local optimum, offering a

feasible solution at any time. These algorithms do not com-

pute lower bounds. They output feasible solutions without

approximation certificates. Hence, they belong to the class

of primal feasible heuristics for the NL-LMP. The first algo-

rithm we define and refer to as alternating Kernighan-Lin

search with joins and node relabeling, KLj/r, is a general-

ization of the algorithm KLj of Keuper et al. [16] and of

Iterated Conditional Modes (ICM). The second algorithm

we define and refer to as joint Kernighan-Lin search with

joins and node relabeling, KLj∗r, is a generalization of KLj

that transforms a decomposition and a node labeling jointly.

Both algorithms build on work of Kernighan and Lin [15].

Toward applications, the NL-LMP offers a common math-

ematical abstraction of seemingly unrelated computer vision

tasks, including multiple object tracking, instance-separating

semantic segmentation and articulated human body pose

estimation. For these three applications, the abstraction is

introduced below and described in more detail in the later

sections. Also for these three applications, benchmark data

sets and feasible solutions found by our algorithms, we re-

port state-of-the-art application-specific accuracy.
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Multiple object tracking [3, 4, 6, 9, 17, 22, 24, 35, 36] can

be seen as a task requiring two classes of decisions: For ev-

ery point in an image, one needs to decide whether this point

depicts an object or background. For every pair of points that

depict objects, one needs to decide if the object is the same.

Tang et al. [31, 32] abstract this task as a graph decomposi-

tion and node labeling problem w.r.t. a finite graph whose

nodes are bounding boxes and w.r.t. 01-labels indicating

that a bounding box depicts an object or background. Tang

et al. solve the graph decomposition and the node labeling

problem separately. By applying our proposed algorithms

to the joint problem of [32], we obtain more accurate tracks

for the multiple object tracking benchmark [21] than any

published work.

Instance-separating semantic segmentation [7, 8, 20, 27,

28, 29, 37, 38] can be seen as a task requiring two classes of

decisions: To every point in an image, one needs to assign

a label that identifies a class of objects (e.g. human, car,

bicycle, etc.). For every pair of points of the same class, one

needs to decide if the object is the same. Kroeger et al. [19]

state this problem as a multi-terminal cut problem w.r.t. a (su-

per)pixel adjacency graph of the image. We generalize their

problem to larger feasible sets. While Kroeger et al. [19]

show qualitative results, we apply our algorithms to instances

of the problem from the KITTI [11] and Cityscapes [7]

benchmarks, obtaining more accurate results for Cityscapes

than any published work.

Articulated human body pose estimation can be seen as a

task requiring two classes of decisions: For every point in

an image, one needs to decide whether it depicts a part of

the human body. For every pair of points that depict body

parts, one needs to decide if they belong to the same body.

Pishchulin et al. [25] and Insafutdinov et al. [13] abstract

this problem as a graph decomposition and node labeling

problem w.r.t. a finite graph whose nodes are putative detec-

tions of body parts and w.r.t. labels that idenfity body part

classes (head, wrist, etc.) and background. By substantially

reducing the running time for this task compared to their

branch-and-cut algorithm (that computes also lower bounds),

we can tackle instances of the problem with more nodes.

This allows us to obtain more accurate pose estimates for the

MPII Human Pose Dataset [2] than any published work.

2. Problem

In this section, we define the minimum cost node labeling

lifted multicut problem, NL-LMP. Sections 2.1–2.3 offer

an intuition for its parameters, feasible solutions and cost

function. Section 2.4 offers a concise and rigorous definition.

Section 2.5 discusses special cases.

2.1. Parameters

Any instance of the NL-LMP is defined with respect to the

following parameters:

• A connected graph G = (V,E) whose decompositions

we care about, e.g. the pixel grid graph of an image.

• A graph G′ = (V,E′) with E ⊆ E′. This graph can

contain as edges pairs of nodes that are not neighbors

in G. It defines the structure of the cost function.

• A digraph H = (V,A) that fixes an arbitrary orienta-

tion of the edges E′. That is, for every edge {v, w} of

G′, the graph H contains either the edge (v, w) or the

edge (w, v). Formally, H is such that for all v, w ∈ V :

{v, w} ∈ E′ ⇔ (v, w) ∈ A ∨ (w, v) ∈ A (1)

(v, w) /∈ A ∨ (w, v) /∈ A (2)

• A finite, non-empty set L called the set of (node) labels

• The following functions whose values are called costs:

– c : V × L → R. For any node v ∈ V and any

label l ∈ L, the cost cvl is payed iff v is labeled l.

