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Abstract

Person Re-identification (RelD) is to identify the same
person across different cameras. It is a challenging task
due to the large variations in person pose, occlusion, back-
ground clutter, etc. How to extract powerful features is a
Sfundamental problem in RelD and is still an open prob-
lem today. In this paper, we design a Multi-Scale Context-
Aware Network (MSCAN) to learn powerful features over
full body and body parts, which can well capture the lo-
cal context knowledge by stacking multi-scale convolutions
in each layer. Moreover, instead of using predefined rigid
parts, we propose to learn and localize deformable pedes-
trian parts using Spatial Transformer Networks (STN) with
novel spatial constraints. The learned body parts can re-
lease some difficulties, e.g. pose variations and background
clutters, in part-based representation. Finally, we inte-
grate the representation learning processes of full body
and body parts into a unified framework for person Rel-
D through multi-class person identification tasks. Extensive
evaluations on current challenging large-scale person RelD
datasets, including the image-based Market1501, CUHKO3
and sequence-based MARS datasets, show that the pro-
posed method achieves the state-of-the-art results.

1. Introduction

Person re-identification aims to search for the same per-
son across different cameras with a given probe image. It
has attracted much attention in recent years due to its impor-
tance in many practical applications, such as video surveil-
lance and content-based image retrieval. Despite of years
of efforts, it still has many challenges, such as large varia-
tions in person pose, illumination, and background clutter.
In addition, similar appearance of clothes among differen-
t people and imperfect pedestrian detection results further
increase its difficulty in real applications.

Most existing methods for RelD focus on developing a
powerful representation to handle the variations of view-
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Figure 1. The schematic of typical feature learning framework
with deep learning. As shown in black dashed boxes, curren-
t approaches focus on the full body or rigid body parts for fea-
ture learning. Different from them, we use the spatial transformer
networks to learn and localize pedestrian parts and use multi-
scale context-aware convolutional networks to extract full-body
and body-parts representations for ReID. Best viewed in color.

point, body pose, background clutter, etc. [7, 10, 18,19,22,
27,41-43,50, 51], or learning an effective distance met-
ric [2, 16,21,22,29,47,57]. Some of existing methods
learn both of them jointly [I, 20, 31, 44]. Recently, deep
feature learning based methods [5, 6, 34, 35], which learn a
global pedestrian feature and use Euclidean metric to mea-
sure two samples, have obtained the state-of-the-art result-
s.  With the increasing sample size of RelD dataset, the
learning of features from multi-class person identification
tasks [30,39,40,52,55], denoted as ID-discriminative Em-
bedding (IDE) [55], has shown great potentials on current
large-scale person RelD datasets, such as MARS [52] and
PRW [55], where the IDE features are taken from the last
hidden layer of Deep Convolutional Neural Networks (D-
CNN). In this paper, we aim to learn the IDE feature for
person RelD using DCNN.

Existing DCNN models for person RelD typically learn
a global full-body representation for input person image
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(Full body in Figure 1), or learn a part-based representa-
tion for predefined rigid parts (Rigid body parts in Figure 1)
or learn a feature embedding for both of them. Although
these DCNN models have obtained impressive results on
existing RelD datasets, there are still two problems. First,
for feature learning, current popular DCNN models typical-
ly stack single-scale convolution and max pooling layers to
generate deep networks. With the increase of the number of
layers, these DCNN models could easily miss some small
scale visual cues, such as sunglasses and shoes. However,
these fine-grained attributes are very useful to distinguish
the pedestrian pairs with small inter-class variations. Thus
these DCNN models are not the best choice for pedestri-
an feature learning. Second, due to the pose variations and
imperfect pedestrian detectors, the pedestrian image sam-
ples may be misaligned. Sometimes they may have some
backgrounds or lack some parts, e.g. legs. In these cases,
for part-based representation, the predefined rigid grids may
fail to capture correct correspondence between two pedes-
trian images. Thus the rigid predefined grids are far from
robust for effective part-based feature learning.

In this paper, we propose to learn the features of full
body and body parts jointly. To solve the first problem, we
propose a Multi-Scale Context-Aware Network (MSCAN).
As shown in Figure 1, for each convolutional layer of the M-
SCAN, we adopt multiple convolution kernels with differ-
ent receptive fields to obtain multiple feature maps. Feature
maps from different convolution kernels are concatenated as
current layer’s output. To decrease the correlations among
different convolution kernels, the dilated convolution [45] is
used rather than general convolution kernels. Through this
way, multi-scale context knowledge is obtained at the same
layer. Thus the local visual cues for fine-grained discrimina-
tion is enhanced. In addition, through embedding contextu-
al features layer-by-layer (convolution operation across lay-
ers), MSCAN can obtain more context-aware representation
for input image. To solve the second problem, instead of
using rigid body parts, we propose to localize latent pedes-
trian parts through Spatial Transform Networks (STN) [13],
which is originally proposed to learn image transformation.
To adapt it to the pedestrian part localization task, we pro-
pose three new constraints on the learned transformation pa-
rameters. With these constraints, more flexible parts can be
localized at the informative regions, so as to reduce the dis-
traction of background contents.

