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Abstract

Image saliency detection has recently witnessed rapid

progress due to deep convolutional neural networks. How-

ever, none of the existing methods is able to identify object

instances in the detected salient regions. In this paper, we

present a salient instance segmentation method that pro-

duces a saliency mask with distinct object instance labels

for an input image. Our method consists of three steps, esti-

mating saliency map, detecting salient object contours and

identifying salient object instances. For the first two steps,

we propose a multiscale saliency refinement network, which

generates high-quality salient region masks and salient ob-

ject contours. Once integrated with multiscale combinato-

rial grouping and a MAP-based subset optimization frame-

work, our method can generate very promising salient ob-

ject instance segmentation results. To promote further re-

search and evaluation of salient instance segmentation, we

also construct a new database of 1000 images and their pix-

elwise salient instance annotations. Experimental results

demonstrate that our proposed method is capable of achiev-

ing state-of-the-art performance on all public benchmarks

for salient region detection as well as on our new dataset

for salient instance segmentation.

1. Introduction

Salient object detection attempts to locate the most no-

ticeable and eye-attracting object regions in images. It is a

fundamental problem in computer vision and has served as

a pre-processing step to facilitate a wide range of vision ap-

plications including content-aware image editing [4], object

detection [38], and video summarization [36].

Recently the accuracy of salient object detection has

been improved rapidly [29, 30, 33, 45] due to the deploy-

ment of deep convolutional neural networks. Nevertheless,

most of previous methods are only designed to detect pixels

that belong to any salient object, i.e. a dense saliency map,

but are unaware of individual instances of salient objects.

We refer to the task performed by these methods “salient

∗Corresponding author (email: yizhouy@acm.org).

Salient instance 

segmentation

Filtered salient 

object proposals

Input Salient region

Figure 1. An example of instance-level salient object segmenta-

tion. Left: input image. Middle left: detected salient region. Mid-

dle right: filtered salient object proposals. Right: result of salient

instance segmentation. Different colors indicate different object

instances in the detected salient region.

region detection”, as in [51]. In this paper, we tackle a more

challenging task, instance-level salient object segmentation

(or salient instance segmentation for short), which aims to

identify individual object instances in the detected salient

regions (Fig. 1). The next generation of salient object detec-

tion methods need to perform more detailed parsing within

detected salient regions to achieve this goal, which is crucial

for practical applications, including image captioning [25],

multilabel image recognition [46] as well as various weakly

supervised or unsupervised learning scenarios [28, 9].

We suggest to decompose the salient instance segmenta-

tion task into the following three sub-tasks. 1) Estimating

binary saliency map. In this sub-task, a pixel-level saliency

mask is predicted, indicating salient regions in the input im-

age. 2) Detecting salient object contours. In this sub-task,

we perform contour detection for individual salient object

instances. Such contour detection is expected to suppress

spurious boundaries other than object contours and guide

the generation of salient object proposals. 3) Identifying

salient object instances. In this sub-task, salient object pro-

posals are generated, and a small subset of salient object

proposals are selected to best cover the salient regions. Fi-

nally, a CRF based refinement method is applied to improve

the spatial coherence of salient object instances.

A number of recent papers have explored the use of fully

convolutional neural networks for saliency mask genera-

tion [30, 33, 45]. Though these methods are efficient and

can produce favorable results, they have their own limita-

tions. Most of these methods infer saliency by learning con-

trast from the internal multi-layer structure of a single VGG

network [45, 33]. As their output is derived from recep-

tive fields with a uniform size, they may not perform well
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on images with salient objects at multiple different scales.

Though Li et al. [30] combined a multiscale fully convolu-

tional network and a segment-level spatial pooling stream

to make up for this deficiency, the resolution of their final

saliency map is only one eighth of the resolution of the orig-

inal input image, making it infeasible to accurately detect

the contours of small salient object instances.

Given the aforementioned sub-tasks of salient instance

segmentation, we propose a deep multiscale saliency refine-

ment network, which can generate very accurate results for

both salient region detection and object contour detection.