– c∼ : A × L2 → R. For any edge vw ∈ A and

any labels ll′ ∈ L2, the cost c∼vw,ll′ is payed iff v
is labeled l and w is labeled l′ and v and w are in

the same component.

– c 6∼ : A × L2 → R. For any edge vw ∈ A and

any labels ll′ ∈ L2, the cost c 6∼vw,ll′ is payed iff v
is labeled l and w is labeled l′ and v and w are in

distinct components.

2.2. Feasible Set

v we

xv1

xv2

xv3

xw1

xw2

xw3
yvw

Every feasible solution of the NL-

LMP is a pair (x, y) of 01-vectors

x ∈ {0, 1}V×L and y ∈ {0, 1}E
′

.

More specifically, x is constrained

such that, for every node v ∈ V ,

there is precisely one label l ∈ L
with xvl = 1. y is constrained so

as to well-define a decomposition of G by the set {e ∈
E | ye = 1} of those edges that straddle distinct compo-

nents. Formally, (x, y) ∈ XV L×YGG′ with XV L and YGG′

defined below.

• XV L ⊆ {0, 1}V×L, the set of all characteristic func-

tions of maps from V to L, i.e., the set of all x ∈
{0, 1}V×L such that

∀v ∈ V :
∑

l∈L

xvl = 1 . (3)

For any x ∈ X , any v ∈ V and any l ∈ L with xvl = 1,

we say that node v is labeled l by x.

• YGG′ ⊆ {0, 1}E
′

, the set of all characteristic functions

of multicuts of G′ lifted from G [1]. For any y ∈ YGG′

and any e = {v, w} ∈ E′, ye = 1 indicates that v
and w are in distinct components of the decomposition
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of G defined by the multicut {e′ ∈ E | ye′ = 1} of G.

Formally, YGG′ is the set of all y ∈ {0, 1}E
′

that satisfy

the following system of linear inequalities:

∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (4)

∀{v, w} ∈ E′ \ E ∀P ∈ vw-paths(G) :

y{v,w} ≤
∑

e∈P

ye (5)

∀{v, w} ∈ E′ \ E ∀C ∈ vw-cuts(G) :

1− y{v,w} ≤
∑

e∈C

(1− ye) . (6)

2.3. Cost Function

For every x ∈ {0, 1}V×L and every y ∈ {0, 1}A×L2

, a

cost ϕ(x, y) ∈ R is defined by the form

ϕ(x, y) =
∑

v∈V

∑

l∈L

cvl xvl

+
∑

vw∈A

∑

ll′∈L2

c∼vw,ll′ xvl xwl′ (1− y{v,w})

+
∑

vw∈A

∑

ll′∈L2

c 6∼vw,ll′ xvl xwl′ y{v,w} . (7)

2.4. Definition

We define the NL-LMP rigorously and concisely in the

form of a linearly constrained binary cubic program.

Definition 1 For any connected graph G = (V,E), any

graph G′ = (V,E′) with E ⊆ E′, any orientation H =
(V,A) of G′, any finite, non-empty set L, any function c :
V × L → R and any functions c∼, c 6∼ : A × L2 → R, the

instance of the minimum cost node-labeling lifted multicut

problem (NL-LMP) with respect to (G,G′, H, L, c, c∼, c 6∼)
has the form

min
(x,y)∈XV L×Y

GG′

ϕ(x, y) . (8)

2.5. Special Cases

Below, we show that the NL-LMP generalizes the UIQP.

This connects the NL-LMP to work on graphical models with

second-order functions and finitely many labels. In addition,

we show that NL-LMP generalizes the LMP, connecting the

NL-LMP to recent work on lifted multicuts. Finally, we

show that the NL-LMP is general enough to express subgraph

selection, connectedness and disconnectedness constraints.

2.5.1 Unconstrained Integer Quadratic Program

Definition 2 For any graph G′ = (V,E′), any orientation

H = (V,A) of G′, any finite, non-empty set L, any c :

V × L → R and any c′ : A× L2 → R, the instance of the

UIQP with respect to (G′, H, L, c, c′) has the form

min
x∈XV L

∑

v∈V

∑

l∈L

cvl xvl +
∑

vw∈A

∑

ll′∈L2

c′vw,ll′ xvl xwl′ .