Generally, the features of full body and body parts are
complementary to each other. The full-body features pay
more attention to the global information while the body-part
features care more about the local regions. To better utilize
these two types of representations, in this paper, features
of full body and body parts are concatenated to form the
final pedestrian representation. In test stage, the Euclidean
metric is adopted to compute the distance between two L2

normalized person representations for person RelD.

The contributions of this paper are summarized as fol-
lows: (a) We propose a multi-scale context-aware network
to enhance the visual context information for better feature
representation of fine-grained visual cues. (b) Instead of us-
ing rigid parts, we propose to learn and localize pedestrian
parts using spatial transformer networks with novel prior s-
patial constraints. Experimental results show that fusing the
global full-body and local body-part representations greatly
improves the performance of person RelD.

2. Related Work

Typical person RelD methods focus on two key points:
developing a powerful feature for image representation and
learning an effective metric to make the same person be
close and different persons far away. Recently, deep learn-
ing approaches have achieved the state-of-the-art results for
person RelD [34,39,48,52,54]. Here we mainly review the
related deep learning methods.

Deep learning approaches for person RelD tend to learn
person representation and similarity (distance) metric joint-
ly. Given a pair of person images, previous deep learning
approaches learn each person’s features followed by a deep
matching function from the convolutional features [1, 3, 4,
20] or the Fully Connected (FC) features [31,37,44]. In ad-
dition to the deep metric learning, some work directly learn-
s image representation through pair-wise contrastive loss or
triplet ranking loss, and use Euclidean metric for compari-
son [5,06,34,35].

With the increasing sample size of RelD dataset, the IDE
feature which is learned through multi-class person identi-
fication tasks, has shown great potentials on current large-
scale person RelD datasets. Xiao et al. [39] propose the do-
main guided dropout to learn features over multiple dataset-
s simultaneously with identity classification loss. Zheng et
al. [52] learn the IDE feature for the video-based person re-
identification. Xiao et al. [40] and Zheng et al. [55] learn
the IDE feature to jointly solve the pedestrian detection and
person RelD tasks. Schumann et al. [30] learn the IDE
feature for domain adaptive person RelD. The similar phe-
nomenon has also been validated on face recognition [33].

As we know, previous DCNN models usually adopt the
layer-by-layer single-scale convolution kernels to learn the
context information. Some DCNN models [5,31,44] adop-
t rigid body parts to learn local pedestrian features. Dif-
ferent from them, we improve the classical models in two
ways. Firstly, we propose to enhance the context knowledge
through multi-scale convolutions at the same layer. The re-
lationship among different context knowledge are learned
by embedding feature maps layer-by-layer (convolution or
FC operation). Secondly, instead of using rigid parts, we
utilize the spatial transformer networks with proposed prior
constraints to learn and localize latent human parts.
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Figure 2. Overall framework of the proposed model. The proposed model consists three components: the global body-based feature
learning with MSCAN, the latent pedestrian parts localization with spatial transformer networks and local part-based feature embedding,
the fusion of full body and body parts for multi-class person identification tasks.

3. Proposed Method

The focus of this approach is to learn powerful feature
representations to describe pedestrians. The overall frame-
work of the proposed method is shown in Figure 2. In this
section, we introduce our model from four aspects: a multi-
scale context-aware network for efficient feature learning
(Section 3.1), the latent parts learning and localization for
better local part-based feature representation (Section 3.2),
the fusion of global full-body and local body-part features
for person RelD (Section 3.3), and our final objective func-
tion in Section 3.4.

3.1. Multi-scale Context-aware Network

Visual context is an important component to assist
visual-related tasks, such as object recognition [24] and
object detection [46, 56]. Typical convolutional neural
networks model context information through hierarchical
convolution and pooling [11, 17]. For person RelD task,
the most important visual cues are visual attribute knowl-
edge, such as clothes color and types. However, they have
large variations in scale, shape and position, such as the
hat/glasses at small local scale and the cloth color at the
larger scale. Directly using bottom-to-up single-scale con-
volution and pooling may not be effective to handle these
complex variations. Especially, with the increase number
of layers, the small visual regions, such as hat, will be easi-
ly missed in top layers. To better learn these diverse visual
cues, we propose the Multi-scale Context-Aware Network.