Our deep network consists of three parallel streams process-

ing scaled versions of the same input image and a learned

attention model to fuse results at different scales from the

three streams. The three streams share the same network

architecture, a refined VGG network, and its associated pa-

rameters. This refined VGG network is designed to inte-

grate the bottom-up and top-down information in the origi-

nal network. Such information integration is paramount for

both salient region detection [6] and contour detection [5].

The attention model in our deep network is jointly trained

with the refined VGG network in the three streams.

Given the detected contours of salient object instances,

we apply multiscale combinatorial grouping (MCG) [3] to

generate a number of salient object proposals. Though the

generated object proposals are of high quality, they are still

noisy and tend to have severe overlap. We further filter out

noisy or overlapping proposals and produce a compact set

of segmented salient object instances. Finally, a fully con-

nected CRF model is employed to improve spatial coher-

ence and contour localization in the initial salient instance

segmentation.

In summary, this paper has the following contributions:

• We develop a fully convolutional multiscale refinement

network, called MSRNet, for salient region detection.

MSRNet can not only integrate bottom-up and top-down in-

formation for saliency inference but also attentionally deter-

mine the pixel-level weight of each salient map by looking

at different scaled versions of the same image. The pro-

posed network can achieve significantly higher precision in

salient region detection than previous methods.

• MSRNet generalizes well to salient object contour de-

tection, making it possible to separate distinct object in-

stances in detected salient regions. When integrated with

object proposal generation and screening techniques, our

method can generate high-quality segmented salient object

instances.

• A new challenging dataset is created for further research

and evaluation of salient instance segmentation. We have

generated benchmark results for salient contour detection

as well as salient instance segmentation using MSRNet.

2. Related Work

Recently, deep convolutional neural networks have

achieved great successes in computer vision topics such as

image classification [27, 21], object detection [17, 41] and

semantic segmentation [35, 7]. In this section, we discuss

the most relevant work on salient region detection, object

proposal generation and instance-aware semantic segmen-

tation.

2.1. Salient Region Detection

Traditional saliency detection can be divided into

bottom-up methods based on low-level features [34, 39, 10]

and top-down methods incorporating high-level knowl-

edge [18, 31, 22]. Recently, deep CNNs have pushed the

research on salient region detection into a new phase. Deep

CNN based methods can be divided into two categories,

segmentation or patch based methods [29, 45, 52] and end-

to-end saliency inference methods [30, 33, 45]. Methods

in the former category treat image patches as independent

training and testing samples, and are generally inefficient

due to redundancy among overlapping patches. To over-

come this deficiency, deep end-to-end networks [30, 33, 45]

have been developed for saliency inference. Most recently,

recurrent neural networks have also been integrated into

such networks [33, 45]. Though these end-to-end networks

improve both accuracy and efficiency, all of them consider

a single scale of the input image and may not perform well

on images with object instances at multiple scales.

2.2. Object Proposals

Object proposal generation aims at localizing target ob-

jects with a minimum number of object window (or seg-

ment) hypotheses. Previous work on this topic can be

grouped into two approaches. The first produces a list of

object proposal windows, ranked by a measure of object-

ness (the probability of an image window containing an ob-

ject) [53, 11] while the other generates object proposals by

merging image segments resulting from multiple levels of

segmentation [3, 43]. Though they have been widely used

as a foregoing step for object detection, they are not tailored

for salient object localization. Though Feng et al. [16] pro-

posed to generate a ranked list of salient object proposals,

the overall quality of their result needs much improvement.

Recently, Zhang et al. [51] proposed a MAP-based sub-

set optimization formulation to optimize both the number

and locations of detection windows given a set of salient

object proposals. However, due to the coarse mechanism

they use, their “filtered” object windows cannot well match

groundtruth objects. In this paper, we generate salient ob-

ject proposals on the basis of salient object contour detec-

tion results.
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Figure 2. Our overall framework for instance-level salient object segmentation.

2.3. InstanceAware Semantic Segmentation

Instance-aware semantic segmentation is defined as a

unified task of object detection and semantic segmentation.