(9)

Lemma 1 For any graph G′ = (V,E′), any instance

(G′, H, L, c, c′) of the UIQP and any x ∈ XV L, x is a solu-

tion of this instance of the UIQP iff (x, 1E′) is a solution of

the instance (G′, G′, H, L, c, c′, c′) of the NL-LMP.

PROOF Without loss of generality, we can assume that G′

is connected. (Otherwise, we add edges between nodes

v, w ∈ V as necessary and set c′vw,ll′ = 0 for any l, l′ ∈ L.)

For any x ∈ XGL, the pair (x, 1E′) is a feasible solution

of the instance of the NL-LMP because the map 1E′ : E′ →
{0, 1} : e 7→ 1 is such that 1E′ ∈ YG′G′ .

Moreover, (x, 1E′) is a solution of the instance of the NL-

LMP iff x is a solution of the instance of the UIQP because,

for c 6∼ = c∼, the form (7) of the cost function of the NL-LMP

specializes to the form (9) of the cost function of the UIQP.

2.5.2 Minimum Cost Lifted Multicut Problem

Definition 3 [1] For any connected graph G = (V,E), any

graph G′ = (V,E′) with E ⊆ E′ and any c′ : E′ → R, the

instance of the minimum cost lifted multicut problem (LMP)

with respect to (G,G′, c′) has the form

min
y∈Y

GG′

∑

e∈E′

c′eye . (10)

Lemma 2 Let (G,G′, c′) be any instance of the LMP. Let

(G,G′, H, L, c, c∼, c 6∼) be the instance of the NL-LMP with

the same graphs and such that

L = {1} c = 0 c∼ = 0 (11)

∀(v, w) ∈ A : c 6∼vw,11 = c′{v,w} . (12)

Then, for any y ∈ {0, 1}E
′

, y is a solution of the instance

of the LMP iff (1V×L, y) is a solution of the instance of the

NL-LMP.

PROOF Trivially, y is a feasible solution of the instance of

the LMP iff (1V×L, y) is a feasible solution of the instance of

the NL-LMP. More specifically, y is a solution of the instance

of the LMP iff (1V×L, y) is a solution of the instance of the

NL-LMP because, for any x ∈ XV L, the cost function (7)

of the NL-LMP assumes the special form below which is

identical with the form in (10).

ϕ(x, y)
(3),(11)
=

∑

vw∈A

c 6∼vw,11y{v,w}
(12)
=

∑

e∈E′

c′eye . (13)
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2.5.3 Subgraph Selection

Applications such as [13, 25, 31, 32] require us to not only

decompose a graph and label its nodes but to also select a

subgraph. The NL-LMP is general enough to model subgraph

selection. To achieve this, one proceeds in two steps: Firstly,

one introduces a special label ǫ ∈ L to indicate that a node is

not an element of the subgraph. We call these nodes inactive.

All other nodes are called active. Secondly, one chooses a

large enough c∗ ∈ N, a c† ∈ N0 and c∼, c 6∼ such that

∀vw ∈ A ∀l ∈ L \ {ǫ} : c∼vw,lǫ = c∼vw,ǫl = c∗ (14)

c 6∼vw,lǫ = c 6∼vw,ǫl = 0 (15)

∀vw ∈ A : c∼vw,ǫǫ = c† . (16)

By (14), inactive nodes are not joined with active nodes

in the same component. By (15), cutting an inactive node

from an active node has zero cost. By (16), joining inactive

nodes has cost c†, possibly zero. Choosing c† large enough

implements an additional constraint proposed in [31] that

inactive nodes are necessarily isolated. It is by this constraint

and by a two-elementary label set that [31] is a specialization

of the NL-LMP.

2.5.4 (Dis-)Connectedness Constraints

Some applications require us to constrain certain nodes to be

in distinct components. One example is instance-separating

semantic segmentation where nodes with distinct labels nec-

essarily belong to distinct segments [19]. Other applications

require us to constrain certain nodes to be in the same com-

ponent. One example is articulated human body pose esti-

mation for a single human in the optimization framework of

[25] where every pair of active nodes necessarily belongs to

the same human. Another example is connected foreground

segmentation [23, 26, 30, 34] in which every pair of distinct

foreground pixels necessarily belongs to the same segment.