The architecture of the proposed MSCAN is shown in
Tabel 1. It has an initial convolution layer with kernel size
5 x 5 to capture the low-level visual features. Then we use
four multi-scale convolution layers to obtain the complex

layer dilation | kernel pad #filters output
input - - - - 3% 160X 64
conv0 1 5x5 2 32 32x160x 64
pool0 - 2x2 - - 32x80x32
convl 1/2/3 3x3 172/3 | 32/32/32 96 x80x32
pooll - 2x2 - - 96x40x16
conv2 1/2/3 3x3 1/2/3 | 32/32/32 96x40x16
pool2 - 2x2 - - 96x20x 8
conv3 1/2/3 3x3 1/2/3 | 32/32/32 96x20x8
pool3 - 2x2 - - 96x 10x4
conv4 1/2/3 3x3 1/2/3 | 32/32/32 96x 10x4
pool4 - 2x2 - - 96x5x2

Table 1. Model architecture of MSCAN.

image context information. In each multi-scale convolution
layer, we use a convolution kernel with size 3 x 3. To ob-
tain multi-scale receptive fields, we adopt dilated convolu-
tion [45] for the convolution filters. We use three different
dilation ratios, i.e. 1,2 and 3, to capture different scale con-
text information. The feature maps from different dilation
ratios are concatenated along the channel axis to form the
final output of the current convolution layer. Thus, the visu-
al context information are enhanced explicitly. To integrate
different context information together, the feature maps of
current convolution layer are embedded through layer-by-
layer convolution or FC operation. As a result, the visual
cues at different scales are fused in a latent way. Besides,
we adopt Batch Normalization [12] and ReLU neural acti-
vation units after each convolution layer.

In this paper, we use the dilated convolutions with dila-
tion ratios 1, 2 and 3 instead of the classic convolution filters
with kernel size 3x 3, 5x5 and 7 x 7. The main reason is that
the classic convolution filters with kernel size 3 x 3,5 x 5
and 7 x 7 overlap with each other at the same output position
and produce redundant information. To make it clearer, we
show the dilated convolution kernel (size 3 x 3) with dilation

386



]

- =
LT :H:

Figure 3. Example of dilated convolution for the same input fea-
ture map. The convolutional kernel is 3 X 3 and the dilation ratio
from left to right is 1, 2, and 3. The blue boxes are effective posi-
tions for convolution at the red circle. Best viewed in color.
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ratio ranging from 1 to 3 in Figure 3. For the same output
position which is shown in red circle, the convolution kernel
with larger dilation ratio has larger receptive field, while on-
ly the center position is overlapped with other convolution
kernels. This can reduce the redundant information among
filters with different receptive fields.

In summary, as shown in Figure 2, we use MSCAN to
learn the multi-scale context representation for full body
and body parts. In addition, it is also used for feature learn-
ing in spatial transformer networks mentioned below.

3.2. Latent Part Localization

Pedestrian parts are important in person ReID. Some ex-
isting work [5, 10,22, 44] has explored rigid body parts to
develop robust features. However, due to the unsatisfying
pedestrian detection algorithms and large pose variations,
the method of using rigid body parts for local feature learn-
ing is not the optimal solution. As shown in Figure 1, when
using rigid body parts, the top part consists of large amount
of background. This motivates us to learn and localize the
pedestrian parts automatically.

We integrate STN [13] as the part localization net in our
proposed model. The original STN is proposed to explicitly
learn the image transformation parameters, such as trans-
lation and scale. It has two main advantages: (1) it is fully
differentiable and can be easily integrated into existing deep
learning frameworks, (2) it can learn to translate, scale, crop
or warp an interesting region without explicit region annota-
tions. These facts make it very suitable for pedestrian parts
localization.

STN includes two components, the spatial localization
network to learn the transformation parameters, and the grid
generator to sample the input image using an image interpo-
lation kernel. More details about STN can be seen in [13].
In our implementation of STN, the bilinear interpolation k-
ernel is adopted to sample the input image. And four trans-
formation parameters 6 = [s;,1,sy,t,] are used, where
s, and s, are the horizontal and vertical scale transforma-
tion parameters, and ¢, and ¢, are the horizontal and vertical
translation parameters. The image height and width are nor-
malized to be in [—1, 1]. Only scale and translation parame-
ters are learned because these two types of transformations
serve enough to crop the pedestrian parts effectively. The

transformation is applied as an inverse warping to generate
the output body part regions:

in 0 t .CL'? ut

Ly _ | %=z x out
where 2™ and 4™ are the input image coordinates, z°%
and y°“! are the output part image coordinates, and i index-
es the pixels in the output body part image.