This problem was first raised in [20], and has been much

studied in recent years. It is either formulated as a multi-

task learning problem [20, 13] or solved in an end-to-end

integrated model [42, 12]. Inspired by this problem, we pro-

pose salient instance segmentation, which simultaneously

detects salient regions and identifies object instances inside

them. Because salient object detection is not associated

with a predefined set of semantic categories, it is a challeng-

ing problem closely related to generic object detection and

segmentation. We believe solutions to such generic prob-

lems are valuable in practice as it is not possible to enumer-

ate all object categories and prepare pixel-level training data

for each of them.

3. Salient Instance Segmentation

As shown in Fig. 2, our method for salient instance seg-

mentation consists of four cascaded components, including

salient region detection, salient object contour detection,

salient instance generation and salient instance refinement.

Specifically, we propose a deep multiscale refinement net-

work and apply it to both salient region detection and salient

object contour detection. Next, we generate a fixed num-

ber of salient object proposals on the basis of the results

of salient object contour detection and apply a subset opti-

mization method for further screening these object propos-

als. Finally, the results from the previous three steps are

integrated in a CRF model to generate the final salient in-

stance segmentation.

3.1. Multiscale Refinement Network

We formulate both salient region detection and salient

object contour detection as a binary pixel labeling problem.

Fully convolutional networks have been widely used in im-

age labeling problems and have achieved great successes in

salient region detection [30, 33, 45] and object contour de-

tection [47, 50]. However, none of them addresses these two

problems in a unified network architecture. Since salient

objects could have different scales, we propose a multiscale

refinement network (MSRNet) for both salient region detec-

tion and salient object contour detection. MSRNet is com-

posed of three refined VGG network streams with shared

parameters and a learned attentional model for fusing re-

sults at different scales.

3.1.1 Refined VGG Network

Salient region detection and salient object contour detec-

tion are closely related and both of them require low-level

cues as well as high-level semantic information. Informa-

tion from an input image needs to be passed from the bottom

layers up in a deep network before being transformed into

high-level semantic information. Meanwhile, such high-

level semantic information also needs to be passed from the

top layers down and further integrated with high-resolution

low-level cues, such as colors and textures, to produce high-

precision region and contour detection results. Therefore,

a network should consider both bottom-up and top-down

information propagation and output a label map with the

same resolution as the input image. We propose a refined

VGG network architecture to achieve this goal. As shown

in Fig. 3, the refined VGG network is essentially a VGG

network augmented with a top-down refinement process.

We transform the original VGG16 into a fully convolu-

tional network, which serves as our bottom-up backbone

network. The two fully connected layers of VGG16 are first

converted into convolutional layers with 1 × 1 kernels as

described in [35]. We also skip subsampling in the last two

pooling layers to make the bottom-up feature map denser

and replace the convolutional layers after the penultimate

pooling layer with atrous convolution in order to retain the

original receptive field of the filters. Thus the output resolu-

tion of the transformed VGG network is 1/8 of the original

input resolution.

To augment the backbone network with a top-down re-

finement stream, we first attach one extra convolutional

layer to each of the five max-pooling layers of VGG16.

Each extra layer has 3 × 3 kernels and 64 channels which

play a role in dimension reduction. Inspired by [40], we in-

tegrate a “refinement module” R to invert the effect of each

pooling layer and double the resolution of its input feature

map if necessary. As shown in Figure 3, the refinement

stream consists of five stacked refinement modules, each of
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Figure 3. The architecture of our multiscale refinement network.

which corresponds to one pooling layer in the backbone net-

work. Each refinement module Ri takes as input the output

feature map F i
td of the previous refinement module in the

top-down pass along with the output feature map F i
bu of

the aforementioned extra convolutional layer attached to the

corresponding pooling layer in the bottom-up pass. It learns

to merge the information from these inputs to produce a new

feature map F i+1
td , i.e. F i+1

td = Ri(F i
td, F

i
bu). The refine-

ment module Ri works by first concatenating F i
td and F i

bu

and then feeding them to another 3× 3 convolutional layer

with 64 channels. Finally, an up-sampling layer is option-

ally added to double the spatial resolution to guarantee that

F i
td and F i

bu have the same spatial resolution. Specifically,

an up-sampling layer is added in each refinement module

corresponding to any of the first three pooling layers in the

bottom-up pass. We denote a refinement operation with-

out up-sampling as RA and that with up-sampling as RB .

