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Abstract

Person Re-identification (ReID) is to identify the same

person across different cameras. It is a challenging task

due to the large variations in person pose, occlusion, back-

ground clutter, etc. How to extract powerful features is a

fundamental problem in ReID and is still an open prob-

lem today. In this paper, we design a Multi-Scale Context-

Aware Network (MSCAN) to learn powerful features over

full body and body parts, which can well capture the lo-

cal context knowledge by stacking multi-scale convolutions

in each layer. Moreover, instead of using predefined rigid

parts, we propose to learn and localize deformable pedes-

trian parts using Spatial Transformer Networks (STN) with

novel spatial constraints. The learned body parts can re-

lease some difficulties, e.g. pose variations and background

clutters, in part-based representation. Finally, we inte-

grate the representation learning processes of full body

and body parts into a unified framework for person ReI-

D through multi-class person identification tasks. Extensive

evaluations on current challenging large-scale person ReID

datasets, including the image-based Market1501, CUHK03

and sequence-based MARS datasets, show that the pro-

posed method achieves the state-of-the-art results.

1. Introduction

Person re-identification aims to search for the same per-

son across different cameras with a given probe image. It

has attracted much attention in recent years due to its impor-

tance in many practical applications, such as video surveil-

lance and content-based image retrieval. Despite of years

of efforts, it still has many challenges, such as large varia-

tions in person pose, illumination, and background clutter.

In addition, similar appearance of clothes among differen-

t people and imperfect pedestrian detection results further

increase its difficulty in real applications.

Most existing methods for ReID focus on developing a

powerful representation to handle the variations of view-
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Figure 1. The schematic of typical feature learning framework

with deep learning. As shown in black dashed boxes, curren-

t approaches focus on the full body or rigid body parts for fea-

ture learning. Different from them, we use the spatial transformer

networks to learn and localize pedestrian parts and use multi-

scale context-aware convolutional networks to extract full-body

and body-parts representations for ReID. Best viewed in color.

point, body pose, background clutter, etc. [7, 10, 18, 19, 22,

27, 41–43, 50, 51], or learning an effective distance met-

ric [2, 16, 21, 22, 29, 47, 57]. Some of existing methods

learn both of them jointly [1, 20, 31, 44]. Recently, deep

feature learning based methods [5, 6, 34, 35], which learn a

global pedestrian feature and use Euclidean metric to mea-

sure two samples, have obtained the state-of-the-art result-

s. With the increasing sample size of ReID dataset, the

learning of features from multi-class person identification

tasks [30, 39, 40, 52, 55], denoted as ID-discriminative Em-

bedding (IDE) [55], has shown great potentials on current

large-scale person ReID datasets, such as MARS [52] and

PRW [55], where the IDE features are taken from the last

hidden layer of Deep Convolutional Neural Networks (D-

CNN). In this paper, we aim to learn the IDE feature for

person ReID using DCNN.

Existing DCNN models for person ReID typically learn

a global full-body representation for input person image
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(Full body in Figure 1), or learn a part-based representa-

tion for predefined rigid parts (Rigid body parts in Figure 1)

or learn a feature embedding for both of them. Although

these DCNN models have obtained impressive results on

existing ReID datasets, there are still two problems. First,

for feature learning, current popular DCNN models typical-

ly stack single-scale convolution and max pooling layers to

generate deep networks. With the increase of the number of

layers, these DCNN models could easily miss some small

scale visual cues, such as sunglasses and shoes. However,

these fine-grained attributes are very useful to distinguish

the pedestrian pairs with small inter-class variations. Thus

these DCNN models are not the best choice for pedestri-

an feature learning. Second, due to the pose variations and

imperfect pedestrian detectors, the pedestrian image sam-

ples may be misaligned. Sometimes they may have some

backgrounds or lack some parts, e.g. legs. In these cases,

for part-based representation, the predefined rigid grids may

fail to capture correct correspondence between two pedes-

trian images. Thus the rigid predefined grids are far from

robust for effective part-based feature learning.

In this paper, we propose to learn the features of full

body and body parts jointly. To solve the first problem, we

propose a Multi-Scale Context-Aware Network (MSCAN).

As shown in Figure 1, for each convolutional layer of the M-

SCAN, we adopt multiple convolution kernels with differ-

ent receptive fields to obtain multiple feature maps. Feature

maps from different convolution kernels are concatenated as

current layer’s output. To decrease the correlations among

different convolution kernels, the dilated convolution [45] is

used rather than general convolution kernels. Through this

way, multi-scale context knowledge is obtained at the same

layer. Thus the local visual cues for fine-grained discrimina-

tion is enhanced. In addition, through embedding contextu-

al features layer-by-layer (convolution operation across lay-

ers), MSCAN can obtain more context-aware representation

for input image. To solve the second problem, instead of

using rigid body parts, we propose to localize latent pedes-

trian parts through Spatial Transform Networks (STN) [13],

which is originally proposed to learn image transformation.