In this paper, we expect STN to learn three parts corre-
sponding to the head-shoulder, upper body and lower body.
Each part is learned by an independent STN from the o-
riginal pedestrian image. For the spatial localization net-
work, firstly we use MSCAN to extract the global image
feature maps. Then we learn the high-level abstract repre-
sentation by a 128-dimension FC layer (FC_loc in Figure 2).
At last, we learn the transformation parameters 6 with a 4-
dimension FC layer based on the FC_loc. The MSCAN and
FC_loc are shared among three spatial localization network-
s. The grid generator can crop the learned pedestrian parts
based on the learned transformation parameters. In this pa-
per, the resolution of the cropped part image is 96 x 64.

For the part localization network, it is hard to learn three
groups of parameters for part localization. There are three
problems. First, the predicted parts from STN can easily
fall into the same region, e.g., the center region of a per-
son, and result in redundance. Second, the scale parameters
can easily become negative and the pedestrian part will be
mirrored vertically or horizontally or both. This is not con-
sistent with general human cognition. Because few person
will stand upside down in surveillance scenes. At last, the
cropped parts may fall out of the person image, thus the
network would be hard to converge. To solve the above
problems, we propose three prior constraints on the trans-
formation parameters in the part localization network.

The first constraint is for the positions of predicted parts.
We expect the predicted parts to be near the prior center
points, so that the learned parts would be complementary to
each other. This is termed as the center constraint, which is
formalized as follows:

Lcen = %maX{CL (tw - CJ:)2 + (ty - Cy)2 - Ct} (2)

where C, and C,, are prior center points for each part. o
is the threshold to control the translation between estimated
and prior center points. In our experiments, we set the prior
center point (Cy, Cy) to (0,0.6), (0,0), and (0, —0.6) for
each part. The threshold « is set to 0.5.

The second one is the value range constraint on the pre-
dicted scale parameter. We hope the scale to be positive, so
that the predicted parts have a reasonable extent. The val-
ue range constraint on the scale parameter is formalized as
follows:

Lpos = max{0, 5 — sz} + max{0,5 —s,}  (3)
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where [ is threshold parameter and is set to 0.1 in this paper.
The last one is to make the localization network focus on
the inner region of an image. It is formalized as follows:

L = %max{O, ||SCF itw”Q - 7}

1 2 @)
+5 max{0, |[sy & 1,|[* — 7}
where y is the boundary parameter. « is set to 1.0 in our
paper, which means the cropped parts should be inside the
pedestrian image.
Finally the loss for the transformation parameters in the
part localization network is described as follows:

Lloc = Lcen + gleos + §2Lin (5)

where & and &5 are hyperparameters. The hyperparameters
&1 and & are both set to 1.0 in our experiments.

3.3. Feature Extraction and Fusion

The features of full body and body parts are learned by
separate networks and then are fused in a unified frame-
work for multi-class person identification tasks. For the
body-based representation, we use MSCAN to extract the
global feature maps and then learn a 128-dimension fea-
ture embedding (denoted as FC_body in Figure 2). For
the part-based representation, first, for each body part,
we use the MSCAN to extract its feature maps and learn
a 64-dimension feature embedding (denoted as FC_partl,
FC_part2, FC_part3). Then, we learn a 128-dimension fea-
ture embedding (denoted as FC_part) based on features of
each body part. The Dropout [32] is adopted after each FC
layer to prevent overfitting. At last, the features of glob-
al full body and local body parts are concatenated to be a
256-dimension feature as the final person representation.

3.4. Objective Function

In this paper, we adopt the softmax loss as the objective
function for multi-class person identification tasks.

where ¢ is the index of person images, x; is the feature of -
th sample, y; is the identity of ¢-th sample, /V is the number
of person images, C' is the number of person identities, WV
is the classifier for j-th identity.

For the overall network training, we use the classification
and localization loss jointly. The final objective function is
as follows.

L = Les + ALjoc (7

where the ) is the hyperparameter, which is set to 0.1 in our
experiments.

4. Experiments

In this paragraph, the datasets and evaluation protocols
are introduced in Section 4.1. Implementation details are
described in Section 4.2. Comparisons with state-of-the-art
methods are discussed in Section 4.3. The effectiveness of
proposed model is analyzed in Section 4.4 and Section 4.5.
Cross-dataset evaluation is described in Section 4.6.