Note that F 1
td is the output feature map encoding from the

last layer of the backbone network and serves as the input

to the entire top-down refinement stream. The final output

of the refinement stream is a probability map with the same

resolution as the original input image.

3.1.2 Multiscale Fusion with Attentional Weights

As it has been widely confirmed that feeding multiple scales

of an input image to networks with shared parameters

are beneficial for accurately localizing objects of different

scales in pixel labeling problems [15, 8, 14, 32], we repli-

cate the refined VGG network in the previous section three

times, each responsible for one of the scales. An input im-

age is resized to three different scales (s ∈ {1, 0.75, 0.5}).

Each scale s of the input image passes through one of the

three replicated refined VGG networks, and comes out as a

two-channel probability map in the resolution of scale s, de-

noted as Ms
c , where c ∈ {0, 1} denotes the two classes for

saliency detection. The three probability maps are resized

to the same resolution as the raw input image using bilinear

interpolation.

The final output from our MSRNet is computed as a

weighted sum of the three probability maps in a pixel-

scale1 scale2 scale3

output1 output2 output3

	���
�

	���
�

	���
�

Attention
weights1 weights2 wieghts3

final output

＋

Figure 4. The architecture of the attention module.

wise manner, which means the weights for the probabilistic

scores at a pixel are not fixed but spatially varying. Let

Fc be the fused probability map of class c and W s be the

weight map for scale s. The fused map is calculated by sum-

ming the elementwise multiplication between each proba-

bility map and its corresponding weight map:

Fc = Σs∈{1,0.75,0.5}W
s ⊙Ms

c . (1)

We call W s attentional weights as in [19] because it reflects

how much attention should be paid to features at different

spatial locations and image scales.

These spatially varying attentional weights can be

viewed as probability maps themselves and can be learned

in a fully convolutional network as well. We simultane-

ously learn attentional weights along with saliency maps by

adding an attention module to our MSRNet. As shown in

Fig. 4, the attention module takes as input the concatena-

tion of three output feature maps of the penultimate layers

in the three top-down refinement streams, and it consists of

two convolutional layers for attentional weight inference.

The first convolutional layer has 512 channels with 3 × 3
kernels and the second layer has three channels with 1 × 1
kernels. Each of the three channels in the output feature

map corresponds to attentional weights for one of the three

scales. Thus the attention module learns a soft weight for

each spatial location and each scale. As the convolutions

and elementwise multiplications in our attention module are

differentiable, they allow the gradient of the loss function to

be propagated through. Therefore, the attention module can

be jointly trained in our MSRNet.

3.1.3 Multiscale Refinement Network Training

We train two deep models based on the same multiscale

refinement network architecture to perform two subtasks,

salient region detection and salient object contour detec-

tion. These subtasks have separate training sets. As the

number of training images for salient contour detection is

much smaller, in practice, we first train a network for salient

region detection. A duplicate of this trained network is fur-

ther fine-tuned for salient contour detection. The loss func-
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tions of these two subtasks have different weights for sam-

ple balance. As the number of “contour” and “non-contour”

pixels are extremely imbalanced in each training batch for

salient object contour detection, the penalty for misclassify-

ing “contour” pixels is 10 times the penalty for misclassify-

ing “non-contour” pixels while, for salient region detection,

the penalty for misclassifying “salient” pixels is twice the

penalty for misclassifying “non-salient” pixels. When train-

ing MSRNet for salient region detection, we initialize the

bottom-up backbone network with a VGG16 network pre-

trained on ImageNet and the top-down refinement stream

with random values. We jointly fine-tune the three refined

VGG networks in MSRNet, and their shared parameters are

optimized using standard stochastic gradient descent. The

learning rate for the backbone networks is set to 10−4 while

that for other newly added layers is set to 10−3. To save

memory and increase the mini-batch size, we fix the resolu-

tion of training images to 320× 320. However, as MSRNet

is a fully convolutional network, it can take an image of any

size as the input and produce a saliency map with the same

resolution as the input during testing.