To adapt it to the pedestrian part localization task, we pro-

pose three new constraints on the learned transformation pa-

rameters. With these constraints, more flexible parts can be

localized at the informative regions, so as to reduce the dis-

traction of background contents.

Generally, the features of full body and body parts are

complementary to each other. The full-body features pay

more attention to the global information while the body-part

features care more about the local regions. To better utilize

these two types of representations, in this paper, features

of full body and body parts are concatenated to form the

final pedestrian representation. In test stage, the Euclidean

metric is adopted to compute the distance between two L2

normalized person representations for person ReID.

The contributions of this paper are summarized as fol-

lows: (a) We propose a multi-scale context-aware network

to enhance the visual context information for better feature

representation of fine-grained visual cues. (b) Instead of us-

ing rigid parts, we propose to learn and localize pedestrian

parts using spatial transformer networks with novel prior s-

patial constraints. Experimental results show that fusing the

global full-body and local body-part representations greatly

improves the performance of person ReID.

2. Related Work

Typical person ReID methods focus on two key points:

developing a powerful feature for image representation and

learning an effective metric to make the same person be

close and different persons far away. Recently, deep learn-

ing approaches have achieved the state-of-the-art results for

person ReID [34,39,48,52,54]. Here we mainly review the

related deep learning methods.

Deep learning approaches for person ReID tend to learn

person representation and similarity (distance) metric joint-

ly. Given a pair of person images, previous deep learning

approaches learn each person’s features followed by a deep

matching function from the convolutional features [1, 3, 4,

20] or the Fully Connected (FC) features [31,37,44]. In ad-

dition to the deep metric learning, some work directly learn-

s image representation through pair-wise contrastive loss or

triplet ranking loss, and use Euclidean metric for compari-

son [5, 6, 34, 35].

With the increasing sample size of ReID dataset, the IDE

feature which is learned through multi-class person identi-

fication tasks, has shown great potentials on current large-

scale person ReID datasets. Xiao et al. [39] propose the do-

main guided dropout to learn features over multiple dataset-

s simultaneously with identity classification loss. Zheng et

al. [52] learn the IDE feature for the video-based person re-

identification. Xiao et al. [40] and Zheng et al. [55] learn

the IDE feature to jointly solve the pedestrian detection and

person ReID tasks. Schumann et al. [30] learn the IDE

feature for domain adaptive person ReID. The similar phe-

nomenon has also been validated on face recognition [33].

As we know, previous DCNN models usually adopt the

layer-by-layer single-scale convolution kernels to learn the

context information. Some DCNN models [5, 31, 44] adop-

t rigid body parts to learn local pedestrian features. Dif-

ferent from them, we improve the classical models in two

ways. Firstly, we propose to enhance the context knowledge

through multi-scale convolutions at the same layer. The re-

lationship among different context knowledge are learned

by embedding feature maps layer-by-layer (convolution or

FC operation). Secondly, instead of using rigid parts, we

utilize the spatial transformer networks with proposed prior

constraints to learn and localize latent human parts.
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Figure 2. Overall framework of the proposed model. The proposed model consists three components: the global body-based feature

learning with MSCAN, the latent pedestrian parts localization with spatial transformer networks and local part-based feature embedding,

the fusion of full body and body parts for multi-class person identification tasks.

3. Proposed Method

The focus of this approach is to learn powerful feature

representations to describe pedestrians. The overall frame-

work of the proposed method is shown in Figure 2. In this

section, we introduce our model from four aspects: a multi-

scale context-aware network for efficient feature learning

(Section 3.1), the latent parts learning and localization for

better local part-based feature representation (Section 3.2),

the fusion of global full-body and local body-part features

for person ReID (Section 3.3), and our final objective func-

tion in Section 3.4.

3.1. Multi-scale Context-aware Network

Visual context is an important component to assist

visual-related tasks, such as object recognition [24] and

object detection [46, 56]. Typical convolutional neural

networks model context information through hierarchical

convolution and pooling [11, 17]. For person ReID task,

the most important visual cues are visual attribute knowl-

edge, such as clothes color and types. However, they have

large variations in scale, shape and position, such as the

hat/glasses at small local scale and the cloth color at the

larger scale. Directly using bottom-to-up single-scale con-

volution and pooling may not be effective to handle these

complex variations. Especially, with the increase number

of layers, the small visual regions, such as hat, will be easi-

ly missed in top layers. To better learn these diverse visual

cues, we propose the Multi-scale Context-Aware Network.