4.1. Datasets and Protocols

Datasets. In this paper, we evaluate our proposed
method on current largest person RelD datasets, includ-
ing Market1501 [53], CUHKO3 [20] and MARS [52]. We
do not directly train our model on small datasets, such as
VIPeR [9]. It would be easily overfitting and insufficien-
t to learn such a large capacity network on small datasets
from scratch. However, we give some results through fine-
tuneing the model from Market1501 to VIPeR and make
cross-dataset ReID on VIPeR for generalization validation.
Related experimental results are discussed in Section 4.6.

Market1501: It contains 1,501 identities which are cap-
tured by six manually set cameras. There are 32,368 pedes-
trian images in total. Each person has 3.6 images on average
at each viewpoint. It provides two types of images, includ-
ing cropped and automatically detected pedestrians by the
Deformable Part based Model (DPM) [8]. Following [53],
751 identities are used for training and the rest 750 identi-
ties are used for testing.

CUHKO3: It contains 1,360 identities which are captured
by six surveillance cameras in campus. Each identity is cap-
tured by two disjoint cameras. Totally it consists of 13,164
person images and each identity has about 4.8 images at
each viewpoint. This dataset provides two types of anno-
tations, including manually annotated bounding boxes, and
bounding boxes detected using DPM. We validate our pro-
posed model on both types of data. Following [20], we use
1,260 person identities for training and the rest 100 identi-
ties for testing. Experiments are conducted 20 times and the
mean result is reported.

MARS: It is the largest sequence-based person RelD
dataset. It contains 1,261 identities with each identity cap-
tured by at least two cameras. It consists of 20,478 tracklets
and 1,191,003 bounding boxes. Following [52], we use 625
identities for training and the rest 631 identities for testing.

Protocols. Following original evaluation protocols in
each dataset, we adopt three evaluation protocols for fair
comparison with existing methods. The first one is Cumu-
lated Matching Characteristics (CMC) which is adopted on
the CUHKO3 and MARS datasets. The second one is Rank-
1 identification rate on the Market1501 dataset. The third
one is mean Average Precision (mAP) on the Market1501
and MARS datasets. mAP considers both precision and re-
call rate, which could be complementary to CMC.
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4.2. Implementation Details

Model: We try to learn the pedestrian representation
through multi-class person identification tasks using ful-
1 body and body parts. To evaluate the effectiveness of ful-
1 body and body parts independently, we extract two sub-
models from the whole network of Figure 2. The first one
only uses the full body to learn the person representation
with identity classification loss. The second one only us-
es the parts to learn the person representation with identity
classification and body parts localization loss. For person
re-identification, we use the L2 normalized person repre-
sentation and Euclidean metric to measure the distance be-
tween two pedestrian samples.

Optimization: Our model is implemented based on
Caffe [14]. We use all the available training identities for
training and randomly select one sample for each identity
for validation. As the dataset can be quite large, in practice
we use a stochastic approximation of the objective function.
Training data is randomly divided into mini-batches with a
batch size of 64. The model performs forward propagation
on each mini-batch and computes the loss. Backpropaga-
tion is then used to compute the gradients on each mini-
batch and the weights are updated with stochastic gradient
descent. We start with a base learning rate of n = 0.01 and
gradually decrease it after each 1 x 10* iterations. It should
be noted that the learning rate of part localization network
is 1% of that in feature learning network. We use a momen-
tum of 1 = 0.9 and weight decay A = 5 x 103, For overall
network training, we initialize the network using pretrained
body-based and part-based model and then follow the same
training strategy as described above. We use the model at
5 x 10% iterations for testing.

Data Preprocessing: For each image, we resize it to
160 x 64, subtract the mean value on each channel (B, G and
R), and then normalize it with scale 1.0/256 for network
training. To prevent overfitting, we randomly reflect each
image horizontally in the training stage.

4.3. Comparison with State-of-the-art Methods

Market1501: For the Market1501 dataset, several state-
of-the-art methods are compared, including Bag of Word-
s (BOW) [53], Weighted Approximate Rank Componen-
t Analysis (WARCA) [15], Discriminative Null Space
(DNS) [47], Spatially Constrained Similarity function on
Polynomial feature map (SCSP) [2], and deep learning
based approaches, such as PersonNet [38], Comparative At-
tention Network (CAN) [25], Siamese Long Short-Term
Memory (S-LSTM) [35], Gated Siamese Convolutional
Neural Network (Gate-SCNN) [34]. The experimental re-
sults are shown in Table 2.