3.2. Salient Instance Proposal

We choose the multiscale combinatorial grouping

(MCG) algorithm [3] to generate salient object proposals

from the detected salient object contours. MCG is a uni-

fied approach for bottom-up hierarchical image segmenta-

tion and object candidate generation. We simply replace

the contour detector gPb in MCG with our MSRNet based

salient object contour detector. Specifically, given an input

image, we first generate four salient object contour maps

(three from scaled versions of the input and one from the

fused map). Each of these four contour maps is used to

generate a distinct hierarchical image segmentation repre-

sented as an ultrametric contour map (UCM). These four

hierarchies are aligned and combined into a single hierar-

chical segmentation, and a ranked list of object proposals

are obtained as in [3].

To ensure a high recall rate of salient object instances, we

generate 800 salient object proposals for any given image.

We discard those proposals with fewer than 80% salient pix-

els to guarantee that any remaining proposal mostly resides

inside a detected salient region. Given the set of initially

screened salient object proposals, we further apply a MAP-

based subset optimization method proposed in [51] to pro-

duce a compact set of object proposals. The number of re-

maining object proposals in the compact set forms the final

number of predicted salient object instances in the image.

We call each remaining salient object proposal a detected

salient instance. We can easily obtain an initial result for

salient instance segmentation by labeling the pixels in each

salient instance with a unique instance id.

3.3. Refinement of Salient Instance Segmentation

As salient object proposals and salient regions are ob-

tained independently, there exist discrepancies between the

union of all detected salient instances and the union of all

detected salient regions. In this section, we propose a fully

connected CRF model to refine the initial salient instance

segmentation result.

Suppose the number of salient instances is K. We treat

the background as the K + 1st class, and cast salient in-

stance segmentation as a multi-class labeling problem. At

the end, every pixel is assigned with one of the K + 1 la-

bels using a CRF model. To achieve this goal, we first de-

fine a probability map with K + 1 channels, each of which

corresponds to the probability of the spatial location being

assigned with one of the K + 1 labels. If a salient pixel is

covered by a single detected salient instance, the probabil-

ity of the pixel having the label associated with that salient

instance is 1. If a salient pixel is not covered by any de-

tected salient instance, the probability of the pixel having

any label is 1
K

. Note that salient object proposals may have

overlaps and some object proposals may occupy non-salient

pixels. If a salient pixel is covered by k overlapping salient

instances, the probability of the pixel having a label asso-

ciated with one of the k salient instances is 1
k

. If a back-

ground pixel is covered by k overlapping salient instances,

the probability of the pixel having a label associated with

one of the k salient instances is 1
k+1 , and the probability of

the pixel having the background label is also 1
k+1 .

Given this initial salient instance probability map, we

employ a fully connected CRF model [26] for refinement.

Specifically, pixel labels are optimized with respect to the

following energy function of the CRF:

E (x) = −
∑

i

logP (xi) +
∑

i,j

θij (xi, xj) , (2)

where x represents a complete label assignment for all pix-

els and P (xi) is the probability of pixel i being assigned

with the label prescribed by x. θij (xi, xj) is a pairwise

potential defined as follows,

θij = µ (xi, xj)

[

ω1 exp

(

−
∥pi − pj∥

2

2σ2
α

−
∥Ii − Ij∥

2

2σ2
β

)

+

ω2 exp

(

−
∥pi − pj∥

2

2σ2
γ

)]

,

(3)

where µ (xi, xj) = 1 if xi ̸= xj , and zero otherwise. θij
involves two kernels. The first kernel depends on pixel po-

sitions (p) and pixel intensities (I), and encourages nearby

pixels with similar colors to take similar salient instance la-

bels, while the second kernel only considers spatial proxim-

ity when enforcing smoothness. The hyperparameters, σα,
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σβ and σγ , control the scale of Gaussian kernels. In this pa-

per, we apply the publicly available implementation of [26]

to minimize the above energy. The parameters in this CRF

are determined through cross validation on the validation

set of our dataset introduced in the next section. The actual

values of w1, w2, σα, σβ and σγ are set to 4.0, 3.0, 49.0,

5.0 and 3.0, respectively in our experiments.