The NL-LMP is general enough to model a combination of

connectedness constraints and disconnectedness constraints

by sufficiently large costs: In order to constrain distinct

nodes v, w ∈ V with labels l, l′ ∈ L to be in the same

component, one introduces an edge (v, w) ∈ A, a large

enough c∗ ∈ N and costs c≁ such that c≁vw,ll′ = c≁vw,l′l = c∗.

In order to constrain distinct nodes v, w ∈ V with labels

l, l′ ∈ L to be in distinct components, one introduces an

edge (v, w) ∈ A, a large enough c∗ ∈ N and costs c∼ such

that c∼vw,ll′ = c∼vw,l′l = c∗. Constraining nodes with the

same label to the same component constrains the feasible

decompositions to be |L|-colorable, For |L| = 2 in particular,

a constrained NL-LMP specializes to the MAX-CUT problem.

3. Algorithms

In this section, we define two local search algorithms that

compute feasible solutions of the NL-LMP efficiently. Both

algorithms attempt to improve the current feasible solution

recursively by transformations. One class of transformations

alters the node labeling of the graph by replacing a single

node label. A second class of transformations alters the de-

composition of the graph by moving a single node from one

component to another. A third class of transformations alters

the decomposition of the graph by joining two components.

As proposed by Kernighan and Lin [15] and generalized

to the LMP by Keuper et al. [16], a local search is carried out

not over the set of individual transformations of the current

feasible solution but over a set of sequences of transforma-

tions. Complementary to this idea, we define and implement

two schemes of combining transformations of the decompo-

sition of the graph with transformations of the node labeling

of the graph. This leads us to define two local search algo-

rithms for the NL-LMP.

3.1. Encoding Feasible Solutions

To encode feasible solutions (x, y) ∈ XV L×YGG′ of the

NL-LMP, we consider two maps: A node labeling λ : V → L
that defines the xλ ∈ XV L such that

∀v ∈ V ∀l ∈ L : xλ
vl = 1 ⇔ λ(v) = l , (17)

and a so-called component labeling µ : V → N that defines

the yµ ∈ {0, 1}E
′

such that

∀{v, w} ∈ E′ : yµ{v,w} = 0 ⇔ µ(v) = µ(w) . (18)

3.2. Transforming Feasible Solutions

To improve feasible solutions of the NL-LMP recursively,

we consider three transformations of the encodings λ and µ:

For any node v ∈ V and any label l ∈ L, the transforma-

tion Tvl : L
V → LV : λ 7→ λ′ changes the label of the node

v to l, i.e.

∀w ∈ V : λ′(w) :=

{

l if w = v

λ(w) otherwise
. (19)

For any node v ∈ V and any component index m ∈ N,

the transformation T ′
vm : NV → N

V : µ 7→ µ′ changes the

component index of the node v to m, i.e.

∀w ∈ V : µ′(w) :=

{

m if w = v

µ(w) otherwise
. (20)

For any component indices m,m′ ∈ N, the transforma-

tion T ′
mm′ : NV → N

V : µ 7→ µ′ puts all nodes currently in

the component indexed by m into the component indexed by

m′, i.e.

∀w ∈ V : µ′(w) :=

{

m′ if µ(w) = m

µ(w) otherwise
. (21)
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Not every component labeling µ is such that yµ ∈ YGG′ .

In fact, yµ is feasible if and only if, for every m ∈ µ(V ),
the node set µ−1(m) is connected in G. For efficiency,

we allow for transformations (20) whose output µ′ violates

this condition, as proposed in [16]. This happens when an

articulation node of a component is moved to a different

component. In order to repair any µ′ for which yµ is infeasi-

ble, we consider a map R : NV → N
V : µ′ 7→ µ such that,

for any µ′ : V → N and any distinct v, w ∈ V , we have

µ(v) = µ(w) if and only if the exists a vw-path in G along

which all nodes have the label µ′(v). We implement R as

connected component labeling by breadth-first-search.

3.3. Searching Feasible Solutions

We now define two local search algorithms that attempt to

improve an initial feasible solution recursively, by applying

the transformation defined above. Initial feasible solutions

are given, for instance, by the finest decomposition of the

graph G that puts every node in a distinct component, or by

the coarsest decomposition of the graph G that puts every

node in the same component, each together with any node

labeling. We find an initial feasible solution for our local

search algorithm by first fixing an optimal label for every

node independently and by then solving the resulting LMP,

i.e., (8) for the fixed labels x ∈ XV L, by means of greedy

agglomerative edge contraction [16].