Compared with existing full body-based convolutional
neural networks, such as CAN and Gate-SCNN, the pro-
posed network structure can better capture pedestrian fea-

Query [ Single query [ Multiple query |
Evaluation metrics | RI mAP | RI mAP |

BOW [53] 34.38 14.1 42.64 19.47
BOW + HS [53] - - 4725  21.88
WARCA [15] 45.16 - - -
PersonNet [38] 37.21 26.35 - -
S-LSTM [35] - - 61.6 35.3
SCSP [2] 51.9 26.35 - -
CAN [25] 4824 2443 - -
DNS [47] 5543 2987 | 71.56  46.03
Gate-SCNN [34] 65.88  39.55 | 76.04  48.45
Our-Part 7625 5333 | 84.12  62.90
Our-Body 7545 5241 8343  62.03
Our-Fusion 80.31 57.53 | 86.79  66.70

Table 2. Experimental results on the Market1501 dataset. - means
that no reported results are available.

tures with multi-class person identification tasks. Our full-
body representation improves Rank-1 identification rate by
9.57% on the state-of-the-art results produced by the Gate-
CNN in single query. Compared with the full body, our
body-part representation increase 0.80%. The main reason
is that the pedestrians detected by DPM consists much more
background information and the part-based representation
can better reduce the influences of background clutter.

The full-body and body-part representations are comple-
mentary to each other. The full-body representation cares
more about the global information, such as the background
and body shape. The body-part representation pays more
attention to parts, such as head, upper body and lower body.
As shown in Table 2, the fusion model of full body and
body parts improves Rank-1 identification rate by more than
4.00% compared with the body and parts-based models sep-
arately in single query. The mAP improves about 17.98%
compared with the best result produced by Gate-CNN.

CUHKO03: For the CUHKO3 dataset, we compare our
method with many existing approaches, including Filter
Pair Neural Networks (FPNN) [20], Improved Deep Learn-
ing Architecture (IDLA) [!], Cross-view Quadratic Dis-
criminant Analysis (XQDA) [22], PSD constrained asym-
metric metric learning (denoted as MLAPG) [23], Sample-
Specific SVM (SS) [49], Single image and Cross image
representation (SI-CI) [36], Embedding Deep Metric (ED-
M) [31], Domain Guided Dropout (DGD) [39], DNS, S-
LSTM and Gate-SCNN. On this dataset, we conduct exper-
iments on both the detected and the labeled datasets. As
presented in previous work [20], we use the CMC curve in
the single shot case to evaluate the performance. The over-
all results are shown in the Table 3 and Table 4. The full
CMC curves are shown in supplementary materials.

Compared with metric learning methods, such as the
state-of-the-art approach DNS, the proposed fusion mod-
el improves the Rank-1 identification rate by 11.66% and
13.29% on the labeled and detected datasets respectively.
Compared with the similar multi-class person identification
network DGD, the Rank-1 identification rate improves by
1.63% using our fusion model on the labeled dataset. It
should be noted that we only use the labeled sets for train-
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[ Dataset [ CUHKO3 detected |
[ Rank [ 1 5 10 20 |
FPNN [20] 19.89 50.00 64.00 78.50
IDLA [1] 44.96 76.01 83.47 93.15
XQDA [22] 46.25 78.90 88.55 94.25
MLAPG [23] 51.15 83.55 92.05 96.90
SS-SVM [49] 51.20 80.80 89.60 95.50
SI-CI [36] 52.17 84.30 92.30 95.00
DNS [47] 54.70 84.75 94.80 95.20

S-LSTM [35] 57.30 80.10 88.30 -
Gate-SCNN [34] 61.80 80.90 88.30 -
EDM [31] 52.09 82.87 91.78 97.17
Our-Part 62.74 88.53 93.97 97.21
Our-Body 64.95 89.82 94.58 97.56
Our-Fusion 67.99 91.04 95.36 97.83

Table 3. Experimental results on the CUHKO3 detected dataset.

[ Dataset [ CUHKO3 labeled |
["Rank [T 5 0 20 |
FPNN [20] 20.65 51.50 66.50 80.00
IDLA [1] 54.74 86.50 93.88 98.10
XQDA [22] 52.20 82.23 92.14 96.25

MLAPG [23] 5796  87.09 9474  98.00
Ensemble [28] | 62.10  89.10 9480  98.10
SS-SVM [49] 57.00 8570 9430  97.80

DNS [47] 62.55 90.05 94.80  98.10
EDM [31] 61.32 8890 9644  99.94
DGD [39] 72.58  91.59 9521 97.72
Our-Part 69.41 92.68  96.68  99.02
Our-Body 71.88  93.66 97.46  99.18
Our-Fusion 7421 9433 9754 99.25

Table 4. Experimental results on the CUHKO3 labeled dataset.

ing, while the DGD is trained on both the labeled and de-
tected datasets. This demonstrates the effectiveness of the
proposed model.