4. A New Dataset for Salient Object Instances

As salient instance segmentation is a completely new

problem, no suitable datasets exist. In order to promote the

study of this problem, we have built a new dataset with pix-

elwise salient instance labels. We initially collected 1, 388
images. To reduce the ambiguity in salient region detec-

tion results, these images were mostly selected from ex-

isting datasets for salient region detection, including EC-

SSD [48], DUT-OMRON [49], HKU-IS [29], and MSO

datasets [51]. Two-thirds of the chosen images contain mul-

tiple occluded salient object instances while the remaining

one-third consists of images with no salient regions, a single

salient object instance or multiple salient instances without

occlusion. To reduce label inconsistency, we asked three

human annotators to label detected salient regions with dif-

ferent instance IDs in all selected images using a custom

designed interactive segmentation tool. We only kept the

images where salient regions were divided into an identical

number of salient object instances by all the three annota-

tors. At the end, our new salient instance dataset contains

1,000 images with high-quality pixelwise salient instance

labeling as well as salient object contour labeling. We ran-

domly divide the dataset into three parts, including 500 for

training, 200 for validation and 300 for testing.

5. Experimental Results

5.1. Implementation

Our proposed MSRNet has been implemented on the

public DeepLab code base [7], which was implemented in

the Caffe framework [23]. A GTX Titan X GPU is used for

both training and testing. We combine the training sets of

both the MSRA-B dataset (2500 images) [34] and the HKU-

IS dataset (2500 images) [29] as our training set (5000 im-

ages) for salient region detection. The validation sets in the

aforementioned two datasets are also combined as our vali-

dation set (1000 images). We augment the image dataset by

horizontal flipping. During training, the mini-batch size is

set to 6 and we choose to update the loss every 5 iterations.

We set the momentum parameter to 0.9 and the weight de-

cay to 0.0005 for both subtasks. The total number of itera-

tion is set to 20K. We test the softmax loss on the validation

set every 500 iterations and select the model with the lowest

validation loss as the best model for testing. As discussed in

Section 3.1.3, this trained model is used as the initial model

for salient contour detection, and is further fine-tuned on

the training set of our new dataset for salient instances and

contour detection. As our new dataset only contains 500
training images, we perform data augmentation as in [47].

Specifically, we rotate the images to 8 different orientations

and crop the largest rectangle in the rotated image. With

horizontal flipping at each orientation, the training set is

enlarged by 16 times. We fine-tune MSRNet on the aug-

mented dataset for 10K iterations and keep the model with

the lowest validation error as our final model for salient ob-

ject contour detection.

It takes around 50 hours to train our multiscale refine-

ment network for salient region detection and another 20

hours for salient object contour detection. As MSRNet is a

fully convolutional network, the testing phase is very effi-

cient. In our experiments, it takes 0.6 seconds to perform

either salient region detection or salient object contour de-

tection on a testing image with 400x300 pixels. It takes

20 seconds to generate a salient instance segmentation with

MCG being the bottleneck which needs 18 seconds to gen-

erate salient object proposals for a single image.

5.2. Evaluation on Salient Region Detection

To evaluate the performance of our MSRNet on

salient region detection, we conduct testing on six bench-

mark datasets: MSRA-B [34], PASCAL-S [31], DUT-

OMRON[49], HKU-IS [29], ECSSD [48] and SOD [37].

As we train our network on the combined training sets of

MSRA-B and HKU-IS, we evaluate our trained model on

the testing sets of these two datasets and on the combined

training and testing sets of other datasets.