KLj/r Algorithm. The first local search algorithm we

define, alternating Kernighan-Lin search with joins and node

relabeling, KLj/r, alternates between transformations of the

node labeling and transformations of the decomposition. For

a fixed decomposition, the labeling is transformed by Func. 1

which greedily updates labels of nodes independently. For a

fixed labeling, the decomposition is transformed by Func. 2,

without those parts of the function that are written in green,

i.e., precisely the algorithm KLj of [16]. (All symbols that

appear in the pseudo-code are defined above, except the

iteration counter t, cost differences δ,∆, and 01-vectors α
used for bookkeeping, to avoid redundant operations.)

KLj∗r Algorithm. The second local search algorithm

we define, joint Kernighan-Lin search with joins and node

relabeling, KLj∗r, transforms the decomposition and the

node labeling jointly, by combining the transformations (19)–

(21) in a novel manner. It is given by Func. 2, with those

parts of the function that are written in green.

Like the alternating algorithm KLj/r, the joint algorithm

KLj∗r updates the labeling for a fixed decomposition (calls

of Func. 1 from Func. 2). Unlike the alternating algorithm

KLj/r, the joint algorithm KLj∗r updates the decomposition

and the labeling also jointly. This happens in Func. 3 that is

called from KLj∗r, with the part that is written in green.

Func. 3 looks at two components V := µ−1(m) and

W := µ−1(′m) of the current decomposition. It attempts to

improve the decomposition as well as the labeling by moving

Function 1: (∆, λ′) = update-labeling(µ, λ)

λ0 := λ ∆ := 0 t := 0
repeat

choose (v̂, l̂) ∈ argmin
(v,l)∈V×L

ϕ(xTvl(λt), yµt)− ϕ(xλt , yµt)

δ := ϕ(xT
v̂l̂
(λt), yµt)− ϕ(xλt , yµt)

if δ < 0
λt+1 := T

v̂l̂
(λt)

∆ := ∆+ δ
t := t+ 1

else

return (∆, λt)

a node from V to W or from W to V and by simultaneously

changing its label. As proposed by Kernighan and Lin [15],

Func. 3 does not make such transformations greedily but first

constructs a sequence of such transformations greedily and

then executes the first k with k chosen so as to decrease the

objective value maximally. KLj/r constructs a sequence of

transformations analogously, but the node labeling remains

fixed throughout every transformation of the decomposition.

Thus, KLj∗r is a local search algorithm whose local neigh-

borhood is strictly larger than that of KLj/r.

Function 2: (∆′, µ′, λ′) = update-lifted-multicut(µ, λ)

µ0 := µ t := 0
(δ, λ0) := update-labeling(µ0, λ)
let α0 : N → {0, 1} such that α0(N) = 1
repeat

∆ := 0 µt+1 := µt λt+1 := λt

let αt+1 : N → {0, 1} such that αt+1(N) = 0

for each {m,m′} ∈
(

µ(V )
2

)

if αt(m) = 0 ∧ αt(m
′) = 0

continue

(δ, µt+1, λt+1) := update-2-cut(µt+1, λt+1,m,m′)
if δ < 0

αt+1(m) := 1 αt+1(m
′) := 1 ∆ := ∆+ δ

for each m ∈ µ(V )
if αt(m) = 0

continue

m′ := 1 + maxµ(V ) (new component)

(δ, µt+1, λt+1) := update-2-cut(µt+1, λt+1,m,m′)
if δ < 0

αt+1(m) := 1 αt+1(m
′) := 1 ∆ := ∆+ δ

(δ, λt+1) := update-labeling(µt+1, λt+1)
∆ := ∆+ δ
if yµt+1 /∈ YGG′

µt+1 := R(µt+1) (repair heuristic)

∆ := ϕ(xλt+1 , yµt+1)− ϕ(xλ0 , yµ0)
t := t+ 1

while ∆ < 0
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Our C++ implementation computes cost differences in-

crementally and solves the optimization problem over trans-

formations by means of a priority queue, as described in

detail in the supplement. The time and space complexities

are identical to those of KLj and are established in [16], as

transformations that take linear time in the number of labels

take constant time in the size of the graph.