The architecture of the proposed MSCAN is shown in

Tabel 1. It has an initial convolution layer with kernel size

5× 5 to capture the low-level visual features. Then we use

four multi-scale convolution layers to obtain the complex

layer dilation kernel pad #filters output

input - - - - 3×160×64

conv0 1 5×5 2 32 32×160×64

pool0 - 2×2 - - 32×80×32

conv1 1/2/3 3×3 1/2/3 32/32/32 96×80×32

pool1 - 2×2 - - 96×40×16

conv2 1/2/3 3×3 1/2/3 32/32/32 96×40×16

pool2 - 2×2 - - 96×20×8

conv3 1/2/3 3×3 1/2/3 32/32/32 96×20×8

pool3 - 2×2 - - 96×10×4

conv4 1/2/3 3×3 1/2/3 32/32/32 96×10×4

pool4 - 2×2 - - 96×5×2

Table 1. Model architecture of MSCAN.

image context information. In each multi-scale convolution

layer, we use a convolution kernel with size 3 × 3. To ob-

tain multi-scale receptive fields, we adopt dilated convolu-

tion [45] for the convolution filters. We use three different

dilation ratios, i.e. 1,2 and 3, to capture different scale con-

text information. The feature maps from different dilation

ratios are concatenated along the channel axis to form the

final output of the current convolution layer. Thus, the visu-

al context information are enhanced explicitly. To integrate

different context information together, the feature maps of

current convolution layer are embedded through layer-by-

layer convolution or FC operation. As a result, the visual

cues at different scales are fused in a latent way. Besides,

we adopt Batch Normalization [12] and ReLU neural acti-

vation units after each convolution layer.

In this paper, we use the dilated convolutions with dila-

tion ratios 1, 2 and 3 instead of the classic convolution filters

with kernel size 3×3, 5×5 and 7×7. The main reason is that

the classic convolution filters with kernel size 3 × 3, 5 × 5
and 7×7 overlap with each other at the same output position

and produce redundant information. To make it clearer, we

show the dilated convolution kernel (size 3×3) with dilation
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Figure 3. Example of dilated convolution for the same input fea-

ture map. The convolutional kernel is 3 × 3 and the dilation ratio

from left to right is 1, 2, and 3. The blue boxes are effective posi-

tions for convolution at the red circle. Best viewed in color.

ratio ranging from 1 to 3 in Figure 3. For the same output

position which is shown in red circle, the convolution kernel

with larger dilation ratio has larger receptive field, while on-

ly the center position is overlapped with other convolution

kernels. This can reduce the redundant information among

filters with different receptive fields.

In summary, as shown in Figure 2, we use MSCAN to

learn the multi-scale context representation for full body

and body parts. In addition, it is also used for feature learn-

ing in spatial transformer networks mentioned below.

3.2. Latent Part Localization

Pedestrian parts are important in person ReID. Some ex-

isting work [5, 10, 22, 44] has explored rigid body parts to

develop robust features. However, due to the unsatisfying

pedestrian detection algorithms and large pose variations,

the method of using rigid body parts for local feature learn-

ing is not the optimal solution. As shown in Figure 1, when

using rigid body parts, the top part consists of large amount

of background. This motivates us to learn and localize the

pedestrian parts automatically.

We integrate STN [13] as the part localization net in our

proposed model. The original STN is proposed to explicitly

learn the image transformation parameters, such as trans-

lation and scale. It has two main advantages: (1) it is fully

differentiable and can be easily integrated into existing deep

learning frameworks, (2) it can learn to translate, scale, crop

or warp an interesting region without explicit region annota-

tions. These facts make it very suitable for pedestrian parts

localization.

STN includes two components, the spatial localization

network to learn the transformation parameters, and the grid

generator to sample the input image using an image interpo-

lation kernel. More details about STN can be seen in [13].

In our implementation of STN, the bilinear interpolation k-

ernel is adopted to sample the input image. And four trans-

formation parameters θ = [sx, tx, sy, ty] are used, where

sx and sy are the horizontal and vertical scale transforma-

tion parameters, and tx and ty are the horizontal and vertical

translation parameters. The image height and width are nor-

malized to be in [−1, 1]. Only scale and translation parame-

ters are learned because these two types of transformations

serve enough to crop the pedestrian parts effectively. The

transformation is applied as an inverse warping to generate

the output body part regions:

(

xin
i

yini

)

=

[

sx 0 tx
0 sy ty

]

⎛

⎝

xout
i

youti

1

⎞

⎠ (1)

where xin and yin are the input image coordinates, xout

and yout are the output part image coordinates, and i index-

es the pixels in the output body part image.