We adopt precision-recall curves (PR), maximum F-

measure and mean absolute error (MAE) as our perfor-

mance measures. The F-measure is defined as Fβ =
(1+β2)·Precision·Recall

β2·Precision+Recall
, where β2 is set to 0.3. We report the

maximum F-measure computed from all precision-recall

pairs. MAE is defined as the average pixelwise absolute

difference between the binary ground truth and the saliency

map [39]. It is a more meaningful measure in evaluating

the applicability of a saliency model in salient instance seg-

mentation. In the supplemental materials, we also report

the average precision, recall and F-measure using an adap-

tive threshold which is set to twice the mean saliency value

of each saliency map as suggested in [1].

5.2.1 Comparison with the State of the Art

We compare the proposed MSRNet with other 8 state-of-

the-art salient region detection methods, including GC [10],

DRFI [24], LEGS [44], MC [52], MDF [29], DCL+ [30],

DHSNet [33] and RFCN [45]. The last six are the latest

deep learning based methods. We use the original imple-

mentations provided by the authors in this comparison.
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(a)Source (b)GC (c)DRFI (d)LEGS (e)MC (f)MDF (g)RFCN (h)DHSNet (i)DCL+ (j)MSRNet (k)GT

Figure 5. Visual comparison of saliency maps from state-of-the-art methods, including our MSRNet. The ground truth (GT) is shown in

the last column. MSRNet consistently produces saliency maps closest to the ground truth.
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Figure 6. Comparison of precision-recall curves among 9 salient region detection methods on 3 datasets. Our MSRNet consistently

outperforms other methods across all the testing datasets. Note that DHSNet [33] includes the testing set of DUT-OMRON in its training

data, therefore DHSNet is not included in the comparison on this dataset.

A visual comparison is given in Fig. 5. As we can see,

our proposed MSRNet can not only accurately detect salient

objects at different scales but also generate more precise

saliency maps in various challenging cases. As a part of

quantitative evaluation, we show a comparison of PR curves

in Fig. 6. Refer to the supplemental materials for the per-

formance comparison on the MSRA-B, ECSSD and SOD

datasets. Furthermore, a quantitative comparison of maxi-

mum F-measure and MAE is given in Table 1. As shown

in Fig. 6 and Table 1, our proposed MSRNet consistently

outperforms existing methods across all the datasets with a

considerable margin. Specifically, MSRNet improves the

maximum F-measure achieved by the best-performing ex-

isting algorithm by 1.53%, 1.33%, 3.70%, 1.33%, 2.4% and

1.8% respectively on MSRA-B, HKU-IS, DUT-OMRON,

ECSSD, PASCAL-S and SOD. And at the same time, MSR-

Net lowers the previoiusly best MAE by 10.6%, 20.4%,

13.8%, 8.5%, 13.8% and 11.1% respectively on MSRA-B,

HKU-IS, DUT-OMRON, ECSSD, PASCAL-S and SOD. It

is worth noting that MSRNet outperforms all the other six

deep learning based saliency detection methods without re-

sorting to any post-processing techniques such as CRF.

5.2.2 Effectiveness of Multiscale Refinement Network

Our proposed MSRNet consists of three refined VGG

streams and a learned attentional model for fusing results

at different scales. To demonstrate the effectiveness and ne-

cessity of each component, we have trained three additional

models for comparison. These three models are respectively

a single backbone network (VGG16), a single-scale refine-

ment network (SSRNet) and a multiscale VGG network

with the same attentional module but without refinement

(MSVGG). These three additional models are trained using

the same setting as MSRNet training. Quantitative results

from the four methods are obtained on the testing part of

HKU-IS dataset. As shown in Fig. 7, MSRNet consistently

achieves the best performance in terms of the PR curve as

well as average precision, recall and F-measure. Both SSR-

Net and MSVGG perform much better than VGG16, which

respectively demonstrates the effectiveness of the refine-

ment module and attention based multiscale fusion in MSR-

Net. Moreover, these two components are complementary

to each other, which makes MSRNet not only capable of de-

tecting more precise salient regions (with higher resolution)

but also discovering salient objects at multiple scales.