Function 3: (∆′, µ′, λ′) = update-2-cut(µ, λ,m,m′)

µ0 := µ λ0 := λ t := 0
if µ−1(m′) = ∅

V0 := µ−1(m)
else

V0 := {v ∈ µ−1(m) | ∃w ∈ µ−1(m′) : {v, w} ∈ E}
if µ−1(m) = ∅

W0 := µ−1(m′)
else

W0 := {w ∈ µ−1(m′) | ∃v ∈ µ−1(m) : {v, w} ∈ E}
let α : N → {0, 1} such that α(N) = 1
while Vt ∪Wt 6= ∅

δ := δ′ := ∞
if Vt 6= ∅

choose (v̂, l̂) ∈ argmin
(v,l)∈Vt×L

ϕ(xTvl(λt), yT
′

vm′ (µt))−
ϕ(xλt , yµt)

δ := ϕ(xT
v̂l̂
(λt), yT

′

v̂m′ (µt))− ϕ(xλt , yµt)
if Wt 6= ∅

choose (ŵ, l̂) ∈ argmin
(w,l)∈Wt×L

ϕ(xTwl(λt), yT
′

wm
(µt))−

ϕ(xλt , yµt)

δ′ := ϕ(xT
ŵl̂

(λt), yT
′

ŵm
(µt))− ϕ(xλt , yµt)

if δ ≤ δ′

µt+1 := T ′
v̂m′(µt) (move node v̂ to component m′)

λt+1 := T
v̂l̂
(λt) (label node v̂ with label λ̂)

α(v̂) := 0 (mark v̂ as inactive)

else

µt+1 := T ′
ŵm(µt) (move node ŵ to component m)

λt+1 := T
ŵl̂
(λt) (label node ŵ with label λ̂)

α(ŵ) := 0 (mark ŵ as inactive)

Vt+1 := {v ∈ V |µt+1(v) = m ∧ α(v) = 1∧
∃{v, w} ∈ E : µt+1(w) = m′}

Wt+1 := {w ∈ V |µt+1(w) = m′ ∧ α(w) = 1∧
∃{v, w} ∈ E : µt+1(v) = m}

t := t+ 1
t̂ := min argmin

t′∈{0,...,t}

ϕ(xλ
t′ , yµt′ )− ϕ(xλ0 , yµ0)

∆1 := ϕ(xλ
t̂ , yµt̂)− ϕ(xλ0 , yµ0)

∆2 := ϕ(xλ0 , yT
′

mm′ (µ))− ϕ(xλ0 , yµ0) (join m and m′)

if min{∆1,∆2} ≥ 0
return (0, µ, λ)

else if ∆1 < ∆2

return (∆1, µt̂, λt̂)
else

return (∆2, Tmm′(µ), λ)

4. Applications

We show applications of the proposed problem and algo-

rithms to three distinct computer vision tasks: articulated

human body pose estimation, multiple object tracking, and

instance-separating semantic segmentation. For each task,

we set up instances of the NL-LMP from published data,

using published algorithms.

4.1. Articulated Human Body Pose Estimation

We turn toward applications of the NL-LMP and the algo-

rithms KLj/r and KLj∗r to the task of estimating the articu-

lated poses of all humans visible in an image. Pishchulin et

al. [25] and Insafutdinov et al. [13] approach this problem

via a graph decomposition and node labeling problem that

we identify as a special case of the NL-LMP with c 6∼ = 0
and with subgraph selection (Section 2.5.3). We relate their

notation to ours in the supplement. Nodes in their graph are

putative detections of body parts. Labels define body part

classes (head, wrist, etc.). In our notation, xvl = 1 indicates

that the putative detection v is a body part of class l, and

yvw = 1 indicates that the body parts v and w belong to

distinct humans. The test set of [13] consists of 1758 such

instances of the NL-LMP.

To tackle these instances, Insafutdinov et al. define and

implement a branch-and-cut algorithm in the integer linear

programming software framework Gurobi. We refer to their

published C++ implementation as B&C.

Cost and time. In Fig. 2, we compare the convergence of

B&C (feasible solutions and lower bounds) with the conver-

gence of our algorithms, KLj/r and KLj∗r (feasible solutions

only). Shown in this figure is the average objective value

over the test set w.r.t. the absolute running time. Thanks to

the lower bounds obtained by B&C, it can be seen from this

figure that KLj/r and KL+r arrive at near optimal feasible

solutions after 10−1 seconds, five orders of magnitude faster

than B&C. This result shows that primal feasible heuristics

for the NL-LMP, such as KLj/r and KLj∗r, are practically

useful in the context of this application.