In this paper, we expect STN to learn three parts corre-

sponding to the head-shoulder, upper body and lower body.

Each part is learned by an independent STN from the o-

riginal pedestrian image. For the spatial localization net-

work, firstly we use MSCAN to extract the global image

feature maps. Then we learn the high-level abstract repre-

sentation by a 128-dimension FC layer (FC loc in Figure 2).

At last, we learn the transformation parameters θ with a 4-

dimension FC layer based on the FC loc. The MSCAN and

FC loc are shared among three spatial localization network-

s. The grid generator can crop the learned pedestrian parts

based on the learned transformation parameters. In this pa-

per, the resolution of the cropped part image is 96× 64.

For the part localization network, it is hard to learn three

groups of parameters for part localization. There are three

problems. First, the predicted parts from STN can easily

fall into the same region, e.g., the center region of a per-

son, and result in redundance. Second, the scale parameters

can easily become negative and the pedestrian part will be

mirrored vertically or horizontally or both. This is not con-

sistent with general human cognition. Because few person

will stand upside down in surveillance scenes. At last, the

cropped parts may fall out of the person image, thus the

network would be hard to converge. To solve the above

problems, we propose three prior constraints on the trans-

formation parameters in the part localization network.

The first constraint is for the positions of predicted parts.

We expect the predicted parts to be near the prior center

points, so that the learned parts would be complementary to

each other. This is termed as the center constraint, which is

formalized as follows:

Lcen =
1

2
max{0, (tx − Cx)

2 + (ty − Cy)
2 − α} (2)

where Cx and Cy are prior center points for each part. α
is the threshold to control the translation between estimated

and prior center points. In our experiments, we set the prior

center point (Cx, Cy) to (0, 0.6), (0, 0), and (0,−0.6) for

each part. The threshold α is set to 0.5.

The second one is the value range constraint on the pre-

dicted scale parameter. We hope the scale to be positive, so

that the predicted parts have a reasonable extent. The val-

ue range constraint on the scale parameter is formalized as

follows:

Lpos = max{0, β − sx}+max{0, β − sy} (3)
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where β is threshold parameter and is set to 0.1 in this paper.

The last one is to make the localization network focus on

the inner region of an image. It is formalized as follows:

Lin = 1

2
max{0, ||sx ± tx||

2 − γ}

+ 1

2
max{0, ||sy ± ty||

2 − γ}
(4)

where γ is the boundary parameter. γ is set to 1.0 in our

paper, which means the cropped parts should be inside the

pedestrian image.

Finally the loss for the transformation parameters in the

part localization network is described as follows:

Lloc = Lcen + ξ1Lpos + ξ2Lin (5)

where ξ1 and ξ2 are hyperparameters. The hyperparameters

ξ1 and ξ2 are both set to 1.0 in our experiments.

3.3. Feature Extraction and Fusion

The features of full body and body parts are learned by

separate networks and then are fused in a unified frame-

work for multi-class person identification tasks. For the

body-based representation, we use MSCAN to extract the

global feature maps and then learn a 128-dimension fea-

ture embedding (denoted as FC body in Figure 2). For

the part-based representation, first, for each body part,

we use the MSCAN to extract its feature maps and learn

a 64-dimension feature embedding (denoted as FC part1,

FC part2, FC part3). Then, we learn a 128-dimension fea-

ture embedding (denoted as FC part) based on features of

each body part. The Dropout [32] is adopted after each FC

layer to prevent overfitting. At last, the features of glob-

al full body and local body parts are concatenated to be a

256-dimension feature as the final person representation.

3.4. Objective Function

In this paper, we adopt the softmax loss as the objective

function for multi-class person identification tasks.

Lcls = −

N
∑

i=1

log
exp(WT

yi
xi + byi

)
∑C

j=1
exp(WT

j xi + bj)
(6)

where i is the index of person images, xi is the feature of i-
th sample, yi is the identity of i-th sample, N is the number

of person images, C is the number of person identities, Wj

is the classifier for j-th identity.

For the overall network training, we use the classification

and localization loss jointly. The final objective function is

as follows.

L = Lcls + λLloc (7)

where the λ is the hyperparameter, which is set to 0.1 in our

experiments.