MARS: This dataset is the largest sequence-based per-
son RelD dataset. On this dataset, we compare the proposed
method with several classical methods, including Keep It
as Simple and straightforward Metric (KISSME) [16], XQ-
DA [22], and CaffeNet [17]. Similar to previous work [52],
both single query and multiple query are evaluated on
MARS. The overall experimental results on the MARS are
shown in Table 5 and Table 6. The full CMC curves are
shown in supplementary materials.

Compared with CaffeNet, a similar multi-class person i-
dentification network, our body-based model improves the
Rank-1 identification rate by 2.93% and mAP by 4.22% us-
ing XQDA in single query. It should be noticed that our
network does not use any pre-training with additional da-
ta. Usually deep learning network can obtain better results
when pretrained with on ImageNet classification task. Our
fusion model improves Rank-1 identification rate and mAP
by 6.47% and by 8.45% in single query. This illustrates the
effectiveness of our model.

4.4. Effectiveness of MSCAN

To determine the effectiveness of MSCAN, we explore
four variants of MSCANSs to learn IDE feature based on
the whole body image, which is denoted as MSCAN-£,
k = {1,2,3,4}. k is the number of dilation ratios. For
example, MSCAN-3 means for each convolution layer in

Query [ Single query |
Evaluation metrics [ 1 5 20 mAP |
CNN+Eulidean [52] 5870 77.10 86.80  40.40
CNN+KISSME [52] 65.00 81.10 88.90 45.60
CNN+XQDA [52] 65.30 82.00 89.00 47.60
Our-Fusion+Eulidean 68.38 84.19 91.52 51.13
Our-Fusion+KISSME | 69.24  85.15 92.17 53.00
Our-Part+XQDA 66.62  82.07 90.76  49.74
Our-Body+XQDA 68.23 8399  92.17 51.82
Our-Fusion+XQDA 71.77  86.57 93.08 56.05

Table 5. Experimental results on the MARS with single query.
Query [ Multiple query ‘

Evaluation metrics [ 1 5 20 mAP |

CNN+KISSME+MQ [52] 6830  82.60 89.40  49.30
Our-Fusion+Euclidean+MQ | 7828  91.97  96.87  61.62
Our-Fusion+KISSME+MQ 80.51 93.18 97.22 63.50
Our-Fusion+XQDA+MQ 83.03 93.69 97.63 66.43

Table 6. Experimental results on the MARS with multiple query.

Conv1-Conv4, there are three convolution kernels with di-
lation ratio 1, 2, and 3 respectively. With the increase of k,
the MSCAN captures larger context information at the same
convolution layer.

The experimental results based on these four types of
MSCANSs on the Market1501 dataset are shown in Table 7.
As we can see, with the increase of the number of dilation
ratios, the Rank-1 identification rate and mAP improve sta-
bly in single query case. For multiple query case, which
means fusing all images belonging to the same query per-
son at the same camera through average pooling in feature s-
pace, the Rank-1 identification rate and mAP also improves
step by step. However, the Rank-1 identification rate and
mAP increase not much when K increase from 3 to 4. We
think there is a suitable number of dilation ratios for feature
learning. Considering the model complexity and accuracy
improvements in Rank-1 identification rate, we adopt the
MSCANS-3 as our final MSCAN model in this paper.

[ Query type [ Singlequery [ Multiple query |
| Evaluation metrics | Rank-1 ~ mAP [ Rank-1 mAP_|
MSCAN-1 65.38 41.85 75.21 51.14
MSCAN-2 72.21 49.19 82.22 59.03
MSCAN-3 75.45 52.41 83.43 62.03
MSCAN-4 76.25 53.14 84.09 62.95

Table 7. Experimental results of four types of MSCAN using body-
based representation for RelD on the Market1501 dataset.

4.5. Effectiveness of Latent Part Localization

Learned parts vs. rigid parts To compare with popular
rigid pedestrian parts, we divide the pedestrian into three
overlapped regions as predefined rigid parts. We use the
rigid body parts instead of the learned latent body parts for
part-based feature learning. Experimental results with rigid
and learned body parts are shown in Table 8. Compared
with rigid body parts, the learned body parts improve Rank-
1 identification rate and mAP by 3.27% and 3.73% in single
query, and by 1.70% and by 2.67% in multiple query. This
validate the effectiveness of learned person parts.
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Figure 4. Six samples of original image, rigid predefined parts and
learned latent pedestrian parts. Samples in each column are the
same person with different backgrounds. Best viewed in color.