Application-specific accuracy. In Tab. 1, we compare

feasible solutions output by KLj/r and KLj∗r after conver-

gence with those obtained by B&C after at most three hours.

It can be seen from this table that the feasible solutions output

by KLj/r and KLj∗r have lower cost and higher application-

specific accuracy (Acc) on average. KLj∗r yields a lower

average cost than KLj/r with slightly higher running time.

The fact that lower cost does not mean higher application-

specific accuracy is explained by the application-specific

accuracy measure that does not penalize false positives.

The shorter absolute running time of KLj/r and KLj∗r

allows us to increase the number of nodes from 150, as in

[13], to 420. It can be seen from the last two rows of Tab. 1

that this increases the application-specific accuracy by 4%.
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Figure 2: Convergence of B&C, KLj/r and KLj∗r in an appli-

cation to the task of articulated human body pose estimation.

|V | Alg. AP Mean cost Mean time [s] Median time [s]

[13] 65.5 -3013.30 9519.26 308.28

KLj/r 66.5 -3352.74 0.033 0.0311
5

0

KLj∗r 66.6 -3419.07 0.119 0.100

KLj/r 70.6 -6184.36 0.098 0.053

4
2

0

KLj∗r 70.6 -6608.53 0.534 0.254

Table 1: Comparison of B&C [13], KLj/r and KLj∗r in an

application to the task of human body pose estimation.

4.2. Instance­Separating Semantic Segmentation

We turn toward applications of the NL-LMP and the al-

gorithms KLj/r and KLj∗r to the task of instance-separating

semantic image segmentation. We state this problem here

as an NL-LMP whose nodes correspond to pixels in a given

image, and whose labels define classes of objects (human,

car, bicycle, etc.). In our notation, xvl = 1 indicates that the

pixel v shows an object of class l, and yvw = 1 indicates

that the pixels v and w belong to distinct objects.

Specifically, we apply the algorithms KLj/r and KLj∗r

to instances of the NL-LMP for the task of instance-

separating semantic segmentation posed by the KITTI [11]

and Cityscapes [7] benchmarks. For KITTI, we construct

instances of the NL-LMP from data published by Uhrig

et al. [33] as described in detail in the supplement. For

Cityscapes, we construct instances of the NL-LMP as follows.

For costs c≁, we again use data of Uhrig et al. [33]. For

costs c, we use a ResNet-50 [12] network with dilated con-

volutions [5]. We train the network in a fully convolutional

manner with image crops (768 px·512 px) subjected to mini-

mal data augmentation (horizontal flips). More details are in
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Figure 3: Convergence of KLj/r and KLj∗r in an application

to the task of instance-separating semantic segmentation.

Data Algorithm AP AP50%

KITTI validation [11] KLj/r 50.5 82.9

KLj∗r 50.3 82.4

KITTI test [11] [33] 41.6 69.1

KLj∗r 43.6 71.4

Cityscapes validation [7] KLj/r 11.3 26.8

KLj∗r 11.4 26.1

Cityscapes test [7] MCG+R-CNN [7] 4.6 12.9

[33] 8.9 21.1

KLj∗r 9.8 23.2

Table 2: Comparison of KLj/r and KLj∗r in an application

to the task of instance-separating semantic segmentation.

the supplement.

Cost and time. In Fig. 3, we compare the convergence

of KLj/r and KLj∗r. Shown in this figure w.r.t. the absolute

running time are the average objective values over the KITTI

and Cityscapes validation sets, respectively. It can be seen

from this figure that KLj/r converges faster than KLj∗r. Both

algorithms are practical for this application but not efficient

enough for video processing in real-time.

Application-specific accuracy. In Tab. 2, we compare

feasible solutions output by KLj/r and KLj∗r after conver-

gence with the output of the algorithm of Uhrig et al [33].