4. Experiments

In this paragraph, the datasets and evaluation protocols

are introduced in Section 4.1. Implementation details are

described in Section 4.2. Comparisons with state-of-the-art

methods are discussed in Section 4.3. The effectiveness of

proposed model is analyzed in Section 4.4 and Section 4.5.

Cross-dataset evaluation is described in Section 4.6.

4.1. Datasets and Protocols

Datasets. In this paper, we evaluate our proposed

method on current largest person ReID datasets, includ-

ing Market1501 [53], CUHK03 [20] and MARS [52]. We

do not directly train our model on small datasets, such as

VIPeR [9]. It would be easily overfitting and insufficien-

t to learn such a large capacity network on small datasets

from scratch. However, we give some results through fine-

tuneing the model from Market1501 to VIPeR and make

cross-dataset ReID on VIPeR for generalization validation.

Related experimental results are discussed in Section 4.6.

Market1501: It contains 1,501 identities which are cap-

tured by six manually set cameras. There are 32,368 pedes-

trian images in total. Each person has 3.6 images on average

at each viewpoint. It provides two types of images, includ-

ing cropped and automatically detected pedestrians by the

Deformable Part based Model (DPM) [8]. Following [53],

751 identities are used for training and the rest 750 identi-

ties are used for testing.

CUHK03: It contains 1,360 identities which are captured

by six surveillance cameras in campus. Each identity is cap-

tured by two disjoint cameras. Totally it consists of 13,164

person images and each identity has about 4.8 images at

each viewpoint. This dataset provides two types of anno-

tations, including manually annotated bounding boxes, and

bounding boxes detected using DPM. We validate our pro-

posed model on both types of data. Following [20], we use

1,260 person identities for training and the rest 100 identi-

ties for testing. Experiments are conducted 20 times and the

mean result is reported.

MARS: It is the largest sequence-based person ReID

dataset. It contains 1,261 identities with each identity cap-

tured by at least two cameras. It consists of 20,478 tracklets

and 1,191,003 bounding boxes. Following [52], we use 625

identities for training and the rest 631 identities for testing.

Protocols. Following original evaluation protocols in

each dataset, we adopt three evaluation protocols for fair

comparison with existing methods. The first one is Cumu-

lated Matching Characteristics (CMC) which is adopted on

the CUHK03 and MARS datasets. The second one is Rank-

1 identification rate on the Market1501 dataset. The third

one is mean Average Precision (mAP) on the Market1501

and MARS datasets. mAP considers both precision and re-

call rate, which could be complementary to CMC.
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4.2. Implementation Details

Model: We try to learn the pedestrian representation

through multi-class person identification tasks using ful-

l body and body parts. To evaluate the effectiveness of ful-

l body and body parts independently, we extract two sub-

models from the whole network of Figure 2. The first one

only uses the full body to learn the person representation

with identity classification loss. The second one only us-

es the parts to learn the person representation with identity

classification and body parts localization loss. For person

re-identification, we use the L2 normalized person repre-

sentation and Euclidean metric to measure the distance be-

tween two pedestrian samples.

Optimization: Our model is implemented based on

Caffe [14]. We use all the available training identities for

training and randomly select one sample for each identity

for validation. As the dataset can be quite large, in practice

we use a stochastic approximation of the objective function.

Training data is randomly divided into mini-batches with a

batch size of 64. The model performs forward propagation

on each mini-batch and computes the loss. Backpropaga-

tion is then used to compute the gradients on each mini-

batch and the weights are updated with stochastic gradient

descent. We start with a base learning rate of η = 0.01 and

gradually decrease it after each 1× 104 iterations. It should

be noted that the learning rate of part localization network

is 1% of that in feature learning network. We use a momen-

tum of μ = 0.9 and weight decay λ = 5×10−3. For overall

network training, we initialize the network using pretrained

body-based and part-based model and then follow the same

training strategy as described above. We use the model at

5× 104 iterations for testing.

Data Preprocessing: For each image, we resize it to

160×64, subtract the mean value on each channel (B, G and

R), and then normalize it with scale 1.0/256 for network

training. To prevent overfitting, we randomly reflect each

image horizontally in the training stage.

4.3. Comparison with State-of-the-art Methods

Market1501: For the Market1501 dataset, several state-

of-the-art methods are compared, including Bag of Word-

s (BOW) [53], Weighted Approximate Rank Componen-

t Analysis (WARCA) [15], Discriminative Null Space

(DNS) [47], Spatially Constrained Similarity function on

Polynomial feature map (SCSP) [2], and deep learning

based approaches, such as PersonNet [38], Comparative At-

tention Network (CAN) [25], Siamese Long Short-Term

Memory (S-LSTM) [35], Gated Siamese Convolutional

Neural Network (Gate-SCNN) [34]. The experimental re-

sults are shown in Table 2.