For better understanding the learned pedestrian parts, we
visualize the localized latent parts in Figure 4 using our
fusion model. For these detected person with large back-
ground (the first row in Figure 4), the proposed model can
learn foreground information with complementary laten-
t pedestrian parts. As we can see, the learned parts con-
sist of three main components, including upper body, mid-
dle body (combination of upper body and lower body), and
lower body. Similar results can be achieved when original
detection pedestrians contain less background or occlusion
(the second row in Figure 4). It is easy to see that, the au-
tomatically learned pedestrian parts are not strictly head-
shoulder, upper body and lower-body. But it indeed con-
sists of these three parts with large overlap. Compared with
rigid parts, the proposed model can automatically localize
the appropriate latent parts for feature learning.

[ Query type [ Singlequery [ Multiple query |

| Evaluation metrics | Rank-1 —~ mAP [ Rank-I  mAP |

[ Rigid parts [ 7208 4960 | 8242 6023 |
[

[ Latent parts 7625 5333 | 84.12 6290 |

Table 8. Experimental results of rigid parts and learned parts for
RelD on the Market1501 dataset.

Effectiveness of localization loss To evaluate the ef-
fectiveness of the proposed constraints on the latent part
localization network, we conduct additional experiments
by adding or deleting proposed L;,. in the training stage
of body parts network for ReID. Experimental results are
shown in Table 9. As we can see, with the additional L;,..,
the Rank-1 accuracy increases by 9.03%. We owe the im-
provements to the effectiveness of the proposed constraints
on the part localization network.

4.6. Cross-dataset Evaluation

Similar with typical image classification task with CN-
N, our approach requires large scale of data, not only more
identities, but also more instances for each identity. So
we do not train the proposed model on each single small
person RelD dataset, such as VIPeR. Instead, we conduct
cross-dataset evaluation from the pretrained model on the

[ Query type [ Singlequery [ Multiple query |
| Evaluation metrics | Rank-I  mAP | Rank-1  mAP |
[ Lets [ 6722 4527 | 7755 5540 |
l Leis + Lioe ‘ 76.25 53.33 ‘ 84.12 62.90 ‘

Table 9. The influences of L;,. on part-based network on the Mar-
ket1501 dataset.

[ Methods [ Training Set [ 1 10 20 30 ]
DTRSVM [26] i-LIDS 8.26 31.39 4483 53.88
DTRSVM [26] PRID 1090 2820  37.69  44.87
DML [44] CUHK Campus 16.17 4582 5756  64.24
Ours-Fusion CUHKO3 detected 17.30 4458 5551 61.77
Ours-Fusion CHUKO3 labeled 19.44 4999 60.78  66.74
Ours-Fusion MRAS 18.46  43.65 5296  59.34
Ours-Fusion Market1501 2221 4724 57.13  62.26

Table 10. Cross-dataset person RelD on the VIPeR dataset

Method Rank-1 Rank-5 Rank-10 Rank-20
Our-Part 32.70 57.49 67.62 78.90
Our-Body 33.12 60.23 72.05 82.59
Our-Fusion 38.08 64.14 73.52 82.91

Table 11. Experimental results on VIPeR through fine-tuneing the
model from Market1501 to VIPeR.

Market1501, CUHKO03 and MARS datasets to the VIPeR
dataset. The experimental results are shown in Table 10.
Compared with other methods, such as Domain Transfer
Rank Support Vector Machines [26] and DML [44], the
models trained on large-scale datasets have better general-
ization ability and have better Rank-1 identification rate.

To take further analysis of the proposed method, we also
fine-tune the model from large dataset Market1501 to small
dataset VIPeR. Experimental results are shown in Table 11.
Our fusion-based model obtains better Rank-1 identifica-
tion rate than existing deep models, e.g. IDLA [1] (34.8%),
Gate-SCNN [34] (37.8%), SI-CI [36] (35.8%), and achieves
comparable results with DGD [39] (38.6%).

5. Conclusion

In this work, we have studied the problem of person Rel-
D in three levels: 1) a multi-scale context-aware network to
capture the context knowledge for pedestrian feature learn-
ing, 2) three novel constraints on STN for effective laten-
t parts localization and body-part feature representation, 3)
the fusion of full-body and body-part identity discriminative
features for powerful pedestrian representation. We have
validated the effectiveness of the proposed method on cur-
rent large-scale person RelD datasets. Experimental results
have demonstrated that the proposed method achieves the
state-of-the-art results.
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