It can be seen from this table that the application of KLj/r

and KLj∗r improves the application-specific average preci-

sion, AP and AP50%. The AP of feasible solutions output by

KLj∗r for the Cityscapes test set is higher than that of any

published algorithm. A higher AP is reported by Kirillov et

al. [18], who use the model and algorithms proposed in this

paper with improved pairwise c≁ and unary c costs.
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Method MOTA ↑ MOTP ↑ FAF ↓ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw ↓ Frag↓ Hz ↑ Detector

[10] 41.0 74.8 1.3 11.6% 51.3% 7896 99224 430 963 1.1 Public

[17] 42.9 76.6 1.0 13.6% 46.9% 5668 97919 499 659 0.8 Public

[6] 46.4 76.6 1.6 18.3% 41.4% 9753 87565 359 504 2.6 Public

[32] 46.3 75.7 1.1 15.5% 39.7% 6373 90914 657 1114 0.8 Public

KLj/r 47.6 78.5 1.0 17.0% 40.4% 5844 89093 629 768 8.3 Public

KLj∗r 47.6 78.5 0.98 17.0% 40.4% 5783 89160 627 761 0.7 Public

Table 3: Comparison of the algorithms KLj/r and KLj∗r in an application to the task of multiple object tracking.

4.3. Multiple Object Tracking

We turn toward applications of the NL-LMP and the al-

gorithms KLj/r and KLj∗r to the task of multiple object

tracking. Tang et al. [31] approach this problem via a graph

decomposition and node labeling problem that we identify as

a special case of the NL-LMP with two labels and subgraph

selection (Sec. 2.5.3). We relate their notation to ours rigor-

ously in the supplement. Nodes in their graph are putative

detections of persons. In our notation, xvl = 1 indicates that

the putative detection v is active, and yvw = 1 indicates that

the putative detections v and w are of distinct persons. For

the test set of the multiple object tracking benchmark [21],

Tang et al. construct seven such instances of the NL-LMP.

To tackle these large instances, in [32] Tang et al. solve

the subgraph suppression problem first and independently,

by thresholding on the detections scores, and then solve the

minimum cost multicut problem for the remaining subgraph

by means of the algorithm KLj of [16], without re-iterating.

Here, we apply to the joint NL-LMP the algorithms KLj/r

and KLj∗r and compare their output to that of [32] and of

other top-performing algorithms [6, 10, 17]. We use the

same data as in [32], therefore the performance gain is due

to our algorithms that solve the full problem [31].

Cost and time. The convergence of the algorithms KLj/r

and KLj∗r is shown in Fig. 4. It can be seen from this figure

that KLj/r converges faster than KLj∗r.

Application-specific accuracy. We compare the feasible

solutions output by KLj/r and KLj∗r to the state-of-the-art

for the benchmark [21]. To this end, we report in Tab. 3 the

standard CLEAR MOT metric, including: multiple object

tracking accuracy (MOTA), multiple object tracking preci-

sion (MOTP), mostly tracked object (MT), mostly lost (ML)

and tracking fragmentation (FM). MOTA combines identity

switches (ID Sw), false positives (FP) and false negatives

(FN) and is most widely used. Our feasible solutions are

published also at the benchmark website unser the names

NLLMP (KLj/r) and NLLMPj (KLj∗r). It is can be seen

from Tab. 3 that the feasible solutions obtained by KLj/r and

KLj∗r rank first in MOTA and MOTP. Compared to [32],

KLj/r and KLj∗r reduce the number of false positives and

false negatives. The average inverse running time per frame

of a video sequence (column “Hz” in the table) is better for
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Figure 4: Convergence of the algorithms KLj/r and KLj∗r in

an application to the task of multiple object tracking.

KLj/r by a margin than for any other algorithm. Overall,

these results show the practicality of the NL-LMP in conjunc-

tion with the local search algorithms KLj/r and KLj∗r for

applications in multiple object tracking.

5. Conclusion

We have stated the minimum cost node labeling lifted

multicut problem, NL-LMP, an NP-hard combinatorial op-

timization problem whose feasible solutions define both a

decomposition and a node labeling of a given graph. We have

defined and implemented two local search algorithms, KLj/r

and KLj∗r, that converge monotonously to a local optimum,

offering a feasible solution at any time. We have shown appli-

cations of these algorithms to the tasks of articulated human

body pose estimation, multiple object tracking and instance-

separating semantic segmentation, obtaining state-of-the-art

application-specific accuracy. We conclude that the NL-LMP

is a useful mathematical abstraction in the field of computer

vision that allows researchers to apply the same optimization

algorithm to diverse computer vision tasks. To foster collab-

oration between the fields of computer vision and combina-

torial optimization, we make our code publicly available at

https://github.com/bjoern-andres/graph
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