Compared with existing full body-based convolutional

neural networks, such as CAN and Gate-SCNN, the pro-

posed network structure can better capture pedestrian fea-

Query Single query Multiple query

Evaluation metrics R1 mAP R1 mAP

BOW [53] 34.38 14.1 42.64 19.47

BOW + HS [53] - - 47.25 21.88

WARCA [15] 45.16 - - -

PersonNet [38] 37.21 26.35 - -

S-LSTM [35] - - 61.6 35.3

SCSP [2] 51.9 26.35 - -

CAN [25] 48.24 24.43 - -

DNS [47] 55.43 29.87 71.56 46.03

Gate-SCNN [34] 65.88 39.55 76.04 48.45

Our-Part 76.25 53.33 84.12 62.90

Our-Body 75.45 52.41 83.43 62.03

Our-Fusion 80.31 57.53 86.79 66.70

Table 2. Experimental results on the Market1501 dataset. - means

that no reported results are available.

tures with multi-class person identification tasks. Our full-

body representation improves Rank-1 identification rate by

9.57% on the state-of-the-art results produced by the Gate-

CNN in single query. Compared with the full body, our

body-part representation increase 0.80%. The main reason

is that the pedestrians detected by DPM consists much more

background information and the part-based representation

can better reduce the influences of background clutter.

The full-body and body-part representations are comple-

mentary to each other. The full-body representation cares

more about the global information, such as the background

and body shape. The body-part representation pays more

attention to parts, such as head, upper body and lower body.

As shown in Table 2, the fusion model of full body and

body parts improves Rank-1 identification rate by more than

4.00% compared with the body and parts-based models sep-

arately in single query. The mAP improves about 17.98%

compared with the best result produced by Gate-CNN.

CUHK03: For the CUHK03 dataset, we compare our

method with many existing approaches, including Filter

Pair Neural Networks (FPNN) [20], Improved Deep Learn-

ing Architecture (IDLA) [1], Cross-view Quadratic Dis-

criminant Analysis (XQDA) [22], PSD constrained asym-

metric metric learning (denoted as MLAPG) [23], Sample-

Specific SVM (SS) [49], Single image and Cross image

representation (SI-CI) [36], Embedding Deep Metric (ED-

M) [31], Domain Guided Dropout (DGD) [39], DNS, S-

LSTM and Gate-SCNN. On this dataset, we conduct exper-

iments on both the detected and the labeled datasets. As

presented in previous work [20], we use the CMC curve in

the single shot case to evaluate the performance. The over-

all results are shown in the Table 3 and Table 4. The full

CMC curves are shown in supplementary materials.

Compared with metric learning methods, such as the

state-of-the-art approach DNS, the proposed fusion mod-

el improves the Rank-1 identification rate by 11.66% and

13.29% on the labeled and detected datasets respectively.

Compared with the similar multi-class person identification

network DGD, the Rank-1 identification rate improves by

1.63% using our fusion model on the labeled dataset. It

should be noted that we only use the labeled sets for train-
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Dataset CUHK03 detected

Rank 1 5 10 20

FPNN [20] 19.89 50.00 64.00 78.50

IDLA [1] 44.96 76.01 83.47 93.15

XQDA [22] 46.25 78.90 88.55 94.25

MLAPG [23] 51.15 83.55 92.05 96.90

SS-SVM [49] 51.20 80.80 89.60 95.50

SI-CI [36] 52.17 84.30 92.30 95.00

DNS [47] 54.70 84.75 94.80 95.20

S-LSTM [35] 57.30 80.10 88.30 -

Gate-SCNN [34] 61.80 80.90 88.30 -

EDM [31] 52.09 82.87 91.78 97.17

Our-Part 62.74 88.53 93.97 97.21

Our-Body 64.95 89.82 94.58 97.56

Our-Fusion 67.99 91.04 95.36 97.83

Table 3. Experimental results on the CUHK03 detected dataset.

Dataset CUHK03 labeled

Rank 1 5 10 20

FPNN [20] 20.65 51.50 66.50 80.00

IDLA [1] 54.74 86.50 93.88 98.10

XQDA [22] 52.20 82.23 92.14 96.25

MLAPG [23] 57.96 87.09 94.74 98.00

Ensemble [28] 62.10 89.10 94.80 98.10

SS-SVM [49] 57.00 85.70 94.30 97.80

DNS [47] 62.55 90.05 94.80 98.10

EDM [31] 61.32 88.90 96.44 99.94

DGD [39] 72.58 91.59 95.21 97.72

Our-Part 69.41 92.68 96.68 99.02

Our-Body 71.88 93.66 97.46 99.18

Our-Fusion 74.21 94.33 97.54 99.25

Table 4. Experimental results on the CUHK03 labeled dataset.

ing, while the DGD is trained on both the labeled and de-

tected datasets. This demonstrates the effectiveness of the

proposed model.