5.3. Evaluation on Salient Instance Segmentation

To evaluate the effectiveness of our proposed framework

for salient instance segmentation as well as to promote fur-

ther research on this new problem, we adopt two types of

performance measures and demonstrate the results from our

framework according to these measures.

We use the same performance measures used for tradi-
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Dataset Metric GC DRFI LEGS MC MDF RFCN DHSNet DCL+ MSRNet

maxF 0.719 0.845 0.870 0.894 0.885 — — 0.916 0.930
MSRA-B

MAE 0.159 0.112 0.081 0.054 0.066 — — 0.047 0.042

maxF 0.539 0.690 0.752 0.740 0.764 0.832 0.824 0.822 0.852
PASCAL-S

MAE 0.266 0.210 0.157 0.145 0.145 0.118 0.094 0.108 0.081

maxF 0.495 0.664 0.669 0.703 0.694 0.747 — 0.757 0.785
DUT-OMRON

MAE 0.218 0.150 0.133 0.088 0.092 0.095 — 0.080 0.069

maxF 0.588 0.776 0.770 0.798 0.861 0.896 0.892 0.904 0.916
HKU-IS

MAE 0.211 0.167 0.118 0.102 0.076 0.073 0.052 0.049 0.039

maxF 0.597 0.782 0.827 0.837 0.847 0.899 0.907 0.901 0.913
ECSSD

MAE 0.233 0.170 0.118 0.100 0.106 0.091 0.059 0.068 0.054

maxF 0.526 0.699 0.732 0.727 0.785 0.805 0.823 0.832 0.847
SOD

MAE 0.284 0.223 0.195 0.179 0.155 0.161 0.127 0.126 0.112

Table 1. Comparison of quantitative results including maximum F-measure (larger is better) and MAE (smaller is better). The best three

results on each dataset are shown in red, blue, and green , respectively. Note that the training set of DHSNet [33] includes the testing set

of MSRA-B and Dut-OMRON, and the entire MSRA-B dataset is used as part of the training set of RFCN [45]. Corresponding test results

are excluded here.
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Figure 7. Componentwise efficacy of the proposed multiscale re-

finement network.

tional contour detection [2, 47] to evaluate the performance

of salient object contour detection, and adopt three standard

measures: fixed contour threshold (ODS), per-image best

threshold (OIS), and average precision (AP). Refer to [2]

for detailed definitions. We define performance measures

for salient instance segmentation by drawing inspirations

from the evaluation of instance-aware semantic segmenta-

tion. Specifically, we adopt mean Average Precision, re-

ferred to as mAP r [20]. In this paper, we report mAP r

using IoU thresholds at 0.5 and 0.7, denoted as mAP r@0.5
and mAP r@0.7 respectively.

Benchmark results from our proposed method in both

salient object contour detection and salient instance seg-

mentation are given in Table 2. Fig. 8 demonstrates exam-

ples from our results on our testing set. Our method can

handle challenging cases where multiple salient object in-

stances are spatially connected to each other.

Table 2. Quantitative benchmark results of salient object contour

detection and salient instance segmentation on our new dataset.
Salient Contour Detection Salient Instance Segmentation

ODS OIS AP MP r@0.5(%) MP r@0.7(%)

0.719 0.757 0.765 65.32 52.18

6. Conclusions

In this paper, we have introduced salient instance seg-

mentation, a new problem related to salient object detection,

Input Saliency Map Salient ContourGroundtruth Salient Instance 

Segmentation

Figure 8. Examples of salient instance segmentation results by our

MSRNet based framework.

and also presented a framework for solving this problem.

The most important component of our framework is a mul-

tiscale saliency refinement network, which generates high-

quality salient region masks and salient object contours. To

promote further research and evaluation of salient instance

segmentation, we have also constructed a new database with

pixelwise salient instance annotations. Experimental results

demonstrate that our proposed method is capable of achiev-

ing state-of-the-art performance on all public datasets for

salient region detection as well as on our new dataset for

salient instance segmentation.
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