MARS: This dataset is the largest sequence-based per-

son ReID dataset. On this dataset, we compare the proposed

method with several classical methods, including Keep It

as Simple and straightforward Metric (KISSME) [16], XQ-

DA [22], and CaffeNet [17]. Similar to previous work [52],

both single query and multiple query are evaluated on

MARS. The overall experimental results on the MARS are

shown in Table 5 and Table 6. The full CMC curves are

shown in supplementary materials.

Compared with CaffeNet, a similar multi-class person i-

dentification network, our body-based model improves the

Rank-1 identification rate by 2.93% and mAP by 4.22% us-

ing XQDA in single query. It should be noticed that our

network does not use any pre-training with additional da-

ta. Usually deep learning network can obtain better results

when pretrained with on ImageNet classification task. Our

fusion model improves Rank-1 identification rate and mAP

by 6.47% and by 8.45% in single query. This illustrates the

effectiveness of our model.

4.4. Effectiveness of MSCAN

To determine the effectiveness of MSCAN, we explore

four variants of MSCANs to learn IDE feature based on

the whole body image, which is denoted as MSCAN-k,

k = {1, 2, 3, 4}. k is the number of dilation ratios. For

example, MSCAN-3 means for each convolution layer in

Query Single query

Evaluation metrics 1 5 20 mAP

CNN+Eulidean [52] 58.70 77.10 86.80 40.40

CNN+KISSME [52] 65.00 81.10 88.90 45.60

CNN+XQDA [52] 65.30 82.00 89.00 47.60

Our-Fusion+Eulidean 68.38 84.19 91.52 51.13

Our-Fusion+KISSME 69.24 85.15 92.17 53.00

Our-Part+XQDA 66.62 82.07 90.76 49.74

Our-Body+XQDA 68.23 83.99 92.17 51.82

Our-Fusion+XQDA 71.77 86.57 93.08 56.05

Table 5. Experimental results on the MARS with single query.

Query Multiple query

Evaluation metrics 1 5 20 mAP

CNN+KISSME+MQ [52] 68.30 82.60 89.40 49.30

Our-Fusion+Euclidean+MQ 78.28 91.97 96.87 61.62

Our-Fusion+KISSME+MQ 80.51 93.18 97.22 63.50

Our-Fusion+XQDA+MQ 83.03 93.69 97.63 66.43

Table 6. Experimental results on the MARS with multiple query.

Conv1-Conv4, there are three convolution kernels with di-

lation ratio 1, 2, and 3 respectively. With the increase of k,

the MSCAN captures larger context information at the same

convolution layer.

The experimental results based on these four types of

MSCANs on the Market1501 dataset are shown in Table 7.

As we can see, with the increase of the number of dilation

ratios, the Rank-1 identification rate and mAP improve sta-

bly in single query case. For multiple query case, which

means fusing all images belonging to the same query per-

son at the same camera through average pooling in feature s-

pace, the Rank-1 identification rate and mAP also improves

step by step. However, the Rank-1 identification rate and

mAP increase not much when K increase from 3 to 4. We

think there is a suitable number of dilation ratios for feature

learning. Considering the model complexity and accuracy

improvements in Rank-1 identification rate, we adopt the

MSCAN-3 as our final MSCAN model in this paper.

Query type Single query Multiple query

Evaluation metrics Rank-1 mAP Rank-1 mAP

MSCAN-1 65.38 41.85 75.21 51.14

MSCAN-2 72.21 49.19 82.22 59.03

MSCAN-3 75.45 52.41 83.43 62.03

MSCAN-4 76.25 53.14 84.09 62.95

Table 7. Experimental results of four types of MSCAN using body-

based representation for ReID on the Market1501 dataset.

4.5. Effectiveness of Latent Part Localization

Learned parts vs. rigid parts To compare with popular

rigid pedestrian parts, we divide the pedestrian into three

overlapped regions as predefined rigid parts. We use the

rigid body parts instead of the learned latent body parts for

part-based feature learning. Experimental results with rigid

and learned body parts are shown in Table 8. Compared

with rigid body parts, the learned body parts improve Rank-

1 identification rate and mAP by 3.27% and 3.73% in single

query, and by 1.70% and by 2.67% in multiple query. This

validate the effectiveness of learned person parts.
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Original Rigid Latent Original Rigid Latent Original Rigid Latent

Figure 4. Six samples of original image, rigid predefined parts and

learned latent pedestrian parts. Samples in each column are the

same person with different backgrounds. Best viewed in color.

For better understanding the learned pedestrian parts, we

visualize the localized latent parts in Figure 4 using our

fusion model. For these detected person with large back-

ground (the first row in Figure 4), the proposed model can

learn foreground information with complementary laten-

t pedestrian parts. As we can see, the learned parts con-

sist of three main components, including upper body, mid-

dle body (combination of upper body and lower body), and

lower body. Similar results can be achieved when original

detection pedestrians contain less background or occlusion

(the second row in Figure 4). It is easy to see that, the au-

tomatically learned pedestrian parts are not strictly head-

shoulder, upper body and lower-body. But it indeed con-

sists of these three parts with large overlap. Compared with

rigid parts, the proposed model can automatically localize

the appropriate latent parts for feature learning.

Query type Single query Multiple query

Evaluation metrics Rank-1 mAP Rank-1 mAP

Rigid parts 72.98 49.60 82.42 60.23

Latent parts 76.25 53.33 84.12 62.90

Table 8. Experimental results of rigid parts and learned parts for

ReID on the Market1501 dataset.

Effectiveness of localization loss To evaluate the ef-

fectiveness of the proposed constraints on the latent part

localization network, we conduct additional experiments

by adding or deleting proposed Lloc in the training stage

of body parts network for ReID. Experimental results are

shown in Table 9. As we can see, with the additional Lloc,

the Rank-1 accuracy increases by 9.03%. We owe the im-

provements to the effectiveness of the proposed constraints

on the part localization network.

4.6. Cross-dataset Evaluation

Similar with typical image classification task with CN-

N, our approach requires large scale of data, not only more

identities, but also more instances for each identity. So

we do not train the proposed model on each single small

person ReID dataset, such as VIPeR. Instead, we conduct

cross-dataset evaluation from the pretrained model on the

Query type Single query Multiple query

Evaluation metrics Rank-1 mAP Rank-1 mAP

Lcls 67.22 45.27 77.55 55.40

Lcls + Lloc 76.25 53.33 84.12 62.90

Table 9. The influences of Lloc on part-based network on the Mar-

ket1501 dataset.

Methods Training Set 1 10 20 30

DTRSVM [26] i-LIDS 8.26 31.39 44.83 53.88

DTRSVM [26] PRID 10.90 28.20 37.69 44.87

DML [44] CUHK Campus 16.17 45.82 57.56 64.24

Ours-Fusion CUHK03 detected 17.30 44.58 55.51 61.77

Ours-Fusion CHUK03 labeled 19.44 49.99 60.78 66.74

Ours-Fusion MRAS 18.46 43.65 52.96 59.34

Ours-Fusion Market1501 22.21 47.24 57.13 62.26

Table 10. Cross-dataset person ReID on the VIPeR dataset

Method Rank-1 Rank-5 Rank-10 Rank-20

Our-Part 32.70 57.49 67.62 78.90

Our-Body 33.12 60.23 72.05 82.59

Our-Fusion 38.08 64.14 73.52 82.91

Table 11. Experimental results on VIPeR through fine-tuneing the

model from Market1501 to VIPeR.

Market1501, CUHK03 and MARS datasets to the VIPeR

dataset. The experimental results are shown in Table 10.

Compared with other methods, such as Domain Transfer

Rank Support Vector Machines [26] and DML [44], the

models trained on large-scale datasets have better general-

ization ability and have better Rank-1 identification rate.

To take further analysis of the proposed method, we also

fine-tune the model from large dataset Market1501 to small

dataset VIPeR. Experimental results are shown in Table 11.

Our fusion-based model obtains better Rank-1 identifica-

tion rate than existing deep models, e.g. IDLA [1] (34.8%),

Gate-SCNN [34] (37.8%), SI-CI [36] (35.8%), and achieves

comparable results with DGD [39] (38.6%).

5. Conclusion

In this work, we have studied the problem of person ReI-

D in three levels: 1) a multi-scale context-aware network to

capture the context knowledge for pedestrian feature learn-

ing, 2) three novel constraints on STN for effective laten-

t parts localization and body-part feature representation, 3)

the fusion of full-body and body-part identity discriminative

features for powerful pedestrian representation. We have

validated the effectiveness of the proposed method on cur-

rent large-scale person ReID datasets. Experimental results

have demonstrated that the proposed method achieves the

state-of-the-art results.
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